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Preface

We will cover the following topics in this course:

1. Point set topology.

2. Normed vector spaces.

3. Lp spaces.

4. Hilbert spaces.

5. Compact operators and their spectrum.

This notes will be updated throughout the term and made available at https://

personal.math.ubc.ca/~mathav/teaching/notes/421notes.pdf. Please check the date
on the first page to determine if you have the latest version. If you find any mistakes,
typos, or have any other feedback, please let me know. Most of this material can be found
in Folland’s book [Fol].

There are various exercises throughout these notes. Try them all! Some of the exercises
will be part of assignments (available on Canvas) and results mentioned in some of the
exercises will be used in lectures. The notes will include all the topics covered in class.
However the notes are rather terse as many oral discussions that gave further explanations
or put results into a broader context are omitted. Additionally, diagrams drawn on the
blackboard in class will not be reproduced in the notes.
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1 Point set topology

The notions of continuity, limits and convergence are central to analysis. Usually, we first
learn this in the setting of metric spaces (for example, ϵ-δ definition of continuity or ϵ-N
definition of limits of a sequence). There are good reasons to go beyond metric spaces to
study these notions such as

(1) Many useful modes of convergence do not have a metric associated with them (for
example, notion of pointwise convergence of functions).

(2) Even for metric spaces, the properties of continuity, limits and convergence do not
depend on the specific choice of metric but rather on the topology induced by the
metric; that is, the collection of open sets associated with a metric.

The basic idea is to define a family of open sets.

Definition 1.1 (Topology). Let X be a non-empty set. A topology T on X is a family
of subsets of X such that

(i) H, X P T .

(ii) (closed under arbitrary unions) If tUα : α P Au is a collection such that Uα P T for
all α P A, then

�
αPA Uα P T .

(iii) (closed under finite intersections) For any n P N and U1, . . . , Un P T , we have�n
i�1 Ui P T .

The pair pX, T q is called a topological space.

Example 1.2. (1) tH, Xu is a topology (called the trivial topology). PpXq (power set
of X) is a topology (called the discrete topology).

(2) In a metric space, open sets with respect to the metric form a topology (Exercise).
Recall that a metric space pX, dq is a set X along with a non-negative function
d : X �X Ñ r0,8q (called the metric or distance function) such that

(i) dpx, yq ¥ 0 for all x, y P X and dpx, yq � 0 if and only if x � y.

(ii) (symmetry) dpx, yq � dpy, xq for all x, y P X.

(iii) (triangle inequality) dpx, yq ¤ dpx, zq � dpz, yq for all x, y, z P X.

A set U in a metric space pX, dq is said to be open if for any x P U , there exists r ¡ 0
(r can depend on x) such that Bpx, rq � U , where Bpx, rq � ty P X : dpx, yq   ru is
the open ball with center x and radius r. Then the collection of open sets T � tU :
U � X and U is openu is a topology on X and is called the topology induced by the
metric d.
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(3) Let X be an infinite set. Then

T � tA � X : A � H or Ac is finiteu

is a topology and is called the co-finite topology.

Notation: A � B allows for the possibility of equality; that is A � B is same as A � B.

There are various constructions of new topological spaces from old ones. For example,
a topology on X induces a topology on any subset Y � X.

Definition 1.3 (Relative topology). Let pX, T q be a topological space and let Y � X.
Then

TY :� tY X U : U P T u
is a topology on X and is called the relative topology or subspace topology on Y .

Exercise 1.4. Verify that all the topologies in Example 1.2 and Definition 1.3 satisfy
properties (i),(ii),(iii) in Definition 1.1.

Question 1.5. Let pX, dXq be a metric space and let A � X be a non-empty subset.
The function dA : A � A Ñ R defined as dApx, yq � dXpx, yq for all x, y P A is a metric
on A (called the restricted metric on A). Let TX denote the topology on X induced by
dX . Let us consider two topologies on A.

1. The topology on A induced by the restricted metric dA.

2. The relative topology on A in the topological space pX, TXq.

What is the relation between the above two topologies on A? Are they the same?

Unless stated otherwise, we always assume that pX, T q is a topological space for the
rest of this section.

Definition 1.6 (Open/closed sets). Let pX, T q be a topological space. Elements of T
are called open sets. We say A � X is closed if Ac is open; that is, Ac P T .

Let A � X. We define the interior of A (denoted by A�) and the closure of A (denoted
by A) as

A� � interior of A �
¤

V is open,
V�A

V,

A � closure of A �
£

F is closed,
A�F

F.

Note that A� is an open set and A is a closed set. Furthermore, A� is the largest open
subset of A and A is the smallest closed set that contains A.
The set AzA� is called the boundary of A and is denoted as BA.
If A � X, we say that A is dense in X.
If pAq� � H, we say A is nowhere dense in X.
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Since closed sets are complement of open sets, each of properties in Definition 1.1 can
be rephrased in terms of closed sets.

Exercise 1.7. Let pX, T q be a topological space.

(i) H, X are closed sets.

(ii) If pFαqαPA is a collection of closed sets, then
�

αPA Fα is closed.

(iii) If n P N and F1, . . . , Fn are closed sets, then
�n

j�1 Fj is closed.

We collect some basic properties of closure and interior of sets.

Lemma 1.8. Let pX, T q be a topological space and let A,A1, A2 � X.

(1) A� � A � A.

(2) A� is open and A is closed.

(3) A is open if and only if A � A�.

(4) A is closed if and only if A � A.

(5) pAcq� � pAqc and pA�qc � Ac.

(6) pA�q� � A� and pAq � A.

(7) A1 � A2 implies A�
1 � A�

2 and A1 � A2.

(8) A1 Y A2 � A1 Y A2.

(9) pA1 X A2q
� � A�

1 X A�
2.

Proof. (1),(2) are immediate from the definition.
(3) If A is open, then A is one of V in the definition of A� and hence A� � A. Hence
A� � A. The converse follows from (2).
(4) is similar to (3).
(5) Since A � A, we have pAqc � Ac. Since pAqc is open (by (2)), we have pAqc � pAcq�.
Let B � pAcq�, so B is open (by (2)). Then B � Ac (by (1)), so A � Bc. Since Bc is
closed, we have A � Bc. So pAcq� � B � pAqc. Hence we conclude pAcq� � pAqc.

Replacing A with Ac in pAcq� � pAqc, we obtain A� � Acc, which in turn implies
pA�qc � Ac.
(6),(7) are easy (you do this!).
(8) A1YA2 is closed (by (2)) and contains A1YA2 (by (1)) and hence A1 Y A2 � A1YA2.
Conversely, A1 � A1 Y A2 and A2 � A1 Y A2 implies (using (7)) that A1 � A1 Y A2 and
A2 � A1 Y A2. This in turn implies A1 Y A2 � A1 Y A2.
(9) is similar to (8).
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Exercise 1.9. Let A and B be nowhere dense subsets of a topological space. Then show
that AYB is also nowhere dense.

The notion of closure is related to accumulation points.

Definition 1.10 (Neighborhood and accumulation points). Let x P X and A � X. We
say that A is a neighborhood of x if there exists an open set U such that x P U and U � A.
We say that x is an accumulation point of A if AXpUztxuq � H for any neighborhood U
of x. By accpAq, we denote the set of accumulation points of A.

Note that if U is a neighborhood of x, then there exists an open set V with x P V � U .
So V is also a neighborhood of x. Therefore, x is an accumulation point of A if and only
if AX pV ztxuq � H for all open neighborhood of x.

Proposition 1.11. (1) A � AY accpAq.

(2) A is closed if and only if accpAq � A.

Proof. (1) “�”: A � A, so we need to show that accpAq � A. Equivalently, it suffices to
show that pAqc � paccpAqqc. So let x P pAqc. Hence V � pAqc is an open neighborhood
of x. Since A � A, we have V X A � H, and hence x R accpAq. In other words,
x P paccpAqqc.
“�”: We need to show A � A Y accpAq or equivalently, Ac X paccpAqqc � pAqc. To
this end, let x P AcX paccpAqqc, so x R A, x R accpAq. Therefore, there exists an open
neighborhood V of x such that AX pV ztxuq � H. Since x R A, we have AX V � H;
that is, A � V c. so A � V c (since V c is closed) and hence V � pAqc. Since x P V , we
have x P pAqc which concludes the proof.

(2) ùñ : A is closed implies A � A and hence accpAq � A � A (by (1)).
ðù :accpAq � A implies A � AY accpAq � A (by (1)). Hence A is closed.

We introduce a terminology to compare two topologies on a space.

Definition 1.12. Let T1, T2 be two topologies on X. If T1 � T2, we say that T1 is weaker
(or coarser) than T2. If T1 � T2, we say that T2 is stronger (or finer) than T1.

The following property is readily verified from the definition of a topology.

Exercise 1.13. If tTi : i P Iu is a collection of topologies on X, then
�

iPI Ti is a topology
on X.

The following is a common way to define a topology (we will use this method to define
weak topology and product topology in §1.2).
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Definition 1.14 (Topology generated by a collection of sets). Let X be a set and E �
PpXq be a collection of subsets of X. Then

T pEq �
£
tT : E � T , T is a topology on X u

is a topology (see Exercise 1.13) and is called the topology generated by E.

In other words, the topology T pEq is the smallest topology that contains E in that it
has the fewest open sets among all topologies that contain E .

The following exercise provides a more concrete description of the topology generated
by E .

Exercise 1.15. Let E � PpXq denote a collection of subsets of X. Let E 1 denote the set
of finite intersections of elements of E ; that is

E 1 � t
n£

j�1

Ei : n P N, Ei P E for all i � 1, . . . , nu.

Show that

T pEq � tH, XuYt
¤
αPA

Uα : A is an arbitrary set and tUα : α P Au is a collection of sets in E 1u.

(1.1)
In other words, T pEq contains the empty set, X, and arbitrary unions of finite intersections
of elements in E . Hint: For the inclusion ‘�’, use Definition 1.1. For the inclusion ‘�’,
show that the right hand side of (1.1) is a topology containing E .

It is a convenient property that the usual topology on R is generated by unbounded
open intervals as described in the following exercise.

Exercise 1.16. Let d be the usual metric on R; that is dpx, yq � |x� y| for x, y P R.
Let T denote the topology on R induced by d (see Remark 1.2-(2)). Let E denote the
collection

E � tp�8, tq : t P Ru Y tpt,8q : t P Ru.

Show that T � T pEq.

It is often useful to describe topology not by giving all open sets but just some collec-
tion of open sets. This is similar to how open balls are used to describe all open sets for
metric spaces.

Definition 1.17 (Base and neighborhood base). (1) Let pX, T q be a topological space
and x P X. A neighborhood base for T at x is a family Nx of subsets of X such that

(a) every V P Nx is a neighborhood of x.

(b) if U P T and x P U , then there exists V P Nx such that V � U .
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(2) A base B for T is a family B � T such that B contains a neighborhood base for T at
x for all x P X.

The following example illustrates the above definition.

Example 1.18. Let pX, dq be a metric space and let T be the topology induced by d on
X (recall from Example 1.2-(2)).

(i) Let x P X. Then Nx � tBpx, rq : r ¡ 0u is a neighborhood base at x.

(ii) For any x P X, tBpx, n�1q : n P Nu is a neighborhood base at x.

(iii) B � tBpy, rq : y P X, r ¡ 0u is a base for T .

Any collection of neighborhood base uniquely determines the topology as outlined in
the following exercise.

Exercise 1.19. (a) Suppose that X is a set and for each x P X, we are given a collection
Nx of subsets of X satisfying:

(i) for all V P Nx, we have x P V .

(ii) if V1, V2 P Nx, there exists V3 P Nx such that V3 � V1 X V2.

(iii) for each x P X, Nx � H.

(iv) For each U P N pxq, there exists V � X such that x P V � U and such that for
every y P V , there exists W P Ny such that W � V .

Then show that there is a unique topology T on X such that Nx is a neighborhood
base at x, for all x P X.

(b) Conversely, if pX, T q is a topological space and Nx is a neighborhood base at x for
each x P X, then show that the collection Nx of subsets of X satisfy the properties
(i), (ii), (iii), (iv) above.

Here is a description of all open sets in terms of sets in the base.

Proposition 1.20. Let pX, T q is a topological space and E � T . Then E is a base for T
if and only if every U P T is a union of sets in E.

Proof. ( ùñ ): Let E be a base for T and U P T . If x P U , there exists Vx P E such that
x P Vx � U . Therefore U �

�
xPU Vx.

( ðù ): For x P X, we set Ex � tVx P E : x P V u � E . Let us check that Ex is a
neighborhood base for T at x. Note that property (a) in Definition 1.17-(1) is true by
the definition of Ex. For (b), note that if x P U P T , then U �

�
βPB Eβ for Eβ P E for

all β P B (since every U P T is a union of sets in E). So there exists β0 P B such that
x P Eβ0 . Thus Eβ0 P Ex and Eβ0 � U .
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Not every collection of subsets can be a base for a topology. The following proposition
describes a necessary and sufficient condition for a collection of subsets to be a base for a
topology.

Proposition 1.21. Let E � PpXq. E is a base for a topology on X if and only if the
following conditions are satisfied:

(a) For all x P X, there exists V P E with x P V .

(b) For all U, V P E and for all x P U X V , there exists W P E such that x P W � U X V .

Proof. ( ùñ ) (a) follows from the fact that E contains a neighborhood basis at x. For
(b), note that x P U X V P T , so there exists W P E such that x P W � U X V .
( ðù ): Let T � tU � X : for each x P U , there exists V P E such that x P V � Uu (by
Definition 1.17, this is the correct way to define the topology from the base). Let us verify
that T is a topology on X. Note that H, X P T (by (a)). If tUα : α P Au is a collection
of sets in T , then U �

�
αPA Uα also satisfies the definition condition for T and hence

U P T . To show closure under finite intersections, it is enough to show that U1, U2 P T
implies U1XU2 P T (why?). To this end, let U1, U2 P T and x P U1XU2. By the definition
of T , there exists V1, V2 P E such that x P V1 � U1 and x P V2 � U2. By (b), there exists
W P E such that x P W � V1 X V2 � U1 X U2. Therefore by the definition of T , we have
that U1 X U2 P T . Hence T is a topology on X and E is a base of T (by the definition of
T ).

The class of topological spaces are far too general. Topological spaces that occur in
applications often satisfy additional conditions. We focus on two types of such conditions
called axioms of countability and axioms of separability. We start with countability axioms
for a topological space pX, T q which imposes conditions on existence of countable base or
neighborhood base (recall Definition 1.17).

Definition 1.22 (Countability axioms). We say that pX, T q is first countable if for each
x P X, there is a countable neighborhood base for T at x.
We say that pX, T q is second countable if there is a countable base B for T .

Obviously, every second countable space is first countable. Any metric space pX, dq is
first countable (this follows from Example 1.18-(ii)).

Exercise 1.23. Find a first countable topological space that is not second countable.

First countable topological spaces can be understood using convergence properties of
sequences.

Definition 1.24 (Convergence of a sequence). Let pxnqnPN be a sequence in X and let
x P X. We say that xn converges to x as n Ñ 8, if for any neighborhood U of x (or,
equivalently, any open neighborhood of x), there exists N P N such that xn P U for all

n ¥ N . We denote this by xn Ñ 8 or xn
nÑ8
ÝÝÝÑ x.
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Question: Let X � r0, 1s, T � t0, Xu and xn �
1
n
for all n P N. Which y P X does xn

converge to in the topological space pX, T q? Hint: Use the above definition.

The following exercise is meant to check that the notion of convergence in Definition
1.24 is a generalization of the usual definition in metric spaces.

Exercise 1.25. Let pX, dq be a metric space and let T denote the topology induced by
the metric d. Let pxnqnPN be a sequence in X and let x P x. Then the following are
equivalent:

(a) xn Ñ x in the sense of Definition 1.24 on the topological space pX, T q.

(b) For any ϵ ¡ 0, there exists N P N such that dpxn, xq   ϵ for all n ¥ N .

(c) limnÑ8 dpxn, xq � 0.

The following proposition describes the closure of a set in a first countable topological
space using sequences. It is pleasing to know that the characterization of closure using
limits of sequences for metric spaces also works for first countable topological spaces.

Proposition 1.26. Let pX, T q be a first countable space and A � X. Then x P A if and
only if there exists a sequence pxnqnPN in A such that xn Ñ x.

Proof. ( ðù ): Suppose x R A and pxnqnPN. Then V � pAqc is an open neighborhood of
x. Therefore xn R V for all n P N (since xn P A for all n P N and V X A � H). Hence
pxnqnPN does not converge to x as nÑ 8. (Note that we don’t need first countability for
this implication. We only need it for the proof of the converse).
( ùñ ): Let x P A and let tUj : j P Nu be a countable neighborhood base for T at
x. Set Vn �

�n
j�1 Uj for all n P N (since finite intersections of neighborhoods of x is

a neighborhood of x; why?). Then x P Vn and Vn is open for all n P N. Therefore
tVn : n P Nu is also a neighborhood base for T at x. Since x P A � A Y accpAq (see
Proposition 1.11-(1)), we have Vn X A � H for all n P N. Let xn P Vn X A for all n P N.

We claim that pxnq is the desired sequence that converges to x. To this end, let G be
a open neighborhood of x. Since tVn : n P Nu is a base, there exists m P N such that
Vm � G. Then xn P Vn � Vm � G for all n ¥ m. Hence xn Ñ x.

We say that pX, T q is separable if there is a countable dense set (that is, there is a
countable set A � X such that A � X).

Exercise 1.27. (1) If pX, T q is second countable, then X is separable. (Hint: Pick one
element from each set in a countable base to form a countable set and show that this
set is dense).

(2) Suppose that pX, T q is a topological space induced by a metric d : X �X Ñ r0,8q
such that X is separable. Then show that pX, T q is second countable. (Hint: Use a
countable dense set to define a countable base).
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Next, let us introduce the axioms of separation (usually denoted by T0, T1, T2, T3, T4).
The letter ‘T’ is due to the German term Trennungsaxiom which means separation axiom.

Definition 1.28 (Separation axioms). (1) We say that pX, T q is T1 if for all x, y P X
with x � y, there exists an open set Uy P T such that y P Uy and x R Uy (by
symmetry, there exists Ux P T such that x P Ux and y R Ux).

(2) We say that pX, T q is T2 (or Hausdorff ) if for all x, y P X with x � y, there exist
open sets Ux, Uy with Ux X Uy � H, x P Ux, y P Uy.

(3) We say that pX, T q is T3 (or regular) if pX, T q is T1 and if F is closed and x P F c,
there exist disjoint open sets U, V with F � U and x P V .

(4) We say that pX, T q is T4 (or normal) if pX, T q is T1 and if F1, F2 are disjoint closed
sets, there exist disjoint open sets U1, U2 with F1 � U1 and F2 � U2.

Singletons are closed in T1 spaces as shown below.

Lemma 1.29. pX, T q is T1 if and only if for all x P X, txu is closed.

Proof. ùñ : For y � x, let Uy be the open set with y P Uy, x R Uy. Then
�

yPXztxuUy �

Xztxu is open, so txu is closed.
ðù : If x, y P X with x � y, then Ux � tyuc, Uy � txuc satisfies the desired properties.

Clearly every T2 space is T1. By Lemma 1.29, it follows that every T4 space is T3 and
every T3 space is T2.
Sequences in Hausdorff (or T2) spaces can have at most one limit.

Lemma 1.30. Let pX, T q be T2 and x, y P X with y � x. If xn Ñ x, then xn �Ñ y.

Proof. Choose disjoint open sets Ux, Uy such that x P Ux, y P Uy. Since xn Ñ x, there
exists N P N such that xn P Ux for all n P N. Thus xn R Uy for all n ¥ N (since
Ux X Uy � H). Therefore xn does not converge to y.

1.1 Continuous maps

We define the notion of continuity of a function between two topological spaces.

Definition 1.31. Let pX, TXq and pY, TY q be topological spaces and let f : X Ñ Y be a
function. We say that f is continuous if f�1pV q is open in X for all open sets V in Y ;
that is, f�1pV q P TX for all V P TY .

Let CpX, Y q denote the set to continuous maps from X to Y . If Y � R or Y � C
with the usual topology induced by the Euclidean metric, then we abbreviate CpX, Y q as
CpXq.

Since closed sets are the complement of open sets and f�1pY zAq � Xzf�1pAq for any
A � Y , we have the following alternate criterion for continuity: a function f : X Ñ Y is
continuous if and only if f�1pAq is closed in X for any closed set A in Y .

The following the definition of continuity at a point.
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Definition 1.32. Let pX, TXq and pY, TY q be topological spaces. Let x P X and f : X Ñ
Y be a function. We say that f is continuous at x if for any neighborhood V of fpxq
there exists a neighborhood U for x such that fpUq � V (or equivalently, f�1pV q is a
neighborhood of x).

Remark 1.33. If f : X Ñ Y and g : Y Ñ Z are continuous maps between topological
spaces, then h � g � f : X Ñ Z is continuous. Proof : Note that if V is an open subset
of Z, then h�1pV q � f�1pg�1pV qq. Thus g�1pV q is open in Y (by continuity of g) and
hence f�1pg�1pV qq is open in X by the continuity of f .

Exercise 1.34. Let pX, T q be a topological space and let f : X Ñ Y be a surjective (or
onto) function. Then show that

TY :� tU � Y |f�1pUq P T u

is a topology on Y (this is called the quotient topology). Furthermore, show that TY is
the strongest (or finest) topology on Y such that f is a continuous function.

If X and Y are metric spaces, then Definitions 1.31 and 1.32 for the corresponding
induces topologies are equivalent to the usual ϵ-δ definition. This is the content of the
following exercise (you have likely encountered the equivalence between (b) and (c) below
in an earlier course).

Exercise 1.35. Let pX, dXq, pY, dY q be metric spaces and let TX , TY denote the corre-
sponding topologies induced by the metrics dX , dY respectively. Let f : X Ñ Y be a
function and let x P X. Then the following are equivalent:

(a) f is a continuous at x between the topological spaces pX, TXq and pY, TY q in the sense
of Definition 1.32.

(b) For any ϵ ¡ 0, there exists δ ¡ 0 such that if x1 P X satisfies dXpx
1, xq   δ, then

dY pfpx
1q, fpxqq   ϵ.

(c) For any sequence pxnqnPN such that xn Ñ x, we have fpxnq Ñ fpxq.

We confirm the familiar relationship between Definitions 1.31 and 1.32.

Proposition 1.36. Let X, Y be topological spaces. Then f : X Ñ Y is continuous if and
only if f : X Ñ Y is continuous at all x P X.

Proof. ùñ : Let x P V and V be a neighborhood of fpxq. Then there exists V 1 open
in Y with fpxq P V 1 � V . By the continuity of f , f�1pV 1q is open with x P f�1pV 1q. So
f�1pV 1q is a neighborhood of x.
ðù : Let V � Y be open. If x P f�1pV q, then fpxq P V , so V is a neighborhood of fpxq.
By the continuity of f at x, f�1pV q is a neighborhood of x. So there exists an open set
Ux such that x P Ux � f�1pV q. Therefore x P pf�1pV qq�. Hence f�1pV q � pf�1pV qq�

which implies that f�1pV q is open.
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Proposition 1.37. Let pX, TXq and pY, TY q be topological spaces such that TY � T pEq
where E � PpY q. Then f : X Ñ Y is continuous if and only if f�1pEq P TX for all
E P E.

Proof. Since E � TY , the ‘only if’ part follows immediately from the continuity of f .

For the converse, we use (1.1) along with f�1p
�n

i�1Eiq �
�n

i�1 f
�1pEiq, f

�1p
�

αPAEαq ��
αPA f�1pEαq and Definition 1.1.

Definition 1.38 (Homeomorphism). Let f : X Ñ Y be a bijection (one-to-one and onto)
between topological spaces such that f and f�1 : Y Ñ X are continuous. Then we say
that f is a homeomorphism between X and Y .

We say that two topological spaces X and Y are homoemorphic if there exists a
homeomorphism f between X and Y .

A topological property of a space is one which is preserved under homeomorphisms.

Example 1.39. (1) R and p0, 1q are homeomorphic. To see this, note that x ÞÑ tanx
is a homeomorphism between p�π{2, π{2q to R. Therefore f : p0, 1q Ñ R defined
by fpxq :� tan

�
π
�
x� 1

2

��
is one-to-one, onto and continuous such that f�1 is also

continuous.

(2) The relation of being homeomorphic forms an equivalence relation among topological
spaces. That is, every topological space is homeomorphic to itself (reflexive). IfX and
Y are homeomorphic, then Y and X are homeomorphic (symmetric). If X and Y are
homeomorphic and Y and Z are homeomorphic, then X and Z are homeomorphic.

(3) p0, 1q and r0, 1s are not homeomorphic (with respect to the topologies induced by
the usual metric). This is not clear now but we will see why by finding a suitable
topological property which r0, 1s has but p0, 1q does not.

(4) The property of being Hausdorff (or T2) is preserved under homeomorphism and hence
is a topological property. This is also true for other axioms of separation and axioms
of countability.

The following exercise outlines an argument that metric spaces are normal.

Exercise 1.40. Let pX, dq be a metric space and let T denote the topology induced by
the metric d.

(a) If F � X is closed, then show that the function dF : X Ñ R defined by

dF pxq � inftdpx, yq : y P F u

is a continuous function such that dF pxq � 0 if and only if x P F . Hint: Show that
|dF px1q � dF px2q| ¤ dpx1, x2q for all x1, x2 P X and use this to prove continuity.

13



(b) If F1, F2 are disjoint closed sets, show that the function g : X Ñ R defined by

gpxq � dF1pxq � dF2pxq, for all x P X,

where dF1 , dF2 : X Ñ R is as given in (a) satisfies the following properties: g is
continuous, gpxq ¡ 0 for all x P F2 and gpxq   0 for all x P F1.

(c) Using the function in (b), show that pX, T q is T4. Hint: Consider g�1pUq for suitable
open sets U .

1.2 Weak and product topologies

We already saw one way to construct new topological spaces from old; namely, induced
topology (see Definition 1.3). We will see two more constructions: weak topology and
product topology. Weak topology is defined so as to make a collection of maps continuous.

Definition 1.41 (weak topology). Let X be a set and pYα, Tαq, α P A be a collection of
topological spaces. Let fα : X Ñ Yα, α P A be a collection of functions (usually, Yα � R
or C). Let T be the weakest (or coarsest) topology on X which makes all the functions
fα continuous. Then T is called the weak topology on X generated by tfα : α P Au.

Equivalently, T is the topology generated by tf�1
α pUαq : α P A,Uα P Tαu. A base for

T is given by (check this using Proposition 1.21!)#
n£

i�1

f�1
αi
pUαi

q
���αi P A,Uαi

P Tαi
for all i � 1, . . . , n

+
.

In the following exercise, we see that the relative topology can be viewed as a special case
of weak topology.

Exercise 1.42. Let pX, T q be a topological space and let Y � X be a non-empty subset
of X. Let ι : Y Ñ X denote the inclusion map ιpyq � y for all y P Y . Then show that
the weak topology on Y generated by tιu is the relative topology on Y (recall Definition
1.3).

The following exercise outlines an useful condition for continuity of functions whose
target space is equipped with weak topology (cf. Proposition 1.37).

Exercise 1.43. Let X be a set and pYα, Tαq, α P A be a collection of topological spaces.
Let fα : X Ñ Yα, α P A be a collection of functions and let X be equipped with the weak
topology on X generated by tfα : α P Au. Let Z be another topological space and let
g : Z Ñ X be a function (not necessarily continuous). Then the following are equivalent:

(a) g : Z Ñ X is continuous.

(b) fα � g : Z Ñ Yα is continuous for all α P A.

14



Next, we would like to define a topology on product of topological spaces. Let Xα, α P
A be a collection of sets. The product space (as a set)

±
αPAXα is defined as¹

α

Xα � tf : AÑ
¤
α

Xα : fpαq P Xα for all α P Au. (1.2)

This is consistent with the previous definition of products you may have seen. For
example, elements of R�R are usually denotes as ordered pairs px, yq, which is equivalent
to representation as a function f : t1, 2u Ñ R which corresponds to the ordered pair
pfp1q, fp2qq. If Xα � Y for all α P A, we abbreviate

±
αXα as Y A. Similarly, if Xα � Y

for all α P A and A � t1, 2, . . . , nu, we denote
±

αXα as Y n, which can also be though of
as ordered n-tuples of elements of Y .

For each α1 P A, we define projection maps (or coordinate maps) πα1 :
±

αPAXα Ñ Xα1

by
πα1pfq � fpα1q, for all f P

±
αPAXα. (1.3)

Question: If Xα � H for all α P A, then is
±

αPA Xα � H? Intuitively, we can choose
f : A Ñ

�
αPA Xα as fpαq � xα where xα is an arbitrary element of Xα for each α P A.

This gives f P
±

αPA Xα and hence
±

αPA Xα � H. However, this ‘proof’ does not follow
from the usual axioms of set theory and this property has to be assumed as an additional
axiom called the axiom of choice: if Xα � H for all α P A, then

±
αPA Xα � H. We will

always assume that axiom of choice holds.

Now, that we have defined the product space
±

αPA Xα as a set, we need to define a
topology on it.

Definition 1.44 (Product topology). Let pXα, Tαq, α P A be a family of topological
spaces. Then the product topology T on X :�

±
αPAXα is the weak topology on X

generated by the projection maps tπα : X Ñ Xα|α P Au (see (1.2)). So a base for T is
given by

B �

#
n£

i�1

π�1
αi
pUαi

q
���αi P A,Uαi

P Tαi
for all i � 1, . . . , n

+
. (1.4)

Warning: It is not true in general that if Uα P Tα for all α P A, then
±

αPA Uα P T . That
is, product of open sets need not be open in the product topology. However it is true if
A is finite.

Product topology preserves some topological properties of the components.

Proposition 1.45. If each Xα, α P A is a Hausdorff topological space, then
±

αPA Xα

equipped with the product topology T is Hausdorff.

Proof. Let f, g : A Ñ
�

αXα belong to X �
±

αPAXα such that f � g. Then there
exists α0 P A such that fpα0q � gpα0q. Since pXα0 , Tα0q is Hausdorff, there exist
Ufpα0q, Ugpα0q P Tα such that Ufpα0q X Ugpα0q � H, fpα0q P Ufpα0q, gpα0q P Ugpα0q. There-
fore π�1

α0
pUfpα0qq, π

�1
α0
pUgpα0qq P T and f P π�1

α0
pUfpα0qq, g P π�1

α0
pUgpα0qq with π�1

α0
pUfpα0qq X

π�1
α0
pUgpα0qq � H. Therefore pX, T q is Hausdorff.
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We say that a sequence pfnq of functions in XA converges pointwise to f : X Ñ A, if
for each α P A, pfnpαqq converges to fpαq in pX, T q (see Definition 1.24). The product
topology is the topology that corresponds to pointwise convergence of functions as we see
below (see also Exercise 1.60).

Proposition 1.46. Let pX, T q be a topological space and let A be a set. Let pfnqnPN be a
sequence in XA and let f : AÑ X. Then the following are equivalent:

(a) fn Ñ f in XA with respect to product topology.

(b) fn converges pointwise to f .

Proof. (a) ùñ (b): Fix α P A. Let U be a open neighborhood of fpαq P A. Then
V � π�1

α pUq is an open subset of f in XA. Since fn Ñ f in XA, there exists N P N such
that fn P V for all n ¥ N . Therefore fnpαq P U for all n ¥ N ; that is, fnpαq Ñ fpαq in
pX, T q.
(b) ùñ (a): Let W be an open neighborhood of f in XA. Since a base for product
topology is given by (1.4), there exist α1, . . . , αk P A and Uαi

P T for all 1 ¤ i ¤ k such
that f P V and V � W , where

V � tg P XA : gpαiq P Uαi
for all 1 ¤ i ¤ ku.

Since f P V , fpαiq P Uαi
for all 1 ¤ i ¤ k. Since fnpαiq Ñ fpαiq as n Ñ 8 for each

1 ¤ i ¤ k, there exists N1, . . . , Nn P N such that fnpαiq P Uαi
for all n ¥ Ni and for all

1 ¤ i ¤ k. Therefore by letting N � max1¤i¤k Ni, we have fn P V � W for all n ¥ N . So
fn Ñ f in XA.

The argument in the proof of Proposition 1.46 also works if all Xα are different spaces
for different values of α P A.

The following exercise clarifies an useful relation between weak and subspace topolo-
gies.

Exercise 1.47. Let X be a set and pYα, Tαq, α P A be a collection of topological spaces.
Let fα : X Ñ Yα, α P A be a collection of functions. Let T denote the weak topology on
X generated by tfα : α P Au. Let W � X be non-empty. We have two possible ways to
define a topology on W .

(1) Let S denote the subpace (or induced) topology on W of the weak topology T gen-
erated by tfα : α P Au.

(2) Let rS denote weak topology on W generated by tgα : α P Au, where gα :� fα
��
W

is
the restriction of fα to W for all α P A.

Show that
S � rS.

In words, the above equality can be paraphrased as follows: weak topology on subspace is
equal to the subspace topology of weak topology.
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1.3 Urysohn’s lemma and Tietze extension theorem

The next few results say that normal (or T4) topological spaces have lots of continuous
functions. We begin with a technical lemma that is key to construction of continuous
functions.

Lemma 1.48. Let X be a normal topological space and let A,B be disjoint closed sets.
Let D � tk2�n : k, n P N, 1 ¤ k ¤ 2n�1u � p0, 1q. Then there exists a family tUρ : ρ P Du
of open sets such that for all 0   r   s   1 with r, s P D, we have

A � Ur � Ur � Us � Bc.

Proof. As A,B are closed, there exists open U, V with A � U,B � V, U X V � H.
Therefore

A � U � U � V c � Bc.

Set U1{2 � U .

Now, we can proceed by induction by the same argument as above. For, this purpose,
set U0 � U0 � A and U1 � Bc. Suppose Uk2�n � Uk2�n � Upk�1q2�n is given for all

0 ¤ k ¤ 2n � 1, where Upk�1q2�n is open. Then Uk2�n and U c
pk�1q2�n are disjoint closed

sets. Therefore by the argument above, there exists an open set U such that

Uk2�n � U � U � Upk�1q2�n .

We set Up2k�1q2�pn�1q � U . This completes the induction step.

The family of open sets in Lemma 1.48 is useful to construct continuous functions.
(Compare the proof below with the construction in Exercise 1.40-(b)).

Theorem 1.49 (Urysohn’s lemma). Let X be a normal topological space and let A,B be
disjoint closed sets. Then there exists a bounded, continuous function f : X Ñ r0, 1s such
that f � 0 on A and f � 1 on B.

Proof. Let tUρ : ρ P Du be the family of open sets as given in Lemma 1.48. Set U0 �
A,U1 � X. Define f : X Ñ R as

fpxq :� inftρ P DY t0, 1u : x P Uρu. (1.5)

We claim that f satisfies the desired properties. Clearly 0 ¤ fpxq ¤ 1 for all x P X, f � 0
on A and f � 1 on Bc.

It remains to show that f is continuous. So it is enough to prove that f�1pp�8, tqq
and f�1ppt,8qq are open for all t P R (Do you see why? If not, review Proposition 1.37).

Let us first consider f�1pp�8, tqq for t P R. If t ¡ 1 (resp. t ¤ 0), f�1pp�8, tqq is X
(resp. H) and hence open. It suffices to assume t P p0, 1s. Note that fpxq   t if and only
if there exists ρ   t, ρ P D such that x P Uρ. Therefore

f�1pp�8, tqq � tx : fpxq   tu �
¤
ρ t,
ρPD

Uρ,
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which is open (being an union of open sets).

Next, we need to show that f�1ppt,8qq is open for all t P R. If t   0 (resp. t ¥ 1),
then f�1ppt,8qq is X (resp. H). So it suffices to assume t P r0, 1q. Note that fpxq ¡ t if
and only if x R Uρ for some ρ ¡ t, ρ P D which in turn holds if and only if x R Uq for some
q ¡ t, q P D (since Uq � Uρ for all t   q   ρ). Therefore

f�1ppt,8qq �
¤
ρ¡t,
ρPD

U c
ρ �

¤
q¡t,
qPD

pUqq
c

which is open (being an union of open sets).

Notation: Let BpX,Rq denote the set of bounded functions f : X Ñ R.
Let BCpX,Rq denote the set of bounded and continuous functions f : X Ñ R.
Let d8pf, gq � supxPX |fpxq � gpxq| for all f, g P BpX,Rq.

Lemma 1.50. (i) pBpX,Rq, d8q is a complete metric space.

(ii) BCpX,Rq is a closed subspace of pBpX,Rq, d8q.

Proof. (i) Let fn be a Cauchy sequence in BpX,Rq. Note that |fnpxq � fmpxq| ¤
d8pfn, fmq for all m,n P N, for each x P X. So for any x P X, pfnpxqqnPN is a
Cauchy sequence in R, and converges to a limit, say fpxq P R. Since pfnq is Cauchy,
for any ϵ ¡ 0, there exists N P N such that |fnpxq � fmpxq|   ϵ for all m,n ¥ N
and all x P X. Let m Ñ 8, to obtain supxPX |fnpxq � fpxq| ¤ ϵ for all n P N with
n ¥ N . Therefore limnÑ8 d8pfn, fq � 0, supxPX |fpxq| ¤ supxPX |fNpxq| � ϵ   8
and hence f P BpX,Rq.

(ii) Let fn P BCpX,Rq, fn Ñ f in pBpX,Rq, d8q; that is limnÑ8 d8pfn, fq � 0.

By (i), it suffices show that f P CpX,Rq. To this end, let x P X, ϵ ¡ 0. Let N P N
be such that d8pfn, fq   ϵ{3 for all n ¥ N . Using the continuity of fN at x, choose
a neighborhood U of x such that |fNpyq � fNpxq|   ϵ{3 for all y P U . Therefore, for
all y P U , we have

|fpyq � fpxq| ¤ |fpyq � fNpyq|� |fNpyq � fNpxq|� |fNpxq � fpxq|
¤ 2d8pfN , fq � |fNpyq � fNpxq|   ϵ.

Therefore, f is continuous at x.

By Lemma 1.50, the space pBCpX,Rq, d8q is a complete metric space.

Our next goal is to prove Tietze extension theorem.

Theorem 1.51 (Tietze extension theorem). Let X be a normal topological space and let
A � X be closed and f P CpA, ra, bsq. There exists F P CpX, ra, bsq such that F

��
A
� f ;

that is F pxq � fpxq for all x P A.

18



Remark 1.52. The assumption that A is closed is necessary. For example, if X �
r0, 1s, A � p0, 1s, fpxq � sinp1{xq for all x P A, then there is no continuous extension F of
f to X.

The proof of Tietze extension theorem relies on repeated use of the following lemma.

Lemma 1.53. Let X be a normal topological space and let A � X be closed and h P
CpA, r0, λsq, where λ ¡ 0. Then there exists g P CpX, r0, λ{3sq such that g ¤ h ¤ g � 2

3
λ

on A.

Proof. Set F1 � h�1pr0, λ{3sq and F2 � h�1pr2λ{3, λsq. By the continuity of h, F1 and
F2 are closed subsets of A (with respect to the relative topology). Since A is closed, F1

and F2 are closed in X (verify this!). By Urysohn’s lemma (Theorem 1.49), there existsrg P CpX, r0, 1sq such that g � 0 on F1 and g � 1 on F2. Set g � λ
3
rg P CpX, r0, λ{3sq.

Then we have

gpxq � 0, 0 ¤ hpxq ¤
λ

3
, for all x P F1,

gpxq �
λ

3
,

2

3
λ ¤ hpxq ¤ λ, for all x P F2,

0 ¤ gpxq ¤
λ

3
,

λ

3
¤ hpxq ¤

2λ

3
, for all x P AzpF1 Y F2q.

Combining the three cases, we obtain g ¤ h ¤ g � 2
3
λ on A.

Proof of Theorem 1.51. By replacing f with pf � aq{pb� aq if necessary, we may assume
ra, bs � r0, 1s.

Use Lemma 1.53 with h � f, λ � 1, to obtain g1 such that g1 P CpX, r0, 1{3sq,
g1 ¤ f ¤ 2

3
� g1 on A; that is, 0 ¤ f � g1 ¤

2
3
on A.

Use Lemma 1.53 again with h � f � g1, λ � 2{3 to obtain g2 P CpX, r0, 2{32sq with
0 ¤ f � g1 � g2 ¤ p2{3q2 on A.

Continuing, we obtain g1, g2, . . . , gn, . . . such that 0 ¤ gn ¤
2n�1

3n
, 0 ¤ f �

°n
k�1 gk ¤�

2
3

�n
on A. Therefore Fn :�

°n
k�1 gk converges in pBCpX,Rq, d8q to a continuous function

F (by Lemma 1.50) as nÑ 8 such that F � f on A.

1.4 Nets

Nets are generalizations of sequences. Sequences are indexed by N while nets are indexed
by a (possibly uncountable) directed set.

Definition 1.54 (Directed set). A directed set A is a set with a relation ¤ such that

(i) (reflexive) α ¤ α for all α P A.

(ii) (transitive) α ¤ β and β ¤ γ implies α ¤ γ for all α, β, γ P A.
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(iii) (existence of arbitrarily large elements) For any α, β P A, there exists γ P A such
that α ¤ γ and β ¤ γ.

Notation: We will denote α ¤ β also as β ¥ α.

Example 1.55. (1) pN,¤q is a directed set, where ¤ has the usual meaning; that is a ¤ b
if and only if b� a is non-negative.

(2) Zd with relation ¤ defined by px1, . . . , xdq ¤ py1, . . . , ydq if xi ¤ yi for all i � 1, . . . , d.

(3) This is the most important example for us. Let pX, T q be a topological space and let
x P X. Let Nx denote the set of neighborhoods of x. We define U ¤ V for U, V P Nx

if V � U (order by reverse inclusion).

(4) Let pA,¤Aq, pB,¤Bq be two directed sets. Then the product A � B equipped with
the relation ¤ defined by pa1, b1q ¤ pa2, b2q if and only if a1 ¤A a2 and b1 ¤B b2 is a
directed set.

Exercise 1.56. Verify that each of the directed sets in Example 1.55 satisfies the prop-
erties in Definition 1.54.

Since nets generalize sequences (due to Example 1.55-(1)), we need to define a suitable
notion of convergence (or limits) of nets. Cluster points are generalization of subsequential
limits.

Definition 1.57. A net in X is a function α : A Ñ X; often denoted as α ÞÑ xα or
pxαqαPA, where pA,¤q is a directed set.

Let pX, T q be a topological space and let pxαqαPA be a net.

1. We say that pxαqαPA converges to x P X if for every neighborhood U of x, there
exists α0 P A such that xβ P U for all β ¥ α0. We denote this by xα Ñ x.

2. We say that x P X is a cluster point of pxαqαPA if for every neighborhood U of x
and for any α P A, there exists β ¥ α such that xβ P U .

Let us recall that points in the closure of a set can be characterized as sequential limits
for first countable topological spaces (see Proposition 1.26). However, if the topological
space is not first countable, not every point in the closure is a sequential limit as given
in Proposition 1.26 (you will encounter such an example in Assignment). The following
extension of Proposition 1.26 is one of the motivations behind studying nets.

Proposition 1.58. Let pX, T q be a topological space, E � X, and x P X.

(a) x P accpEq if and only if there exists a net in Eztxu which converges to x.

(b) x P E if and only if there exists a net in E which converges to x.
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Proof. We only prove (a) as (b) is very similar.
ùñ : Let pNx,¤q denote the directed set in Example 1.55-(3). For U P Nx, since x is
an accumulation point of E, there exists xU P pUztxuq X E � H. So pxUqUPNx is a net
in Eztxu. For any U P Nx, and any V P Nx such that U ¤ V , we have xV P V � U , so
xU Ñ x.
ðù : Let xα Ñ x, where pxαqαPA is a net in Eztxu. Given any U P Nx, by the convergence
of pxαq to x, there exists α P A such that xα P U X pEztxuq. So U X pEztxuq � H. Since
U is an arbitrary neighborhood of x, x P accpEq.

Recall that for a map f : pX, dXq Ñ pY, dY q between metric spaces, f is continuous at
x P X if and only if for any sequence pxnqnPN converging to x, we have that the sequence
pfpxnqqnPN converges to fpxq (see Exercise 1.35). The following is an extension of that
statement to arbitrary topological spaces.

Proposition 1.59. Let pX, TXq, pY, TY q be topological spaces, x P X, and f : X Ñ Y be
a function. Then f is continuous at x if and only if for every net pxαq that converges to
x, we have that pfpxαqq converges to fpxq.

Proof. ùñ : (this implication is shown exactly as in the sequence case) Let xα Ñ x. Let
V be a neighborhood of fpxq. By the continuity of f , f�1pV q is a neighborhood of x. As
xα Ñ x, there exists α0 such that xα P f�1pV q for all α ¥ α0. So fpxαq P V for all α ¥ α0

and hence fpxαq Ñ fpxq.
ðù : (Contrapositive) Suppose f is not continuous at x. There is a neighborhood V of
fpxq such that f�1pV q is not a neighborhood of x; that is x R pf�1pV qq�. By Lemma
1.8-(5), x P ppf�1pV qq�q

c
� f�1pV qc � f�1pV cq. By Proposition 1.58, there exists a net

pxαqαPA in f�1pV cq such that xα Ñ x. Hence fpxαq P V c for all α P A, so fpxαq �Ñ fpxq
(since V is a neighborhood of fpxq).

The following exercise is an application of Proposition 1.59. It provides an alternate
description of limit of nets in weak topology.

Exercise 1.60. Let X be a set and pYi, Tiq, i P I be a collection of topological spaces. Let
fi : X Ñ Yi, i P I be a collection of functions. Let X be equipped with the weak topology
T generated by tfi : i P Iu. Let pxαqαPA be a net in X and let x P X. Then show that
the following are equivalent.

(a) pxαqαPA converges to x in pX, T q.

(b) pfipxαqqαPA converges to fipxq in pYi, Tiq for each i P I.

1.5 Compact sets

Compactness is an important topological property.
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Definition 1.61. We say that pX, T q is a compact topological space if whenever pUiqiPI is
an open cover of X (that is, Ui P T for all i P I and

�
iPI Ui � X), then there exists a finite

subcover (that is, there exists a finite subset ti1, . . . , iku of I such that
�k

j�1 Uij � X).

We say a subset A � X is compact if it is compact in the relative topology.

Here is an equivalent description of compactness of a subset A � X. If pVαq is an
open cover of A in X (that is Vα P T for all α and

�
α Vα � A), there exists ia finite

subcover of A (that is α1, . . . , αk such that
�k

i�1 Vαi
� A). To see the equivalence, note

that Uα � AX Vα are open in the relative topology.

Several familiar results for compact subsets of a metric space are also true more gen-
erally for topological spaces. For instance, closed subset of a compact space is compact.

Proposition 1.62. Let pX, T q be a compact topological space and let F � X be closed.
Then F is compact.

Proof. Let F �
�

α Wα, where Wα P T for all α. Then X � F c Y
�

α Wα, so by
compactness of X, there exists α1, . . . , αn such that

X � F c Y
n¤

i�1

Wαi
.

Then F �
�n

i�1Wαi
.

Compactness of a set can be characterized using finite intersection property.

Definition 1.63 (Finite intersection property). Let pFαqαPA be a collection of sets. We
say that pFαqαPA has the finite intersection property (abbreviated as FIP) if for any n P
N, α1, . . . , αn P A, we have

�n
i�1 Fαi

� H.

Proposition 1.64. X is compact if and only if whenever pFαqαPA is a collection of closed
sets satisfying the finite intersection property, then

�
αPA Fα � H.

Proof. ùñ : Let X be compact and let pFαqαPA be a collection of closed sets satisfying
the FIP. Assume to the contrary that

�
αPA Fα � H. Then pF c

αqαPA is an open cover of
X, which given as finite cover

�n
i�1 F

c
αi
� X. Therefore

�n
i�1 Fαi

� H which contradicts
the FIP.
ðù : Let pUαq be an open cover of X and let Fα � U c

α. Then since
�

α Fα � p
�

α Uαq
c �

H, so pFαq does not admit FIP. Therefore, there exists α1, . . . , αn such that
�n

i�1 Fαi
� H.

Therefore X �
�n

i�1 Uαi
.

Any compact subset of a Hausdorff topological space is closed.

Proposition 1.65. Let pX, T q be a Hausdorff topological space. If F � X is compact,
and x R F , there exists disjoint open sets U, V P T such that x P U, F � V . In particular,
F is closed.
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Proof. Let y P F , there are disjoint open sets Uy, Vy such that x P Uy, y P Vy. Then
F �

�
yPF Vy, so pVyqyPF is an open cover of F . By compactness of F , there exists

y1, . . . , yn P F such that F �
�n

i�1 Vyi � V . Then if U �
�n

i�1 Uyi , we have x P U,U P T
and U, V are disjoint.

Finally, if x P F c, there exists U open such that x P U � F c, so F c is a neighborhood
of each of its points and hence open (see Lemma 1.8-(3)).

Compact Hausdorff spaces are normal.

Proposition 1.66. If pX, T q is a compact, Hausdorff (T2) space, then it is normal (T4).

Proof. Let E,F be disjoint, closed sets; so they are compact (by Proposition 1.62). By

Proposition 1.65 and compactness of F , if x P E there exist disjoint open sets �Ux,�Vx such
that x P �Ux, F ��Vx.

Let us repeat the argument from the proof of Proposition 1.65. Since p�UxqxPE is
an open cover of E, (by compactness of E) there exists x1, . . . , xn P E such that E ��n

i�1
�Uxi

� U P T . Then F �
�n

i�1
�Vxi

� V P T with U X V � H.

Continuous image of a compact set is compact.

Proposition 1.67. If X is compact and f : X Ñ Y is continuous, then fpXq is compact.

Proof. Let pVαq be an open cover of fpXq. Then by the continuity of f , pf�1pVαqq is
an open cover of X, so there exists a finite subcover pf�1pVαi

qq1¤i¤m of X. Therefore
pVαi

q1¤i¤m is a finite subcover of fpXq.

The following exercise is an important application of Proposition 1.67.

Exercise 1.68. Show that compactness is a topological property of a space (cf. Definition
1.38). Using this verify the claim in Example 1.39-(3).

Another application of Proposition 1.67 is relevant for optimization problems.

Corollary 1.69. If X is compact and f : X Ñ R is continuous, then fpXq is compact.
In particular, f attains its supremum and infimum, and CpX,Rq � BCpX,Rq.

Proof. Since fpXq is compact subset of R, it is closed and bounded (by Heine-Borel
theorem) and hence CpX,Rq � BCpX,Rq. Since supxPX fpxq, infxPX fpxq P fpXq �
fpXq, f attains its supremum and infimum.

Proposition 1.70. Let f : X Ñ Y be a continuous bijection, where X is compact and Y
is Hausdorff. Then f is a homeomorphism.

Proof. Let g � f�1 : Y Ñ X, then g�1pEq � fpEq for E � X.

If E is closed in X, then E is compact (by Proposition 1.62), so fpEq is closed (by
Proposition 1.65). Hence g�1pEq is closed in Y , whenever E is closed in X. So g is
continuous, and hence f is a homeomorphism.
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1.6 Nets, subnets, and compactness

A metric space X is compact if and only if every sequence in X has a convergent sub-
sequence. More precisely, we have the following characterization of compact subsets of
metric space.

Theorem 1.71. Let pX, dq be a metric space and let A � X. Then the following are
equivalent:

(a) A is compact.

(b) Every sequence in A has a subsequence that converges to a limit in A.

(c) pA, d
��
A�A

q is a complete metric space and is totally bounded (that is, for any ϵ ¡ 0,
A is covered by finitely many balls of radii ϵ).

The equivalence between (a) and (b) in Theorem 1.71 can be extended to arbitrary
topological spaces if we replaces sequences with nets. The following is an important
characterization of compactness in terms of existence of cluster points for nets.

Theorem 1.72. Let X be a topological space. Then the following are equivalent:

(a) X is compact.

(b) Every net in X has a cluster point.

Proof. (a) ùñ (b): Let X be compact and let pxαq be a net in X. Set Eα � txβ : β ¥ αu
and Fα � Eα. For any finite collection, α1, . . . , αm, there exists γ such that αi ¤ γ
for all i � 1, . . . ,m (by using (iii) in Definition 1.54 repeatedly). So xγ P Eαi

for all
1 ¤ i ¤ m and hence

�m
i�1 Fαi

�
�m

i�1Eαi
� H, so pFαq satisfies FIP. Hence

�
α Fα � H

(by Proposition 1.64). Let x P
�

α Fα and U be an open neighborhood of x. Then x P Fα

for all α and hence U X Eα � H for all α. So for all α, there exists β ¥ α such that
xβ P U . In other words, x is cluster point of pxαq.
(b) ùñ (a): We will show the contrapositive. Let us assume that X is not compact. We
need to show that there exists a net with no cluster point.

Choose an open cover pVαqαPA of X with no finite subcover. Now let pB,¤q be the
directed set of finite subsets of A ordered by inclusion (that is, B1 ¤ B2 if and only
if B1 � B2 for all B1, B2 P B). Since pVαqαPA has no finite subcover, for any B P B,
p
�

αPB Vαq
c � H. Let us choose xB P p

�
αPB Vαq

c for all B P B, so that pxBqBPB is a net.

Suppose y P X, so that there exists α0 such that y P Vα0 (since pVαqαPA covers X) and
let B0 � tα0u P B. If B1 ¥ B0, then xB1 R Vα0 , so y is not a cluster point of pxBqBPB.
Since y P X is arbitrary, there are no cluster points for the net pxBqBPB.

Cluster points are generalizations of sub-sequential limits. In order to describe this,
we need to first come up with a notion of subnet (analogue of subsequence). There are
two ways to think about a subsequence:
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(1) by choosing a subset of a sequence and renumbering the elements, or

(2) by composing the sequence considered as a function NÑ X, with a strictly increasing
function from N to N.

Perhaps a first guess would be to consider some subset of the directed set that forms the
index of a net. The actual definition is a modification of the second way mentioned above.

Definition 1.73. A subnet of a net pxαqαPA is a pair

(i) pyβqβPB which is a net; and

(ii) a map β ÞÑ αβ from B Ñ A such that

(a) for all α0 P A, there exists β0 P B such that αβ ¥ α0 for all β ¥ β0.

(b) yβ � xαβ
for all β P B.

The following lemma clarifies the relationship between cluster points and convergence
along subnet.

Lemma 1.74. Let pxαqαPA be a net in X. Then x P X is a cluster point of pxαqαPA if
and only if there is a subnet pyβqβPB of pxαqαPA which converges to x.

Proof. ðù : Let yβ Ñ x and U be a neighborhood of x. We need to show that for all
α P A there exists α1 P A such that xα1 P U and α1 ¥ α.

As yβ Ñ x, there exists β1 P B such that yβ P U for all β ¥ β1. Now let α P A. Then
there exists β0 such that αβ ¥ α for all β ¥ β0 (recall Definition 1.73-(ii)-(a)). Choose β2

such that β2 ¥ β1, β2 ¥ β0 (recall Definition 1.54-(iii)). Then α1 � αβ2 ¥ α (as β2 ¥ β0)
and xαβ2

� yβ2 P U as β2 ¥ β1.
ùñ We need to construct a subnet that converges to x. Let Nx denote the set of
neighborhoods of x and let B � Nx�A. We define a relation ¤ on B: say pU, αq ¤ pU 1, α1q
if and only if U 1 � U and α ¤ α1 (this is the relation defined in Example 1.55-(4)). It is
easy to see that pB,¤q is a directed set (you check this!).

For pU, γq P B, let α � αpU,γq be such that

(1) α ¥ γ,

(2) xα P U (such a point exists since x is a cluster point of pxαq).

Now set, ypU,γq � xαpU,γq
for all pU, γq P B. We claim that pypU,γqqpU,γqPB along with the

map pU, γq ÞÑ αpU,γq is the desired subnet. First, let us check why it is a subnet.

� It is a not on B since B is a directed set.

� ypU,γq � xαpU,γq
for all pU, γq P B.

� If α0 P A, let U0 P Nx be arbitrary. Set β0 � pU0, α0q. If β � pV, γq ¥ pU0, α0q, then
αβ � αpV,γq ¥ γ ¥ α0.
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So it is a subnet.

Let U be a neighborhood of x and let α0 P A. If pV, γq ¥ pU, α0q, then ypV,γq � xαpV,γq
P

V � U . Therefore pyβqβPB converges to x.

Combining Lemma 1.74 and Theorem 1.72, we obtain the following

Theorem 1.75. Let X be a topological space. Then the following are equivalent.

(i) X is compact.

(ii) Every net in X has a cluster point.

(iii) Every net in X has a convergent subnet.

Next, we will study compactness properties of product spaces using Theorem 1.75.

Lemma 1.76. Let X, Y be topological spaces such that Y is compact. Let pzαqαPA be a
net in X � Y and let x P X be a cluster point of pπXpzαqqαPA. Then there exists y P Y
such that px, yq is a cluster point of pzαqαPA.

Proof. By Lemma 1.74, there exists a subnet puβqβPB of pπXpzαqqαPA such that uβ Ñ x.
Set xα � πXpzαq, yα � πY pzαq for all α P A, so zα � pxα, yαq. Note that uβ � xαβ

for all
β P B. Set vβ � yαβ

for β P B. Since pvβqβPB is a net in a compact space Y , there is a
cluster point y P Y for pvβqβPB (by Theorem 1.72).

Next, we show that z � px, yq is a cluster point of pzαqαPA. Let U be a neighborhood
of z; then (using the base in (1.4)) there exists open sets Vx and Vy in X, Y such that
x P Vx, y P Vy and px, yq P Vx � Vy � U .

Let α0 P A. By Definition 1.73-(ii)(a), there exists β0 P B such that β ¥ β0 implies
αβ ¥ α0. As uβ Ñ x, there exists β1 P B such that uβ P Vx for all β ¥ β1. Let β2 P B be
such that β2 ¥ β0, β2 ¥ β1 (cf. Definition 1.54-(iii)). Since y is a cluster point of pvβqβPB,
there exists β3 ¥ β2 such that vβ3 P Vy. Since β3 ¥ β2 ¥ β1, we have uβ3 P Vx. Therefore
zαβ3

� puβ3 , vβ3q P Vx � Vy � U and αβ3 ¥ α0, since β3 ¥ β2 ¥ β0. Since U P Nz and
α0 P A are arbitrary, z is a cluster point of pzαqαPA.

The following is a consequence of Lemma 1.76.

Corollary 1.77. Let X, Y be compact topological spaces, then X � Y is compact.

Proof. Let pzαqαPA be a net in X � Y . Then by the compactness of X, there exists a
cluster point x P X for the net pπXpzαqqαPA. By Lemma 1.76, there exists is a cluster
point of pzαqαPA.

We would like to extend the above result to arbitrary product of compact spaces. The
basic idea is to extend the compactness to one coordinate at a time using Lemma 1.76.
This works without much difficulty in the case of finite products but for infinite products
we need an useful tool called Zorn’s lemma.
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Definition 1.78 (Zorn’s lemma). (a) We say that a relation ¤ on a set P is called a
partial order if it is

� reflexive (x ¤ x for all x P P ),

� transitive (x ¤ y, y ¤ z implies x ¤ z for all x, y, z P P ),

� antisymmetric (if x ¤ y and y ¤ x for x, y P P , then x � y).

(b) We say that a subset Q � P of a partially ordered set is totally ordered (or linearly
ordered), if for all x, y P Q, either x ¤ y or y ¤ x (or both).

(c) Let Q � P be a subset of a partially ordered set P and let c P P . We say that c is
an upper bound for Q if a ¤ c for all a P Q.

(d) We say that m P P is a maximal element of P if there is no element x P P such that
m ¤ x other than x � m. (Note that a maximal element of P need not be an upper
bound for P ).

(e) Zorn’s lemma: If P is a non-empty, partially ordered set and every totally ordered
subset of P has an upper bound, then P has a maximal element.

Zorn’s lemma is useful to show various existence results as illustrated in the exercise
below (see also Exercise 2.60-(i)).

Exercise 1.79. Show that the Zorn’s lemma implies the axiom of choice: if Xα � H for
all α P A, then

±
αPAXα � H (this is the axiom of choice. In fact, the converse is also

true as axiom of choice implies Zorn’s lemma).

We will prove several important results in this course using Zorn’s lemma such as
Tychonoff’s theorem (Theorem 1.80) and Hahn-Banach theorem (Theorem 2.26).

Compactness of a space can be viewed as existence of cluster points for nets (see
Theorem 1.72) and hence Zorn’s lemma is useful as we illustrate below.

Theorem 1.80 (Tychonoff’s theorem). Let Xi, i P I be a collection of compact topological
spaces. Then X �

±
iPI Xi is compact.

Proof. Let pxαqαPA be a net in X �
±

iPI Xi. For J � I, we define the projection map
πJ : X Ñ

±
iPJ Xi as πJpxq � x

��
J
, where x

��
J
: J Ñ

�
iPJ Xi denote the restriction of

x : I Ñ
�

iPI Xi to J for all x P X. Let

P �

#
pJ, pq : J � I, p P

¹
iPJ

Xi, p is a cluster point of pπJpxαqqαPA

+
.

We define a partial order on P as pJ1, p1q ¤ pJ2, p2q if J1 � J2 and p1 is the restriction of
p2 on J1 (or p2 is an extension of p1).

Let us verify that pP,¤q satisfies the assumptions of Zorn’s lemma.
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(i) P is non-empty since if J � tiu for some i P I, then pπJpxαqqαPA has a cluster point
by the compactness of Xi and Theorem 1.72.

(ii) Next, let us check that every totally ordered subset has an upper bound. Let Q �
tpJβ, pβq : β P Bu be a totally ordered subset of P . Then define J �

�
βPB Jβ and

p P
±

iPJ Xi by

ppiq � pβpiq, for all i P Jβ and for all β P B.

We need to check that the above function p is well-defined as the same i can be in
different Jβ’s. Suppose i P Jβ1 X Jβ2 for some β1, β2 P B, then either pJβ1 , pβ1q ¤
pJβ2 , pβ2q or pJβ2 , pβ2q ¤ pJβ1 , pβ1q (since Q is totally ordered). In either case, since
pβ1 and pβ2 agree on Jβ1 X Jβ2 , we have pβ1piq � pβ2piq and hence p P

±
iPJ Xi is

well-defined.

We need to show that p is a cluster point of pπJpxαqqαPA in XJ :�
±

iPJ Xi. Let
U be an open neighborhood of p in XJ and let α0 P A. So

±
iPJ Vi � U , where

Ui � Xi for all but finitely many i P J and Ui open in Xi for all i P J (see (1.4)).
Let K � ti P J : Vi � Xiu � ti1, . . . , imu. Then there exists β P B such that
K � Jβ (since Q is totally ordered). Since pβ is a cluster point in

±
iPJβ

Xi, there

exists α ¥ α0 such that πJβpxαq P
±

iPJβ
Vi. So xαpiq P Vi for all i P K and hence

πJpxαq P U . Hence p is a cluster point of pπJpxαqqαPA ; that is, pJ, pq P P . Also, it
is clear that pJβ, pβq ¤ pJ, pq for all β P B. So pJ, pq is an upper bound for Q.

By Zorn’s lemma, there exists a maximal element p rJ, rpq P P of P . If rJ � I, let i P Iz rJ
and consider

±
jP rJ Xj�Xi. By the conclusion of Lemma 1.76, there exists p1 P

±
jP rJYtiuXj

such that pJ Y tiu, p1q P P with p rJ, rpq ¤ p rJ Y tiu, p1q which contradicts the maximality of

p rJ, rpq. So rJ � I. The compactness of X follows from Theorem 1.72.

2 Normed vector spaces

Throughout §2, K � R or C and let X be a vector space over K.
Notation: 0 P X is the zero vector. A subspace Y of X is a subset Y � X that is also a
vector space over K. If Y1, Y2 are two subspaces of X, then

Y1 � Y2 � ty1 � y2 : y1 P Y1, y2 P Y2u.

Y1 � Y2 is also a subspace of X (check this).

Definition 2.1 (Norm). A norm ∥�∥ is a function from X to r0,8q � R� (denoted by
x ÞÑ ∥x∥) such that

(i) ∥x∥ � 0 if and only if x � 0.

(ii) ∥λx∥ � |λ| ∥x∥ for all λ P K, x P X.
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(iii) ∥x� y∥ ¤ ∥x∥� ∥y∥ for all x, y P X.

If ∥�∥ just satisfies (ii) and (iii), we say that is a seminorm. A vector space equipped with
a norm is called a normed vector space.

A norm induces a metric and hence a topology (by Example 1.2-(2)). We call this
topology the norm topology on X.

Exercise 2.2. If ∥�∥ is a norm on a vector space X, then

dpx, yq � ∥x� y∥ , for all x, y P X (2.1)

defines a metric. Hint: The properties (i)-(iii) in Definition 2.1 correspond to the analo-
gous properties in Example 1.2-(2).

Exercise 2.3. Let pX, ∥�∥q be a normed vector space. Then show that the norm ∥�∥ :
X Ñ R is a continuous function, where X is equipped with the norm topology. (Hint:
Show that |∥x∥� ∥y∥| ¤ ∥x� y∥ for all x, y P X.)

Since the norm induces a metric, we can speak of metric properties like Cauchy se-
quences, completeness, boundedness, on a normed vector space. For example, a sequence
pxnqnPN in a normed vector space is Cauchy if for any ϵ ¡ 0, there exists N P N such that
∥xn � xm∥   ϵ for all n,m ¥ N .

Definition 2.4. A normed vector space is complete if every Cauchy sequence converges.
A Banach space is a complete normed vector space.

Example 2.5. Let X be a topological space, let ∥�∥sup denote the supremum norm on
BpX,Rq defined as ∥f∥sup � supxPX |fpxq| for all f P BpX,Rq. Then by Lemma 1.50,
pBpX,Rq, ∥�∥supq and pBCpX,Rq, ∥�∥supq are Banach spaces.

Not all normed vector spaces are complete, however any normed vector spaces that is
not complete must necessarily be infinite dimensional (you will see why in an assignment).
Here is an example of a normed vector space that is not complete.

Example 2.6. Let X � tf P Cpr0, 2s,Rq : fp0q � 0u. Clearly X is a vector space as
linear combinations of continuous functions that vanish at 0 are continuous functions that
vanish at 0. We define the norm on X as

∥f∥ �
» 2

0

|fpxq| dx, for all f P X.

Consider the sequence of functions pfnqnPbN in X defined by (notation: a ^ b �
minpa, bq, a_ b � maxpa, bq)

fnpxq � xn ^ 1, for all x P r0, 1s.

Note that

∥fn � fm∥ �
» 1

0

|xn � xm| dx ¤ 1

n� 1
�

1

m� 1
, for all m,n P N,
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and hence pfnqnPN is a Cauchy sequence in X. Let g : r0, 2s Ñ R be defined as gpxq � 0
if x   1 and gpxq � 1 if x ¥ 1. Note that» 2

0

|fnpxq � gpxq| dx �
» 1

0

xn dx �
1

n� 1
.

This suggests that g should be the limit but it does not belong toX, as it is not continuous
at 1. We claim that pfnq does not converge in X. Suppose to the contrary that fn Ñ f
for some f in X, then for any n P N» 2

0

|fpxq � gpxq| dx ¤
» 2

0

|fpxq � fnpxq| dx�
» 2

0

|fnpxq � gpxq| dx �
» 2

0

|fpxq � fnpxq| dx�
1

n� 1
.

Letting nÑ 8 and using limnÑ8 ∥fn � f∥Ñ 0, we obtain» 2

0

|fpxq � gpxq| dx � 0.

Therefore fpxq � gpxq for almost every (with respect to Lebesgue measure) x P r0, 2s.
This contradicts the continuity of f at x � 1 (why?).

Definition 2.7 (Equivalent norms). We say that two norms ∥�∥1 and ∥�∥2 on X are
equivalent if there exists C P p0,8q such that

C�1 ∥x∥1 ¤ ∥x∥2 ¤ C ∥x∥1 , for all x P X.

The terminology equivalent is justified by the following exercise.

Exercise 2.8. Let ∥�∥1 and ∥�∥2 be equivalent norms on X. Then show that the corre-
sponding norm topologies are the same. Furthermore, show that pX, ∥�∥1q is complete if
and only if pX, ∥�∥2q is complete.

Exercise 2.9. Let pX, ∥�∥Xq, pY, ∥�∥Y q be normed vector spaces.

(a) Show that ∥px, yq∥X�Y � maxp∥x∥X , ∥y∥Y q defines a norm the vector space on X�Y .

(b) Show that the norm topology induced by the norm in (a) coincides with the product
of the norm topolgies for X, Y .

(c) Show that the norm in (a) is equivalent to the norms ∥px, yq∥ ÞÑ ∥x∥X � ∥y∥Y and

∥px, yq∥ ÞÑ
�
∥x∥2X � ∥y∥2Y

�1{2
.

(d) Show that pX�Y, ∥�∥X�Y q is a Banach space if and only if both pX, ∥�∥Xq and pY, ∥�∥Y q
are Banach spaces.

Definition 2.10. Let pxnq be a sequence in a normed vector space pX, ∥�∥q. We say that

the series
°8

n�1 xn converges (inX) if there exists x P X such that limNÑ8

∥∥∥x�°N
n�1 xn

∥∥∥ �
0. We say that the series

°8
n�1 xn is absolutely convergent if

°8
n�1 ∥xn∥   8.
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Theorem 2.11. A normed vector space pX, ∥�∥q is complete if and only if every absolutely
convergent series in X converges.

Proof. ùñ : (This part is same as the usual argument in R) Let
°8

i�1 ∥xi∥   8 and
ϵ ¡ 0. Let yn �

°n
i�1 xi for all n P N. Since

°8
i�1 ∥xi∥   8, there exists N P N such that°8

i�N ∥xi∥   8. Therefore for any m,n � N , we have

∥ym � yn∥ ¤
m_ņ

i�m^n

∥xi∥ ¤
8̧

i�N

∥xi∥   ϵ.

Therefore pynqnPN is Cauchy.
ðù : Let pynqnPN be Cauchy (in X). Since pynq is Cauchy, there exists a subsequence
pyni

qiPN such that ni   ni�1 for all i P N and ∥ym � yni
∥   2�i for all m ¥ ni and all

i P N. Let xi � yni
� yni�1

for all i ¥ 2 and x1 � yn1 , so that the partial sums of
°8

i�1 xi

coincides with the subsequence pyni
qiPN. Since ∥xi∥ �

∥∥yni
� yni�1

∥∥ ¤ 21�i for all i ¥ 2,
the series

°8
i�1 xi is absolutely convergent and hence the subsequence pyni

qiPN converges
to say y P X. Since pynqnPN is Cauchy, yn Ñ y as well.

2.1 Bounded linear maps and linear functionals

Let T : X Ñ Y be a linear map (also known as operator or linear operator) between
normed vector spaces pX, ∥�∥Xq and pY, ∥�∥Y q; that is, T px1 � x2q � T px1q � T px2q and
T pλxq � λT pxq for all λ P K, x, x1, x2 P X.

Definition 2.12 (Bounded linear map). We say that a linear map T : X Ñ Y is bounded
if there exists C P p0,8q such that ∥T pxq∥Y ¤ C ∥x∥X for all x P X.

It turns out that boundedness of a linear map is same as continuity (with respect to
norm topology).

Proposition 2.13. Let T : X Ñ Y be a linear map between normed vector spaces
pX, ∥�∥Xq and pY, ∥�∥Y q. Then the following are equivalent:

(a) T is continuous.

(b) T is continuous at 0.

(c) T is bounded.

Proof. (a) ùñ (b) is trivial.
(b) ùñ (c): Since T is continuous at 0, by Exercise 1.35, for every ϵ ¡ 0 there exists
δ ¡ 0 such that ∥x∥X   δ implies ∥T pxq∥Y   ϵ. Let z P X be arbitrary. If z � 0, then
w � δp2 ∥z∥Xq�1z P X satisfies ∥w∥X � δ{2   δ and hence

δ

2 ∥z∥X
∥T pzq∥Y � ∥T pwq∥Y   ϵ.
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Therefore

∥T pzq∥Y ¤
2ϵ

δ
∥z∥X for all z P Xzt0u.

The above estimate also holds for z � 0 since T pzq � 0 by linearity of T .
(c) ùñ (a): If ∥T pxq∥Y ¤ C ∥x∥X for all x P X, then ∥T pyq � T pxq∥Y � ∥T py � xq∥Y ¤
C ∥y � x∥X . For any ϵ ¡ 0, the choice δ � ϵ{C ensures the ϵ-δ definition of continuity at
any x P X.

Definition 2.14. Given, normed vector spaces pX, ∥�∥Xq, pY, ∥�∥Y q, let LpX, Y q denote
the set of all bounded linear maps T : X Ñ Y . Note that LpX, Y q is a vector space as
a1T1 � a2T2 P LpX, Y q for any a1, a2 P K,T1, T2 P LpX, Y q, where pa1T1 � a2T2qpxq �
a1T1pxq � a2T2pxq for all x P X.

For T P LpX, Y q, the operator norm of T is defined as

∥T∥ :� supt∥T pxq∥Y : ∥x∥X ¤ 1u.

The operator norm is also equal to (check that they are equal!)

∥T∥ � supt∥T pxq∥Y : ∥x∥X ¤ 1u � sup
xPX,
x�0

∥T pxq∥Y
∥x∥X

� supt∥T pxq∥Y : ∥x∥X � 1u. (2.2)

Exercise 2.15. Check the claims made in the above definition. That is LpX, Y q is a
vector space and that the operator norm defines a norm on LpX, Y q. Show that ∥T pxq∥Y ¤
∥T∥ ∥x∥X for all x P X.

Proposition 2.16. Let pX, ∥�∥Xq, pY, ∥�∥Y q be normed vector spaces. If Y is complete,
then so is LpX, Y q.

Proof. Let pTnqnPN be Cauchy in LpX, Y q. Fix x P X. Since

∥Tnpxq � Tmpxq∥Y � ∥pTn � Tmqpxq∥Y ¤ ∥Tn � Tm∥ ∥x∥X ,

pTnpxqqnPN is a Cauchy sequence in Y , and hence it converges to say y P Y . Define
T : X Ñ Y as T pxq � y, where y P Y is as above. Then it is easy to check

(i) T is linear.

(ii) ∥T∥   8; that is, T P LpX, Y q.

(iii) ∥T � Tn∥Ñ 0 as nÑ 8. In particular, ∥T∥ � limnÑ8 ∥Tn∥.

Exercise 2.17. Check (i),(ii),(iii) in the proof above.

Lemma 2.18. Let X, Y, Z be normed vector spaces and let T P LpX, Y q, S P LpY, Zq,
then ST P LpX,Zq and ∥ST∥ ¤ ∥S∥ ∥T∥, where ST is the composition of S and T
(ST pxq � SpT pxqq for all x P X).
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Proof. For any x P X, we have

∥ST pxq∥Z ¤ ∥SpT pxqq∥Z ¤ ∥S∥ ∥T pxq∥Y ¤ ∥S∥ ∥T∥ ∥x∥X .

Therefore ST P LpX,Zq and ∥ST∥ ¤ ∥S∥ ∥T∥.

Two normed vector spaces are the ‘same’ if there is a norm-preserving bijection be-
tween them. This notion is called isometric isomorphism.

Definition 2.19. We say that a linear map f : pX, ∥�∥Xq Ñ pY, ∥�∥Y q between two normed
linear space is an isometry if ∥fpxq∥Y � ∥x∥X for all x P X. We say that f is an isometric
isomorphism, if it is a bijective (or equivalently, surjective) isometry. We say that two
normed vector spaces X and Y are isometrically isomorphic, if there exists an isometric
isomorphism f : X Ñ Y between them.

Any two norms in finite dimensional vector space are equivalent. So by Exercise 2.8,
there is the norm topology is uniquely determined. The following exercise outlines a proof
of this fact.

Exercise 2.20. Let pX, ∥�∥q be a finite dimensional vector space over K. Then there is
a finite basis peiq1¤i¤n for the vector space X. Therefore, the linear map ϕ : Kn Ñ X
defined by

ϕpa1, . . . , anq �
ņ

i�1

aiei, for all pa1, . . . , anq P Kn,

is a bijection. Let Kn be equipped with the norm ∥pa1, . . . , anq∥1 �
°n

i�1 |ai| for all
i � 1, . . . , n.

(a) Show that ϕ is a bounded linear map from pKn, ∥�∥1q to pX, ∥�∥q.

(b) Show that the unit sphere in Kn, S � tpa1, . . . , anq P Kn :
°n

i�1 |ai| � 1u is a compact
subset of Kn.

(c) Show that ϕ�1 : pKn, ∥�∥1q Ñ pX, ∥�∥q is also bounded. (Hint: Use previous parts
and Exercise 2.3)

(d) Conclude that any two norms on X are equivalent.

(e) Show that any finite dimensional normed vector space is a Banach space.

Since closed and bounded sets inKn are compact, by Exercise 2.20, the closed unit ball
tx P X : ∥x∥ ¤ 1u is compact on any finite dimensional normed vector space. It turns out
that the compactness of closed unit ball characterizes finite dimensional normed vector
spaces. To prove this, we need Riesz’s lemma.

Lemma 2.21 (Riesz’s lemma). Let X be a normed linear space and M is a closed proper
subspace. Then for any ϵ P p0, 1q, there exists x0 P XzM such that ∥x0∥ � 1 and
∥x0 � x∥ ¥ 1� ϵ for all x PM .

33



Proof. Let y P X P M be arbitrary. Since M is closed d � infxPM ∥y � x∥ ¡ 0 (by
Exercise 1.40-(a)). Let δ ¡ 0. Then there exists y1 P M such that d ¤ ∥y � y1∥ ¤ d � δ.
Let

x0 �
y � y1
∥y � y1∥

,

so that ∥x0∥ � 1 and for any x P X,

∥x0 � x∥ � ∥y � y1 � x ∥y � y1∥∥
∥y � y1∥

¥ ∥y � y1∥�1 inf
zPM

∥y � z∥ ¥ d

d� δ
� 1�

δ

d� δ
.

So we obtain the desired conclusion by choosing δ � dϵ
1�ϵ

.

Theorem 2.22. A normed vector space is finite dimensional if and only if the closed unit
ball is compact in the norm topology.

Proof. As explained after Exercise 2.20, it suffices to show that the closed unit balls is
not compact for an infinite dimensional normed vector space.

Let X be an infinite dimensional normed vector space. We will construct a sequence
pxnqnPN such that ∥xn∥ � 1 for all n P N and ∥xn � xm∥ ¥ 1

2
for all n � m. This implies

the desired conclusion due to Theorem 1.72 (or Theorem 1.71) as this sequence cannot
have a Cauchy (and hence convergent) subsequence.

We construct such a sequence by induction. Let x1 be any vector such that ∥x1∥ � 1.
Suppose x1, . . . , xn have been chosen, then we construct xn�1 P XzMn by choosing ϵ � 1

2

in Lemma 2.21, where Mn is the subspace spantx1, . . . , xnu. Note that Mn is a closed
subspace due to Exercise 2.20-(e) and is proper since X is infinite dimensional.

2.2 Dual space

Definition 2.23 (linear functionals, dual space). Let X be a vector space over K � R or
C. A bounded linear map f : X Ñ K is called a linear functional (that is, f P LpX,Kq).

The set of all bounded linear functionals of a normed vector space X is called the
dual space of X and is denoted by X� (that is, X� � LpX,Kq). The dual space is also a
normed vector space equipped with the operator norm.

For z P C, we define

sgnpzq �

#
z
|z| , if z � 0,

0 if z � 0,
(2.3)

so that |sgnpzq| ¤ 1 and sgnpzqz � |z| for all z P C.
Note that by Proposition 2.16, the dual space X� is a Banach space (even if X is not).

So far, we did not distinguish between the cases K � R and K � C. If X is a normed
vector space over C, it is also a normed vector space of R. So we can consider dual space
either over R or over C. Let us see how these dual spaces are related.
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Proposition 2.24. Let X be a vector space over C.

(a) Let f : X Ñ C be complex linear function on X. Then u � Repfq : X Ñ R is a real
linear function and fpxq � upxq � iupixq for all x P X.

(b) If u : X Ñ R is a real linear function then fpxq � upxq � iupixq for all x P X is a
C-linear function.

Moreover, if f and u are related as above, then their operator norms are equal.

Proof. (a) Let f be C-linear. Then

upx1�x2q � Repfqpx1�x2q � Repfpx1q�fpx2qq � upx1q�upx2q, for any x1, x2 P X,

and

upλxq � Repfqpλxq � Repλfpxqq � λRepfqpxq � λupxqfor any x P X,λ P R.

Therefore u is R-linear. Similarly, v � Impfq : X Ñ R is also R-linear and fpxq �
upxq � ivpxq for all x inX. For any x P X, by C-linearity of f , we have

upixq � vpixq � fpixq � ifpxq � iupxq � vpxq, for all x P X.

Therefore vpxq � �upixq for all x P X.

(b) The function f is clearly R-linear. So we just need to check fpixq � ifpxq for all
x P X. To this end, note that

fpixq � upixq � iupi2xq � upixq � iupxq, ifpxq � irupxq � iupixqs � upxq � upixq,

for all x P X.

Let us now consider the operator norms. Note that

∥u∥ � supt|upxq| : ∥x∥ ¤ 1u, ∥f∥ � supt|fpxq| : ∥x∥ ¤ 1u.

Since |upxq| � |Repfqpxq| ¤ |fpxq| for all x P X, we have ∥u∥ ¤ ∥f∥.
Let x P X. There exists α � sgnpfpxqq P C with |α| ¤ 1 such that |fpxq| � αfpxq.

Therefore |fpxq| � αfpxq � fpαxq � |upαxq| ¤ ∥u∥ ∥αx∥ ¤ ∥u∥ ∥x∥ (since |α| ¤ 1).
Therefore ∥f∥ ¤ ∥u∥.

The following exercise gives a description of the dual space of a finite dimensional
normed vector space.

Exercise 2.25. Let X be a finite dimensional normed vector space over K. If the dimen-
sion is n, let us choose a basis e1, . . . , en P X. Then every x P x can be uniquely written
as a linear combination x �

°n
i�1 aiei, where ai P K for all 1 ¤ i ¤ n. For each 1 ¤ i ¤ n,

e�i : X Ñ K as

e�i

�
ņ

j�1

ajej

�
� ai, for all pa1, . . . , anq P Kn.
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(i) Show that e�i P X� for each i � 1, . . . , n. (Hint: See Exercise 2.20)

(ii) Show that te�i : 1 ¤ i ¤ nu is a basis for the vector space X�.

(iii) Conclude that the dimension of X� is same as the dimension of X.

For infinite dimensional spaces, the Hahn-Banach theorem allows us to construct lots
of bounded linear functionals.

Theorem 2.26 (Hahn-Banach extension theorem:real version). Let X be a vector space
over R and let p : X Ñ R be a function satisfying1

ppλxq � λppxq, for all x P X,λ ¡ 0, (2.4)

ppx� yq ¤ ppxq � ppyq, for all x, y P X. (2.5)

Let M be a subpace of X and f : M Ñ R be a linear function on M such that fpxq ¤ ppxq
for all x P M . Then there exists a linear function F : X Ñ R such that F pxq � fpxq for
all x PM and F pxq ¤ ppxq for all x P X.

Proof. Let P denote the set of all linear functions g : Dpgq Ñ R that satisfies the following:

� The domain Dpgq is a subspace of X that contains M .

� gpxq � fpxq for all x PM .

� gpxq ¤ ppxq for all x P Dpgq.

We define a partial order ¤ on P : for any g1, g2 P P , g1 ¤ g2 if and only if Dpg1q � Dpg2q
and g1pxq � g2pxq for all x P Dpg1q.

It is clear that P is non-empty as f : M Ñ X belongs to P . Let Q � P be a totally
ordered subset. Let Q � thi : i P Iu. We define h : Dphq Ñ R by

Dphq �
¤
iPI

Dphiq, hpxq � hipxq, if x P Dphiq, i P I.

It is easy to that h is well-defined (by the same argument as in the proof of Theorem
1.80). We can therefore use Zorn’s lemma to find a maximal element F : DpF q Ñ R.

We claim thatDpF q � X. Suppose to the contrary thatDpF q � X. Let x0 P XzDpF q.
Set DpGq � spanpDpF q Y tx0uq � tx� tx0 : x P DpF q, t P Ru. We would like to define a
linear function G : DpGq Ñ R such that Gpxq � F pxq for all x P DpF q and Gpx0q � α P R.
Then G P P if and only if

F pxq � tα ¤ ppx� tx0q for all x P DpF q, t P R;

which is equivalent (divide by |t| on both sides) to

F pxq � α ¤ ppx� x0q, and F pxq � α ¤ ppx� x0q, for all x P DpF q,

1a function satisfying (2.4) and (2.5) is called a sublinear functional.
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which in turn is equivalent to

sup
xPDpF q

pF pxq � ppx� x0qq ¤ α ¤ inf
yPDpF q

pppy � x0q � F pyqq .

Such an α exists, since for all x, y P DpF q

F pxq � F pyq � F px� yq ¤ ppx� yq ¤ ppx� x0q � ppy � x0q,

which in turn implies

sup
xPDpF q

pF pxq � ppx� x0qq ¤ inf
yPDpF q

pppy � x0q � F pyqq .

This implies F ¤ G and F � G, which contradicts the maximality of F .

Theorem 2.27 (Hahn-Banach extension theorem: complex version). Let X be a vector
space over C and let p : X Ñ R be seminorm. Let M be a subpace of X and f : M Ñ C be
a linear function on M such that |fpxq| ¤ ppxq for all x P M . Then there exists a linear
function (over C) F : X Ñ C such that F pxq � fpxq for all x PM and |F pxq| ¤ ppxq for
all x P X.

Proof. Let u � Repfq : M Ñ R be R-linear functional as given in Proposition 2.24. By
Theorem 2.26, there exists a linear function U : X Ñ R over R such that Upxq � upxq for
all x PM and Upxq ¤ ppxq for all x P X. Define F : X Ñ C as F pxq � Upxq�iUpixq for all
x P X. By Proposition 2.24, F is C-linear function. For x P X, choose α � sgnpF pxqq P C
with |α| ¤ 1 and F pαxq � αF pxq � |F pxq| as given in the proof of Proposition 2.24.
Therefore

|F pxq| � Upαxq ¤ ppαxq � |α|ppxq ¤ ppxq.

Corollary 2.28. Let X be a normed vector space over K and let M be a subspace of X.
Let f : M Ñ K belong to LpM,Kq. Then there exists F P X� such that F pxq � fpxq for
all x PM and ∥F∥ � ∥f∥.

Proof. Note that |fpxq| ¤ ∥G∥ ∥x∥ for all x P M . By applying either Theorem 2.26 (if
K � R) or Theorem 2.27 (if K � C), with ppxq � ∥f∥ ∥x∥ for all x P X, we obtain the
existence of F with ∥F∥ ¤ ∥f∥. We obtain the desired conclusion since

∥F∥ � supt|F pxq| : ∥x∥ ¤ 1, x P Xu ¥ supt|fpxq| : ∥x∥ ¤ 1, x PMu � ∥f∥ .

The operator norm of F in Corollary 2.28 is as small as possible as can be verified in
the following easy exercise.
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Exercise 2.29. Let X be a normed vector space over K and let M be a subspace of X.
Let F P X�. Then show that the restriction f :� F

��
M

: M Ñ K (that is; fpxq � F pxq
for all x P M) belongs to the dual space M� (M is equipped with the restriction of the
norm on X) and satisfies

∥f∥ ¤ ∥F∥ (2.6)

The following corollary provides a large family of linear functionals.

Corollary 2.30. Let X be a normed vector space over K.

(i) For any x P X with x � 0, there exists f P X� such that ∥f∥ � 1 and fpxq � ∥x∥.

(ii) For any x P X, the evaluation map Ex : X� Ñ K defined by Expfq � fpxq satisfies
Ex P X�� and the map x ÞÑ Ex is a linear isometry from X to X��.

Proof. (i) Let X Q x � 0. Define the linear functional h : spantxu Ñ K as hpλxq �
λ ∥x∥ for all λ P K. Note that ∥h∥ � 1. So by Corollary 2.28, there is f P X� such
that ∥f∥ � 1 and fpxq � ∥x∥.

(ii) Note that Ex is linear over K, since

Expλ1f1 � λ2f2q � pλ1f1 � λ2f2qpxq � λ1f1pxq � λ2f2pxq � λ1Expf1q � λ2Expf2q

for all f1, f2 P X�, and for all λ1, λ2 P K. Since

|Expfq| � |fpxq| ¤ ∥x∥ ∥f∥ , for all f P X�, x P X,

we have ∥Ex∥ ¤ ∥x∥, so we have the desired conclusion if x � 0.

If x � 0, by considering f by (i), we have

∥x∥ � |fpxq| � |Expfq| ¤ ∥Ex∥ ∥f∥ � ∥Ex∥ .

Combining the estimates, we obtain ∥Ex∥ � ∥x∥ for all x P X. It is clear that
x ÞÑ Ex is linear over K.

Definition 2.31 (Reflexive spaces). Let pX, ∥�∥q is a normed linear space. Let J : X Ñ
X�� denote the linear isometry in Corollary 2.30-(ii). We say that the normed vector
space pX, ∥�∥q is reflexive if the isometry J is surjective.

Note that reflexive normed vector spaces are necessarily Banach spaces due to Propo-
sition 2.16 but not all Banach spaces are reflexive. Nevertheless, all finite dimensional
normed vector spaces are reflexive.

Exercise 2.32. Show that if pX, ∥�∥q is a finite dimensional normed vector space, then it
is reflexive. (Hint: see Exercise 2.25).
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Exercise 2.33. If X is an infinite dimensional normed vector space, show that X� is also
infinite dimensional. (Hint: see Exercise 2.25).

The Hahn-Banach theorem also has useful geometric consequences.

Definition 2.34. Let X be a normed vector space over R.

(1) A closed hyperplane in X is a subset H � X of the form

H � tx P X : fpxq � αu,

where f : X Ñ R is a non-zero bounded linear functional and α P R. We abbreviate
H as rf � αs in this case.

(2) Let A,B � X. We say that the closed hyperplane rf � αs separates A and B if

fpxq ¤ α for all x P A, and fpxq ¥ α for all x P B.

(3) We say that the closed hyperplane rf � αs strictly separates A and B if there exists
ϵ ¡ 0 such that

fpxq ¤ α � ϵ for all x P A, and fpxq ¥ α � ϵ for all x P B.

(4) We say that C � X is convex, if

tx� p1� tqy P C, for all t P r0, 1s and for all x, y P X.

Exercise 2.35. Let pX, ∥�∥q be a normed vector space, x P X and r ¡ 0. Then the open
ball

BXpx, rq � ty P X : ∥y � x∥   ru, (2.7)

and the closed ball
BXpx, rq � ty P X : ∥y � x∥ ¤ ru (2.8)

are convex sets.

Convex sets also leads to sublinear functionals. The functional p in the following
lemma is sometimes called the Minkowski functional associated with a convex set.

Lemma 2.36. Let X be a normed vector space over R. Let C be an open, convex subset
of X such that 0 P C. Define p : X Ñ r0,8s as

ppxq � inftα ¡ 0 : α�1x P Cu.

The p is a sublinear functional (that is; satisfies (2.4) and (2.5)) and such that

C � tx P X : ppxq   1u. (2.9)

Furthermore, there exists M ¡ 0 such that

ppxq ¤M ∥x∥ , for all x P X. (2.10)
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Proof. It is clear that (2.4) holds.

Let r ¡ 0 be such that BXp0, rq � C (as C is open and 0 P C). Then ppxq ¤ r�1 ∥x∥
for all x P X which implies (2.10).

Let x P C, then p1 � ϵqx P C for some ϵ ¡ 0. Therefore ppxq ¤ p1 � ϵq�1   1. Hence
C � tx P X : ppxq   1u. Conversely, if ppxq   1, then there exits α P p0, 1q such that
α�1x P C. Since 0, α�1x P C and C is convex, we have x � αpα�1xq � p1�αq0 P C. This
proves (2.9).

In order to prove (2.5), consider x, y P X and let ϵ ¡ 0. Using (2.9), we have

pppxq � ϵq�1x, pppyq � ϵq�1y P C.

Choosing

t �
ppxq � ϵ

ppxq � ppyq � 2ϵ
,

by the convexity of C, we have

tpppxq � ϵq�1x� p1� tqpppyq � ϵq�1y � pppxq � ppyq � 2ϵq�1px� yq P C

Therefore ppx� yq ¤ ppxq � ppyq � 2ϵ. Since ϵ ¡ 0 is arbitrary, we obtain (2.5).

The following lemma shows that points outside an open convex set is separated by a
closed hyperplane.

Lemma 2.37. Let X be a normed vector space over R. Let C � X be a non-empty open
convex set and let x0 P XzC. Then there exists f P X� such that fpxq   fpx0q for all
x P C. In particular, the closed hyperplane rf � fpx0qs separates tx0u and C.

Proof. After a translation, we may assume that 0 P C. Consider the sublinear function
p : X Ñ r0,8q defined Lemma 2.36. Consider the subspace tλx0 : λ P Ru and the linear
functional g : GÑ R defined as gptx0q � t for all t P R. Note that

gpxq ¤ ppxq for all x P G.

To see this, if x � tx0 for t ¤ 0 then the above inequality is true since ppxq ¥ 0. If
t ¡ 0, then since x0 R C, ppxq � tppx0q ¥ t � gpxq (by Lemma 2.36). By Theorem 2.26,
there exists f P X� such that fpxq ¤ ppxq for all x P E and fpx0q � 1. By Lemma 2.36,
fpxq   1 for all x P C.

Theorem 2.38 (Hahn-Banach separation theorem). Let X be a normed vector space over
R.

(1) Let A,B � X be two non-empty, disjoint, convex subsets. Assume that one of them
is open. Then there exists a closed hyperplane that separates A and B.

(2) Let A,B � X be two non-empty, disjoint, convex subsets. Assume that A is closed
and B is compact. Then there exists a closed hyperplane that strictly separates A and
B.
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Proof. (1) Assume that A is open. Let C � A�B � ta� b : a P A, b P Bu. It is easy to
check (do this!) that C is convex, 0 R C and C �

�
bPBpA� tbuq is open. By Lemma

2.37, there exists f P X� such that fpzq   0 for all z P C. So

fpxq   fpyq for all x P A and for all y P B.

Therefore, there exists α P R such that

sup
xPA

fpxq ¤ α ¤ inf
yPB

fpyq.

So rf � αs is the desired closed hyperplane that separates A and B.

(2) Let C � A�B. It is easy to check (do this!) that C is convex, and 0 R C. We claim
that C is closed. To show this claim, it is enough to prove that every accumulation
point of C belongs to C (see Proposition 1.11). To this end, let y P accpAq. Then
there exists a sequence pan � bnqnPN such that an P A and bn P B for all n P N
and limnÑ8pan � bnq � y. By the compactness of B and passing to a subsequence
if necessary we may assume that pbnqnPN converges to b P B (see Theorem 1.71(b)).
Therefore an Ñ limnÑ8pan�bnq� limnÑ8 bn � y�b. Since A is closed by Proposition
1.58(b), we have that y�b P A. Therefore y � py�bq�b P A�B � C. This concludes
the proof that C is closed.

So there exists r ¡ 0 such that BXp0, rq and C are disjoint convex sets. By the
previous part, there exists f P X� such that f � 0 such that

fpx� yq ¤ fprzq, for all x P A, y P B, z P BXp0, 1q.

It follows that (since infzPBXp0,1q fprzq � �r ∥f∥; why?)

fpx� yq ¤ �r ∥f∥ , for all x P A, y P B.

Therefore, letting ϵ � 1
2
r ∥f∥ ¡ 0, there exists α P R such that

sup
xPA

pfpxq � ϵq ¤ α ¤ inf
yPB

pfpyq � ϵq.

Hence the closed hyperplane rf � αs strictly separates A and B.

2.3 Adjoint operator

A linear operator between normed vector spaces induces another linear operator between
the dual spaces called the adjoint operator.

Definition 2.39 (Adjoint operator). Let X, Y be normed linear spaces over K and let
T P LpX, Y q. We define the adjoint operator T � : Y � Ñ X� as

T �pfq � f � T, for all f P Y �.
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Clearly T � is linear over K. We claim that T � is bounded. To see this note by Lemma
2.18, that

∥T �pfq∥ � ∥f � T∥ ¤ ∥f∥ ∥T∥ . (2.11)

This implies T � P LpY �, X�q and ∥T �∥ ¤ ∥T∥. The fact that ∥T �∥ � ∥T∥ is a consequence
of Hahn-Banach theorem.

Proposition 2.40. For any T P LpX, Y q, we have T � P LpY,Xq and ∥T �∥ � ∥T∥.

Proof. By (2.11), it suffices to show ∥T �∥ ¥ ∥T∥. Let x0 P X be such that ∥x0∥ � 1
and T px0q � 0. Then there exists f0 P Y � with ∥f0∥ � 1 and f0pT px0qq � ∥T px0q∥ (by
Corollary 2.30-(i)). Therefore,

∥T �∥ � supt∥T �pfq∥ : ∥f∥ � 1u ¥ ∥f0 � T∥
� supt|fpT pxqq| : ∥x∥ � 1u ¥ |f0pT px0qq| � ∥T px0q∥ .

Since ∥T∥ � supt|T pxq| : ∥x∥ � 1u, we obtain the inequality ∥T �∥ ¥ ∥T∥.

Here are a few properties of the adjoint operator that follow easily from the definitions.

Exercise 2.41. (a) Let X, Y, Z be normed linear spaces with S P LpX, Y q, T P LpY, Zq,
then pT � Sq� � S� � T � P LpZ�, X�q.

(b) Let X, Y be normed linear spaces over K with T1, T2 P LpX, Y q and λ1, λ2 P K, then
pλ1T1 � λ2T2q

� � λ1T
�
1 � λ2T

�
2 .

(c) Let X, Y be normed linear spaces and T P LpX, Y q, then T �� P LpX��, Y ��q satisfies

T �� � JX � JY � T P LpX, Y ��q,

where JX : X Ñ X��, JY : Y Ñ Y �� are the linear isometries described in Corollary
2.30-(ii).

(d) If T P LpX, Y q is such that T�1 P LpY,Xq, then pT �q�1 � pT�1q�.

Exercise 2.42. Let X, Y be normed linear spaces and T P LpX, Y q. Then the following
are equivalent.

(i) T � is one-to-one.

(ii) The range of T is dense in Y .

The next exercise shows how adjoint operator can be viewed as a version of matrix
transpose.

Exercise 2.43. Let X be a finite dimensional normed vector space of dimension n P N
over K and let tei : 1 ¤ i ¤ nu be a basis for X. Let te�i : 1 ¤ i ¤ nu denote the base for
X� as defined in Exercise 2.25. Let Y be a finite dimensional normed vector space over
K with dimension m P N with basis tfi : 1 ¤ j ¤ mu. Let tf�i : 1 ¤ i ¤ mu denote the
the base for Y � as defined in Exercise 2.25.
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(a) Show that the map VX : X Ñ X� defined by

VX

�
ņ

i�1

aiei

�
�

ņ

i�1

aie
�
i , for all pa1, . . . , anq P Kn

is an invertible bounded linear map with bounded inverse.

(b) If X has a non-zero vector, show that there are no invertible bounded linear maps
LX : X Ñ X� and LY : Y Ñ Y � such that

LX � T � � LY � T, for all T P LpX, Y q.

(c) For any T P LpX, Y q, let MT P Km�n denote the m� n matrix over K associated to
T with respect to bases tej : 1 ¤ j ¤ nu and tfi : 1 ¤ i ¤ mu; that is if MT

ij denotes
the element in the i-th row and j-th column of MT , we have

T

�
ņ

j�1

ajej

�
�

m̧

i�1

�
ņ

j�1

MT
ijaj

�
fi, for all pa1, . . . , anq P Kn.

Similarly, letMT� denote the n�mmatrix overK associated with the adjoint operator
T � with respect to bases tfj : 1 ¤ j ¤ mu and te�i : 1 ¤ i ¤ nu ; that is if MT�

ij

denotes the element in the i-th row and j-th column of MT� , we have

T �

�
m̧

j�1

ajf
�
j

�
�

m̧

i�1

�
ņ

j�1

MT�

ij aj

�
e�i , for all pa1, . . . , amq P Km.

Show that MT� is the transpose of MT .

2.4 Lp spaces

We describe an important example of Banach spaces. Throughout 2.4, we fix a measure
space pX,M, µq. We will use various results concerning measure and integration from the
prerequisite (MATH 420) and we refer to the appendix in §5 for a brief review.

Definition 2.44 (Semifinite, σ-finite and finite measures). We say that µ is semifinite if
whenever E PM with µpEq � 8, there exists F PM with F � E and 0   µpF q   8.
We say that µ is σ-finite, if there exists a sequence pEjqjPN of sets in M such that
X �

�
jPN Ej and µpEjq   8 for all j P N.

We say that µ is finite, if µpXq   8.

Exercise 2.45. (i) Show that every finite measure space is σ-finite and every σ-finite
measure space is semifinite.

(ii) Give examples of σ-finite measure space that is not finite and semifinite measure
space that is not σ-finite.
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Definition 2.46 (Lp spaces). If f : X Ñ C is a measurable function on X and p P p0,8q,
we define

∥f∥p �
�»

X

|f |p dµ

1{p

,

and define

LppX,M, µq � trf s : f : X Ñ C, f is measurable and ∥f∥p   8u,

where rf s is the equivalence class of f corresponding to the relation that identifies func-
tions that are equal almost everywhere.
If µ is the counting measure on pA,PpAqq, then we abbreviate LppA,PpAq, µq as ℓppAq.

Although, elements of Lp spaces are equivalence classes of functions, it is customary
to denote them as functions; for example, f P LppX,M, µq instead of rf s P LppX,M, µq.

First let us observe that LppX,M, µq forms a vector space as

|f � g|p ¤ p2maxp|f |, |g|qqp ¤ 2pp|f |p � |g|pq.

Next, we examine, whether pLppX,M, µq, ∥�∥pq is a normed linear space. The properties
(i) and (ii) in Definition 2.1 are easy to verify (property (i) also explains the need for
looking at equivalence class of functions) from the definition (do it!). For the triangle
inequality, we need to restrict ourselves to p P r1,8q as can be from the following example.

Example 2.47. Let p P p0,8q, A � t0, 1u and consider f, g P ℓppAq such that fp0q �
gp1q � 1 and gp0q � fp1q � 0. Then ∥f � g∥p � 21{p, ∥f∥p � ∥g∥p � 1. So, in this case,
the triangle inequality is usatisfied if and only if p P r1,8q.

The next few results are preparation to obtain the triangle inequality for the case
p ¥ 1.

Lemma 2.48 (Young’s inequality). If a ¥ 0, b ¥ 0, and p, q P p1,8q be such that
p�1 � q�1 � 1, then

ab ¤
ap

p
�

bq

q
,

with equality if and only if ap � bq.

Proof. The result is clear if either a � 0 or b � 0.
Set x � ab�q{p � ab1�q. So the desired claim can be rewritten as (dividing by bq on both
sides)

x ¤
xp

p
�

1

q
, for all x ¡ 0,

with equality if and only if x � 1. This claim can be verified by setting fpxq � xp

p
� 1

q
�x

and noting that satisfies f 1pxq   0 for all x P p0, 1q and f 1pxq ¡ 0 for all x P p1,8s.
Therefore f attains its minimum at x � 1, and hence fpxq ¥ fp1q � 0 for all x P
p0,8q.
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Our next result is Hölder’s inequality which is extremely useful.

Theorem 2.49 (Hölder’s inequality). Let pX,M, µq be a measure space and let p, q P
p1,8q satisfy p�1 � q�1 � 1. If f, g : X Ñ C be measurable functions, then

∥fg∥1 ¤ ∥f∥p ∥g∥q .

In particular, if f P LppX,M, µq, g P LqpX,M, µq, then fg P L1pX,M, µq and the
equality ∥fg∥1 � ∥f∥p ∥g∥q holds in the case that both sides are finite if and only if there
exists α, β P C not both zero such that α|f |ppxq � β|g|qpxq µ-almost every x P X.

Proof. If ∥f∥p � 0 or ∥g∥q � 0, then fg � 0 µ-almost everywhere and hence the desired
inequality holds.

So, we may assume ∥f∥p � 0 and ∥g∥q � 0. If either ∥f∥p � 8 or ∥g∥q � 8, then the
inequality is trivial. So we consider the case ∥f∥p , ∥g∥q P p0,8q. Let

F pxq � ∥f∥�1
p fpxq, Gpxq � ∥g∥�1

q gpxq, for all x P X.

Then, by Lemma 2.48,

|F pxqGpxq| ¤ |F pxq|p

p
�

|Gpxq|q

q
.

Integrating both sides and using the linearity of integral, we obtain

1

∥f∥p ∥g∥q

»
|fg| dµ ¤ 1

p
�

1

q
� 1.

Therefore,
∥fg∥1 ¤ ∥f∥p ∥g∥q .

Let us consider the case when f P LppX,M, µq, g P LqpX,M, µq such that ∥fg∥1 �
∥f∥p ∥g∥q. If ∥f∥p � 0, then we may choose β � 0 and α � 0 and conclude α|f |ppxq �
β|g|qpxq µ-almost every x P X. The case ∥f∥q � 0 is similar as we can choose α � 0, β � 1.

If ∥f∥p , ∥g∥q P p0,8q, then the equality case of Lemma 2.48 in the argument above,
we have equality if and only if |F pxq|p � |Gpxq|q, µ-almost everywhere or equivalently,

∥f∥�p
p |fpxq|p � ∥g∥�q

q |gpxq|q, for µ-almost every x P X.

The triangle inequality for Lp norm is known as Minkowski’s inequality.

Theorem 2.50 (Minkowski’s inequality). If 1 ¤ p   8 and f, g P Lp, then

∥f � g∥p ¤ ∥f∥p � ∥g∥p .
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Proof. The result follows from integrating the inequality |f � g| ¤ |f |� |g| if p � 1.

We consider p P p1,8q and let q � p{pp� 1q P p1,8q. Note that,

|f � g|p � |f � g||f � g|p�1 ¤ |f ||f � g|p�1 � |g||f � g|p�1.

Then by integrating the above estimate and using Hölder inequality (Theorem 2.49), we
obtain (note that pp� 1qq � p)»

X

|f � g|p dµ ¤ ∥f∥p

�»
X

|f � g|pp�1qq dµ


1{q

� ∥g∥p

�»
X

|f � g|pp�1qq dµ


1{q

� p∥f∥p � ∥g∥pq
�»

X

|f � g|p dµ

1{q

,

which implies the desired inequality (as 1� q�1 � p�1).

Now that we have verifies that Lp-norm is indeed a norm, we next show the complete-
ness.

Theorem 2.51. Let pX,M, µq is a measure space and p P r1,8q. Then pLppX,M, µq, ∥�∥pq
is a Banach space.

Proof. Due to Theorem 2.50, we have that pLppX,M, µq, ∥�∥pq is a normed vector space
(see the discussion before Example 2.47). By Theorem 2.11, it suffices to show that every
absolutely convergent series converges.

To this end, let pfnqnPN be a sequence in LppX,M, µq such that S :�
°8

n�1 ∥fn∥p   8.
Then Gn �

°n
k�1 |fk| satisfies (by Theorem 2.50) ∥Gn∥p �

°n
k�1 ∥fk∥p ¤ S. By montone

convergence theorem G � limnÑ8Gn �
°8

k�1 |fk| satisfies»
X

Gp dµ � lim
nÑ8

»
X

|Gn|p dµ ¤ Sp   8.

Therefore G   8 µ-almost everywhere, which implies that
°8

k�1 fkpxq converges for µ-
almost every x P X. Let F pxq � lim supnÑ8

°n
k�1 fkpxq. Note that |F | ¤ G and hence

F P LppX,M, µq. By the triangle inequality, |F �
°n

k�1 fk|
p
¤ p2Gqp for all n P N. So by

almost everywhere convergence of |F �
°n

k�1 fk| to zero and the dominated convergence
theorem, we have

lim
nÑ8

∥∥∥∥∥F �
ņ

k�1

fk

∥∥∥∥∥
p

� 0.

Therefore
°n

k�1 fk converges to F in LppX,M, µq.

The family of Lp space can be extended to the case p � 8 as we define below.
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Definition 2.52 (L8 space). Let pX,M, µq be a measure space If f : X Ñ C is a
measurable function, then we define µ-essential supremum (or essential supremum or
L8-norm) of f as

∥f∥8 � ess sup
xPX

|fpxq| � inftt ¥ 0 : µ ptx P X : |fpxq| ¡ tuq � 0u,

with the convention that infH � �8. Equivalently, ∥f∥8 is the smallest t ¥ 0 such that
|fpxq| ¤ t for µ-almost every x P X.

L8 � L8pX,M, µq is then defined as

L8 � trf s|f : X Ñ C is measurable and ∥f∥8   8u,

with the usual convention that rf s denotes the equivalence class of functions that agree
almost everywhere with f .

Exercise 2.53. (a) Show that L8pX,M, µq equipped with the essential supremum norm
∥�∥8 is a normed vector space.

(b) If f P L8pX,M, µq, g P L1pX,M, µq, show that Hölder inequality extends to the case
p � 8 by proving

∥fg∥1 ¤ ∥f∥8 ∥g∥1 .

Similar to the case p P r1,8q, L8 is also a Banach space.

Theorem 2.54. L8pX,M, µq is a Banach space.

Proof. By Exercise 2.53-(a), it suffices to verify the completeness of the normed vector
space pL8pX,M, µq, ∥�∥8q. Let pfnqnPN be a Cauchy sequence in L8. For any k P N there
exists Nk P N such that ∥fm � fn∥8 ¤ k�1 for all n,m ¥ Nk. Hence there exists Ek PM
with µpEkq � 0 such that (why?)

|fmpxq � fnpxq| ¤ k�1, for all x P XzEk, and for all m,n ¥ Nk. (2.12)

We then let E �
�

kPN Ek, so that E P M, µpEq � 0, and for all x P XzE, pfnpxqqnPN is
a Cauchy sequence in C. Therefore fnpxq Ñ fpxq for all x P XzE. By passing to limit
mÑ 8 in (2.12), we obtain

|fpxq � fnpxq| ¤ k�1 for all x P XzE, and all n ¥ Nk. (2.13)

Therefore f P L8pX,M, µq and ∥f � fn∥8 ¤ k�1 for all n ¥ Nk. So f is the limit of
pfnqnPN in L8.

Our next subject is dual of Lp spaces. Let p, q P r1,8s be such that p�1� q�1 � 1 (so
that p � 1 implies q � 8). Note that, we have Hölder’s inequality, ∥fg∥1 ¤ ∥f∥p ∥g∥q for
any f P Lp and g P Lq. This suggest a natural construction of linear functionals in Lp as
follows: for g P Lq, we define ϕg : L

ppX,M, µq Ñ C as

ϕgpfq �

»
X

fg dµ. (2.14)
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Clearly ϕg is linear (over C) and by Hölder inequality (see Theorem 2.49 and Exercise
2.53-(b)), we have

|ϕgpfq| ¤ ∥fg∥1 ¤ ∥g∥q ∥f∥p for all f P Lp.

Therefore ϕg P pL
pq� with the operator norm ∥ϕg∥ satisfying ∥ϕg∥ ¤ ∥g∥q. The upper

bound on the operator norm of ϕg given by Hölder inequality is sharp as we verify in the
proposition below.

Proposition 2.55. (a) If p P p1,8s (so q P r1,8q), then ∥ϕg∥ � ∥g∥q.

(b) If µ is semi-finite and p � 1 (so q � 8), then ∥ϕg∥ � ∥g∥8.

Proof. (a) If g � 0, then ∥ϕg∥ � 0. So we may assume ∥g∥q � 0. It suffices to show
∥ϕg∥ ¥ ∥g∥q. To this end, consider the function

f �

#
|g|q�1sgnpgq, if q P p1,8q,

sgnpgq, if q � 1,

so that

∥f∥p �

$&%
�³

X
|g|pq�1qp dµ

	1{p
�
�³

X
|g|q dµ

�1{p
� ∥g∥q{pq   8, if q P p1,8q,

1, if q � 1.

and

|ϕgpfq| �

#³
X
|g|q�1sgnpgqg dµ � ∥g∥qq , if q P p1,8q,³

X
sgnpgqg dµ � ∥g∥1 , if q � 1.

Therefore
|ϕgpfq| � ∥g∥qq � ∥g∥q ∥g∥

q{p
q � ∥g∥q ∥f∥p .

(b) Again, we may assume ∥g∥8 P p0,8q. It is enough to show that for any ϵ ¡ 0, there
exists f P L1 with ∥f∥1 � 1 such that |ϕgpfq| ¥ ∥g∥8 � ϵ.

To this end, let ϵ ¡ 0. Define A � tx : |gpxq| ¥ ∥g∥8 � ϵu. By definition of essential
supremum, µpAq ¡ 0. By the semifiniteness of the measure µ, there exists B P M
such that B � A and µpBq P p0,8q. Set

f �
1

µpBq
χB

g

|g|
,

so that ∥f∥1 � 1 and

|ϕgpfq| � ϕgpfq �
1

µpBq

»
B

|g| dµ ¥ 1

µpBq

»
B

p∥g∥8 � ϵq dµ � p∥g∥8 � ϵq.
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The following lemma shows that every function in Lp can be approximated by simple
functions if p P r1,8q.

Lemma 2.56. Let pX,M, µq be a measure space and let 1 ¤ p ¤ 8.

(a) If p P r1,8q, then the set of simple functions g of the form g �
°n

i�1 aiχEi
, where

n P N, ai P C, Ei PM and µpEiq   8 for all i � 1, . . . , n is dense in Lp.

(b) Simple functions are dense in L8.

(c) Let 1 ¤ p   8 (so p � 8). Let pEjqjPN be a sequence of pairwise disjoint, measurable
sets such that E �

�
jPN Ej satisfies µpEq   8. Then

lim
nÑ8

∥∥∥∥∥χE �
ņ

j�1

χEj

∥∥∥∥∥
p

� 0.

Proof. (a) Let f P Lp. Then by approximation using simple functions (see Theorem 5.1),
there exists a sequence of measurable simple functions pfnqnPN such that 0 ¤ |fn| ¤ f
for all n P N and such that fnpxq Ñ fpxq for all x P X. Note that, for all n P N

|fn � f |p ¤ p|fn|� |f |qp ¤ 2p|f |p P L1.

So by dominated convergence theorem,

lim
nÑ8

»
X

|fn � f |p dµ �
»
X

lim
nÑ8

|fn � f |p dµ � 0.

Since f P Lp is arbitrary, simple functions of the are dense in Lp. Note that each
simple function fn above can be written in the desired form since fn P Lp.

(b) Let f P L8. Then there exists (see Theorem 5.1) a sequence of measurable simple
functions pfnqnPN such that 0 ¤ |fn| ¤ f for all n P N such that fn converges uniformly
to f in the set tx P X : |fpxq| ¤ ∥f∥8u. Therefore fn Ñ f in L8.

(c) Note that ∥∥∥∥∥χE �
ņ

j�1

χEj

∥∥∥∥∥
p

p

�

∥∥∥∥∥ 8̧

j�n�1

χEj

∥∥∥∥∥
p

p

� µ

�
8¤

j�n�1

Ej

�
nÑ8
ÝÝÝÑ 0.

We saw in Proposition 2.55, that functions in Lq can be used to construct operators
in the dual space pLpq�. We show that in many cases, every operator in the dual space is
of the form described in Proposition 2.55.

Theorem 2.57. Let µ a σ-finite measure on a measurable space pX,Mq and 1 ¤ p   8.
Let q P p1,8s be defined by q�1 � p�1 � 1. Then if ϕ P pLpq�, then there exists g P Lq

such that ϕpfq � ϕgpfq for all f P Lp, where ϕg is as defined in (2.14). Furthermore,
∥ϕg∥ � ∥ϕ∥ � ∥g∥q. In other words, pLpq� is isometrically isomorphic to Lq.
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Proof. We first consider the case µpXq   8. Let ϕ P pLpq�. For E PM, define

νpEq � ϕpχEq.

Note that χE P Lp since µ is a finite measure.

Let us prove that ν is a complex measure (see Defintion 5.5). By Lemma 2.56-(c) and
the continuity of ϕ : Lp Ñ C, we have the following: for any sequence pEjqjPN of pairwise
disjoint, measurable sets such that E �

�
jPNEj, we have

8̧

i�1

νpEiq � lim
nÑ8

ņ

i�1

ϕpχEi
q � lim

nÑ8
ϕ

�
ņ

i�1

χEi

�
� ϕpχEq � νpEq. (2.15)

In order to conclude that ν is a complex measure, we need to verify that
°8

i�1 |νpEiq|   8.
To this end, let ai P C be such that |ai| � 1, aiνpEiq � |νpEiq| for all i P N. Therefore,

8̧

i�1

|νpEiq| � lim
nÑ8

ņ

i�1

aiνpEiq � lim
nÑ8

ņ

i�1

ϕpaiχEi
q.

By the same argument as in the proof of Lemma 2.56,
°n

i�1 aiχEi
converges in Lp to

h :�
°8

i�1 aiχEi
and ∥h∥p � µpEq1{p. Hence by the continuity of ϕ, we have

8̧

i�1

|νpEiq| � ϕphq ¤ ∥ϕ∥ ∥h∥p ¤ ∥ϕ∥µpEq1{p   8,

where ∥ϕ∥ P r0,8q is the operator norm of ϕ. This along with (2.15) concludes the proof
that ν is a complex measure.

Note that by the boundedness of ϕ, we have

|νpEq| ¤ ∥ϕ∥ ∥χE∥p � ∥ϕ∥µpEq1{p, for any E PM.

Therefore ν ! µ. By the Radon-Nikodym theorem (see Theorem 5.6), there exists an
integrable function g such that

ϕpχEq � νpEq �

»
E

g dµ �

»
X

χEg dµ, for all E PM. (2.16)

By the linearity of ϕ and (2.16), we have

ϕpfq �

»
X

fg dµ, (2.17)

for all simple functions f .

Next, we show that g P Lq. By approximation by simple functions (Theorem 5.1),
there exists a sequence of simple functions pgnqnPN such that gnpxq Ñ gpxq for all x P X
and |gn| Ò |g|. If g � 0 almost everywhere, there is nothing to show. So, by passing to a
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subsequence if necessary, we may assume that gn is not identically zero for all n P N. Let
us first consider the case q P p1,8q. Thus, for any n P N, the function

fn �
|gn|q�1sgnpgq

∥gn∥q�1
q

satisfies »
X

|fn|p dµ � ∥gn∥pp1�qq
q

»
X

|gn|ppq�1q dµ � ∥gn∥�q
q

»
X

|gn|q dµ � 1

and »
X

|fngn| dµ � ∥gn∥1�q
q

»
X

|gn|q dµ � ∥gn∥q .

By Fatou’s lemma, we have

∥g∥q � lim inf
nÑ8

∥gn∥q � lim inf
nÑ8

»
X

|fngn| dµ

¤ lim inf
nÑ8

»
X

|fng| dµ (since |gn| ¤ |g| for all n)

� lim inf
nÑ8

»
X

fng dµ (since |fng| � fng)

� lim inf
nÑ8

ϕpfnq, (by (2.17))

¤ ∥ϕ∥ (since ∥fn∥p � 1 for all n)

This concludes the proof of that g P Lq.

Next, we consider the case q � 8. We claim that ∥g∥8 ¤ ∥ϕ∥ in this case as well.
Suppose to the contrary, there exists ϵ ¡ 0 such that

A :� tx P X : |gpxq| ¥ ∥ϕ∥� ϵu,

satisfies µpAq ¡ 0. Then
f :� µpAq�1sgnpgqχA

satisfies ∥f∥p � ∥f∥1 � 1 and

ϕpfq
(2.17)
�

»
X

fg dµ � µpAq�1

»
A

|g| dµ ¥ µpAq�1

»
A

p∥ϕ∥� ϵq dµ � ∥ϕ∥� ϵ,

which contradicts the inequality, |ϕpfq| ¤ ∥ϕ∥ ∥f∥p � ∥ϕ∥. Therefore, we have

∥g∥q ¤ ∥ϕ∥ , for all q P p1,8s. (2.18)

Since ϕ and ϕg agree on a dense set of Lp(due to (2.17) and Lemma 2.56-(a)), ϕpfq �
ϕgpfq for all f P Lp due to the continuity of ϕ and ϕg (ϕg is continuous due to Proposition
2.55).

Next, let us consider the case that µ is σ-finite. There exists an increasing sequence
of measurable sets pEnqnPN such that µpEnq P p0,8q for all n P N and X �

�8
n�1En. For

51



each n P N, LppEnq can be viewed as a subset of LppXq consisting of functions that vanish
µ-almost everywhere on XzEn. By the previous case of finite measure, we have that for
each n P N, there exists gn P LqpEnq such that

ϕpfq �

»
X

fgn dµ, for all f P LppEnq. (2.19)

Therefore for any n ¤ m, we have

gn � gm µ-almost everywhere on En. (2.20)

By (2.20), where exists a measurable function g : X Ñ C such that for all n P N, we have

g � gn µ-almost everywhere on En. (2.21)

By monotone convergence theorem and (2.18),

∥g∥q � lim
nÑ8

∥gn∥q ¤ lim
nÑ8

∥∥∥ϕ��
LppEnq

∥∥∥ (2.6)

¤ ∥ϕ∥ ,

where ϕ
��
LppEnq

denotes the restriction of ϕ to LppEnq. Moreover by the dominated con-

vergence theorem, for any f P Lp, we have limnÑ8 ∥fχEn � f∥p � 0 and hence by the
continuity of ϕ, we have

ϕpfq � lim
nÑ8

ϕpfχEnq � lim
nÑ8

»
X

fgnχEn dµ
(2.21)
� lim

nÑ8

»
X

fgχEn dµ �

»
X

fg dµ,

where the last equality above follows from dominated convergence theorem, since |fg| is
integrable due to Hölder inequality.

The equality ∥ϕ∥ � ∥g∥q also follows from Proposition 2.55.

Exercise 2.58. Explain why (2.20) follows from (2.19) in the above proof. Likewise,
explain why g in the statement of Theorem 2.57 is uniquely determined (up to µ-almost
everywhere equivalence).

2.5 Baire category theorem and applications

Recall from Definition 1.6 that A � X is dense (respectively, nowhere dense) if A � X
(resp., pAq� � H).

Theorem 2.59 (Baire category theorem). Let pX, dq be a complete metric space.

(1) If pUnqnPN is a sequence of open dense sets, then
�8

i�1 Ui is dense in X.

(2) If pEnqnPN is a sequence of nowhere dense sets, then
�8

i�1Ei � X.
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Proof. It suffices to show (1) and (2) is an easy consequence of (1). If pEnqnPN satisfies the

hypotheses of (2), then Un � pEnq
c is Un is open and dense, since Un � pEnqc � pEn

�
qc �

X (due to Lemma 1.8-(5)). So (2) follows from (1).

Let W be a non-empty open subset of X. It suffices to show that W X
�8

i�1 Ui � H.

Since W is open and non-empty, pick x0 P W, r0 P p0, 1q such that Bpx0, r0q � W . Since
Bpx0, r0q X U1 is open and U1 is dense, there exists x1 P Bpx0, r0q X U1 and 0   r1   2�1

such that Bpx1, r1q � Bpx0, r0q X U1. By induction, for all n P Z�, there exist xn P X, 0  
rn   2�n such that

Bpxn�1, rn�1q � Bpxn, rnq X Un�1.

Therefore pxnq is a Cauchy sequence in X and therefore converges to x P X. Note that
x P Bpxn, rnq � W X Un for all n P N and therefore x P W X

�8
i�1 Ui.

Exercise 2.60. Let pX, ∥�∥q be a normed vector space over K. Recall that an algebraic
basis of X is a subset peiqiPI such that every x P X can be written uniquely as finite linear
combination of elements of peiqiPI ; that is,

x �
¸
iPJ

xiei, with J � I, J finite, xi P K for all i P J .

The cardinality of a algebraic basis is called the dimension of the normed vector space.

(i) Prove using Zorn’s lemma that there exists an algebraic basis peiqiPI of X such that
∥ei∥ � 1 for all i P I.

(ii) If X is infinite dimensional, show that there is a linear functional f : X Ñ K that
is not continuous. (Hint: Use Proposition 2.13)

(iii) If X is an infinite dimensional Banach space, show that I is not countably infinite.
(Hint: Use Baire category theorem = Theorem 2.59).

The following remarkable result improves pointwise estimates to global (or uniform)
estimates.

Theorem 2.61 (Uniform boundedness principles or Banach–Steinhaus theorem). Let
X, Y be Banach spaces and let pTiqiPI be a family (not necessarily countable) such that
Ti P LpX, Y q for all i P I. Suppose that

sup
iPI

∥Tipxq∥Y   8, for all x P X.

Then
sup
iPI

∥Ti∥   8.

Proof. Let Xn � tx P X : supiPI ∥Tipxq∥Y ¤ nu for all n P N. Note that Xn is closed
(why?) and by our assumption, we have

8¤
n�1

Xn � X.
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By Baire category theorem (Theorem 2.59-(2)), we have X�
m � H for some m P N.

Therefore, there exist x0 P Xm and r ¡ 0 such that for all z P X with ∥z∥X   1, we have
x0 � rz P X�

m. Hence

∥Tipx0 � rzq∥Y ¤ m, for all i P I and z P X with ∥z∥X   1.

Therefore
r ∥Ti∥ ¤ m� ∥Tipx0q∥Y , for all i P I.

and hence supiPI ∥Ti∥ ¤ 2m
r
  8.

The following two exercises are applications of the uniform boundedness principle.

Exercise 2.62. Let X, Y be Banach spaces and let pTnqnPN be a sequence of bounded
linear operators in LpX, Y q such that for each x P X, the sequence pTnpxqqnPN converges
to a limit, say T pxq P Y . Show that

(a) supnPN ∥Tn∥   8.

(b) T P LpX, Y q.

(c) ∥T∥ ¤ lim infnÑ8 ∥Tn∥.

Exercise 2.63. Let X be a Banach space over K and let B � X. Show that the following
are equivalent:

(a) B is bounded in X (that is, there exists R ¡ 0 such that ∥x∥ ¤ R for all x P B).

(b) For any T P X�, the set tT pxq : x P Bu is bounded (in K).

For a normed space pX, ∥�∥q, we denote by Bpx, rq (or BXpx, rq), the open ball of
radius r centered at x; that is,

Bpx, rq � BXpx, rq � ty P X : ∥y � x∥   ru.

For A,B � X and λ P K, we use the notation

A�B � ta� b : a P A, b P Bu, λA � tλa : a P Au.

If A � tau, then A�B is also denoted as a�B or B � a.

Exercise 2.64. Let X be a normed vector space and let A,B � X.

(a) If either A or B is open, then A�B is open.

(b) If A is closed and B is compact, then A�B is closed.

Our next results are the open mapping principle and closed graph theorem.
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Theorem 2.65 (Open mapping principle). Let X, Y be Banach space and let T P LpX, Y q
be surjective. Then there exists c ¡ 0 such that

T pBXp0, 1qq � BY p0, cq.

Remark 2.66. The above theorem implies that image of open sets under T are open
sets (such a map is called open map). To see this, let U be open and let y0 P T pUq. It
suffices to show that y0 P pT pUqq

�. Let x0 P U be such that T px0q � y0. Since U is
open, there exists r ¡ 0 such that BXpx0, rq � U . Therefore T pUq � T pBXpx0, rqq �
T px0 �BXp0, rqq � T px0q � rT pBXp0, 1qq � y0 � rBY p0, cq � BY py0, crq.

Proof of Theorem 2.65. Let T P LpX, Y q be surjective. We split the proof into two steps.
Step 1: There exists c ¡ 0 such that T pBXp0, 1qq � BY p0, 2cq.
First, we prove the above claim. Set Yn :� nT pBXp0, 1qq. Since T is surjective, we have�8

n�1 Yn � Y . Therefore by Baire category theorem (Theorem 2.59-(2)), there exists

m P N such that Y �
m � H. So there exists y0 P

�
T pBXp0, 1qq

	�
and hence there exists

c ¡ 0 such that
BY py0, 4cq � T pBXp0, 1qq.

By symmetry �y0 P T pBXp0, 1qq, and hence

BY p0, 4cq � �y0 �BY py0, 4cq � T pBXp0, 1qq � T pBXp0, 1qq.

Since T pBXp0, 1qq is convex, we have T pBXp0, 1qq � T pBXp0, 1qq � 2T pBXp0, 1qq, and
hence

BY p0, 2cq � T pBXp0, 1qq. (2.22)

Step 2: If c ¡ 0 is as given in (2.22), then T pBXp0, 1qq � BY p0, cq.
Let y P Y with ∥y∥Y   c. We need to show that there exists x P X such that ∥x∥X   1
and T pxq � y. By (2.22), we have

for any ϵ ¡ 0, there exists z P X with ∥z∥X   1
2
and ∥y � T pzq∥Y   ϵ. (2.23)

Choose ϵ � c{2 in (2.23), there exists z1 P X with

∥z1∥X  
1

2
, and ∥y � T pz1q∥  

c

2
.

Repeating the same argument with y replaced by y�T pz1q and with ϵ � c{4, there exists
z2 P X such that

∥z2∥X  
1

4
, and ∥y � T pz1q � T pz2q∥  

c

4
.

By induction, we obtain a sequence pznqnPN in X such that

∥zn∥X  
1

2n
, and ∥y � T pz1 � z2 � . . .� znq∥  

c

2n
, for all n P N.

It follows that xn �
°n

i�1 zi is a Cauchy sequence in X with xn Ñ x for some x P BXp0, 1q
with T pxq � y.
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Corollary 2.67. Let X, Y be Banach spaces and let T P LpX, Y q be a bijection. Then T
is an isomorphism; that is, T�1 P LpY,Xq.

Proof. If T is bijective, continuity of T�1 is equivalent to the property that T pUq is open
in Y whenever U is open in X. This follows from the open mapping theorem (Theorem
2.65) as explained in Remark 2.66.

Definition 2.68. Let T : X Ñ Y be a linear map between normed vector spaces X and
Y . We define the graph of T to be

ΓpT q � tpx, yq P X � Y : y � T pxqu,

which is a subspace of X � Y . We say that a linear map T : X Ñ Y is a closed
linear map, if ΓpT q is closed in X � Y , where X � Y is equipped with the product norm
∥px, yq∥X�Y � maxp∥x∥X , ∥y∥Y q.

We always endow X � Y with the product norm ∥px, yq∥X�Y � maxp∥x∥X , ∥y∥Y q
which induces the product topology (see Exercise 2.9(a)). If T is continuous, then the
graph ΓpT q is a closed subspace of X � Y endowed with the product norm (Can you see
why? If not, review Proposition 1.26). The converse is also true and this is called the
closed graph theorem.

Theorem 2.69. Let X and Y be Banach spaces and let T : X Ñ Y be a closed linear
map. Then T is bounded.

Proof. Let π1 : ΓpT q Ñ X, π2 : ΓpT q Ñ Y be the projections to X and Y re-
spectively; that is, π1px, Txq � x, π2px, Txq � Tx for all px, Txq P ΓpT q. Note that
π1 P LpΓpT q, Xq, π2 P LpΓpT q, Y q, since ∥x∥X ¤ ∥px, Txq∥X�Y , ∥Tx∥Y ¤ ∥px, Txq∥X�Y

for all px, Txq P ΓpT q. Since ΓpT q is a closed subset of a Banach space, it is a Banach
space (see Exercise 2.9(d)) π1 is a bijection, π�1

1 : X Ñ ΓpT q is bounded by Corollary
2.67. Therefore by Lemma 2.18, T � π2 � π

�1
1 : X Ñ Y is bounded.

2.6 Weak and weak* topologies

So far the only topology on a normed vector space X is the topology induced by the
norm. We introduce another important topology on X called the weak topology (recall
Definition 1.41).

Definition 2.70. Let pX, ∥�∥q be a normed vector space over K and let X� denote the
dual space. Then the weak topology T pX,X�q is the coarsest topology on X such that
the collections of functions tf : X Ñ K|f P X�u are continuous; that is, T pX,X�q is the
weak topology on X generated by tf : f P X�u.

Remark 2.71. There are two properties of a topological space pX, T q that are desirable:

(i) Lots of continuous functions f : X Ñ Y .
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(ii) Lots of compact sets.

However, these is a conflict between these two properties as finer topologies has fewer
compact sets and coarser topologies have fewer continuous functions2. The weak topology
can be viewed as an attempt to reconcile the two conflicting desires by prescribing the
coarsest topology with a such that a given family of functions is continuous.

By Proposition 2.13, the weak topology T pX,X�q is coarser than the topology induced
by the norm. As a result, the weak topology has more compact sets. Since compactness
plays an important role in existence of limits (for example, in minimization problems)
such topologies are useful.

Let X be a normed vector space and let X� denotes its dual space. So far, we have
seen two topologies on X�:

(i) the norm topology induced by the operator norm on X�.

(ii) the weak topology T pX�, X��q on X� as given in Definition 2.70.

Now we are going to define a third topology on X� called the weak* topology (read as
‘weak star’). Recall from Definition 2.31 and Corollary 2.30-(ii) that there is a natural
isometric linear map from X to X��, where the map J : X Ñ X�� is defined by

pJpxqqpfq � fpxq, for all f P X� and all x P X.

Definition 2.72. Let pX, ∥�∥q be a normed vector space over K and let X� denote the
dual space. Then the weak* topology T pX�, Xq is the coarsest topology on X� such that
the collections of functions tJpxq : X� Ñ K|x P Xu are continuous; that is, T pX�, Xq is
the weak topology on X generated by tJpxq : x P Xu.

Note that if X is reflexive (that is, JpXq � X��), then the weak and weak* topologies
on X� coincide. In general, the weak* topology on X� is coarser than weak topology on
X� which in turn is coarser than the topology induced by the operator norm on X�.

Proposition 2.73. Let X be a normed vector space over K and let T pX,X�q denote the
weak topology on X.

(i) The weak topology on X is Hausdorff.

(ii) Let x0 P X. Then sets of the form

V pf1, . . . , fn; ϵq :� tx P X : |fipxq � fipx0q|   ϵ for all i � 1, . . . , nu

obtained by varying ϵ P p0,8q, n P N and f1, . . . , fn P X� form a neighborhood base
of x0 for the weak topology.

2For example, every function from a space equipped with discrete topology is continuous but the only
compact subsets are finite sets. On the other extreme, every subset of the trivial topology is compact
but the only continuous functions are constants.
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Proof. (i) Let x1, x2 P X be distinct. By Hahn-Banach theorem (Corollary 2.30), there
exists f P X� such that fpx1q � fpx2q. Since K is Hausdorff, there exist dis-
joint open sets U1, U2 in K such that fpx1q P U1 and fpx2q P U2. Hence f�1pU1q
and f�1pU2q are disjoint open neighborhoods of x1 and x2 respectively in the weak
topology T pX,X�q.

(ii) Clearly x0 P V pf1, . . . , fn; ϵq. Also V pf1, . . . , fn; ϵq is open in weak topology since

V pf1, . . . , fn; ϵq �
n£

i�1

f�1
i pUiq, where Ui � ta P K : |a� fipx0q|   ϵu,

and each Ui is open in K.

Now let U be any open set containing x0 in the weak topology. Then by the base
of weak topology described after Definition 1.41, there exist f1, f2, . . . , fn P X� and
open sets V1, . . . , Vn in K such that fipx0q P Vi for each i � 1, . . . , n and

n£
i�1

f�1
i pViq � U.

Since each Vi is open, there exists ϵ ¡ 0 such that ta P K : |a� fipx0q|   ϵu � Vi for
each i � 1, . . . , n. Hence V pf1, . . . , fn; ϵq � U which concludes the proof that sets of
the form V pf1, . . . , fn; ϵq form a base of weak topology by varying ϵ P p0,8q, n P N
and f1, . . . , fn P X�.

Proposition 2.74. Let X be a normed vector space over K. Let pxnqnPN be a sequence
in X.

(i) xn Ñ x in the weak topology if and only if fpxnq Ñ fpxq for all f P X�.

(ii) xn Ñ x in the norm topology implies that xn Ñ x in the weak topology.

(iii) If xn Ñ x in the weak topology, then p∥xn∥qnPN is bounded and ∥x∥ ¤ lim infnÑ8 ∥xn∥.

Proof. (i) This is a special case of Exercise 1.60.

(ii) This follows from (i), Proposition 1.59, and the fact that every f P X� is continuous
in the norm topology of X.

(iii) Consider the sequence of evaluation maps Exn P X�� defined in Corollary 2.30-(ii).
Since for any f P X�, we have

lim
nÑ8

Exnpfq � lim
nÑ8

fpxnq � fpxq,

by the uniform boundedness principle (Theorem 2.61) and Corollary 2.30-(ii),

sup
nPN

∥Exn∥ � sup
nPN

∥xn∥   8.
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Since |fpxnq| ¤ ∥f∥ ∥xn∥ for any f P X�, we have

|fpxq| � lim
nÑ8

|fpxnq| ¤ ∥f∥ lim inf
nÑ8

∥xn∥ , for all f P X�.

Therefore, the desired result follows from Corollary 2.30-(i).

Similar results with almost the same proofs also hold for weak* topology and is left
as an exercise.

Exercise 2.75. Formulate and prove versions of Propositions 2.73 and 2.74 for the weak*
topology on the dual space X� of a normed vector space X.

Recall that the compactness of closed unit ball in the norm topology is a characteriza-
tion of finite dimensional normed vector spaces (see Theorem 2.22). On the other hand,
closed unit ball is compact in the weak* topology even on infinite dimensional spaces. The
proof involves relating the weak* topology with product topology and using Tychonoff’s
theorem.

Theorem 2.76 (Banach-Alaoglu theorem). Let X be a normed vector space over K and
let X� denote the dual space of X. Let BX�p0, 1q denote the closed unit ball in X�. Then
BX�p0, 1q is compact with respect to the subspace topology of the weak* topology on X�.

Proof. Let X� denote the dual space of X equipped with the weak* topology T pX�, Xq.
Let Y �

±
xPX K � KX denote the space of all functions from X to K equipped with

the standard product topology. Let πx : Y Ñ K, x P X, denote the cannonical projection
maps. Let Φ : X� Ñ Y denote the cannonical injective map such that Φpfq � pfpxqqxPX
for all f P X�. By Exercise 1.43, the map Φ is continuous since πx � Φ : X� Ñ K is the
map f ÞÑ fpxq which in turn is continuous by the definition of weak* topology.

Let us verify that the inverse map Φ�1 : ΦpX�q Ñ X� is also continuous if ΦpX�q is
equipped with the subspace topology inherited from Y . Again by Exercise 1.43, the map
Φ�1 : ΦpX�q Ñ X� is continuous since Jpxq �Φ�1 � πx

��
ΦpX�q

: ΦpX�q Ñ K for all x P X,

which is continuous by the definition of subspace and product topologies. Therefore,
Φ : X� Ñ ΦpX�q is a homeomorphism.

Let BKp0, rq � ta P K : |a| ¤ ru denote the closed ball of radius r centered at 0 in K.
Note that

ΦpBX�p0, 1qq �

�£
xPX

tω P Y : πxpωq P BKp0, ∥x∥qu

�
X

� £
x,yPX,a,bPK

tω P Y : aπxpωq � bπypωq � πax�bypωqu

�

Note that
��

xPXtω P Y : πxpωq P BKp0, ∥x∥qu
�
is compact, since it is the product of com-

pact sets
±

xPX BKp0, ∥x∥q by Tychnoff’s theorem (see Theorem 1.80 and Exercise 1.47).
For each x, y P X and a, b P K, the function ω ÞÑ πax�bypωq � aπxpωq � bπypωq is a
continuous function on Y and hence£

x,yPX,a,bPK

tω P Y : aπxpωq � bπypωq � πax�bypωqu
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is a closed subset of Y . Since the closed subset of a compact space is compact (by
Proposition 1.62), we have that ΦpBX�p0, 1qq is a compact subset of Y and hence ΦpX�q.
Since Φ : X� Ñ ΦpX�q is a homeomorphism, this implies the desired conclusion.

2.7 Metrizability of weak topology

Definition 2.77. We say that a topology T on a set X is metrizable, if there is a metric
d : X �X Ñ r0,8q on X such that the topology induced by the metric coincides with T .

By definition, the norm topology on a normed vector space is metrizable. The following
theorem clarifies when the weak topology is metrizable.

Theorem 2.78. Let X be a normed vector space over K. Then the following are equiv-
alent:

(a) The weak topology T pX,X�q on X is metrizable.

(b) X is a finite dimensional space.

The proof of Theorem 2.78 requires some preliminary results. First, we show that
finite dimensional normed vector spaces have metrizable weak topology by showing that
weak and norm topologies are the same.

Proposition 2.79. Let X be a finite dimensional normed vector space over K. Then
the weak topology T pX,X�q is same as the norm topology on X. In particular, the weak
topology is metrizable.

Proof. Let peiq1¤i¤n be a basis of X such that ∥ei∥ � 1 for all i � 1, . . . , n. Let pfiq1¤i¤n

be the basis of X� as defined in Exercise 2.25, so that x �
°n

j�1 fjpxqej for all x P X.

Since weak topology is coarser than the norm topology it suffices to show that every
open set in norm topology is open in the weak topology. So it suffices to show that for
any x0 P X, r ¡ 0, the open ball Bpx0, rq � tx P X : ∥x� x0∥   ru is a neighborhood of
x0 in the weak topology. To this end, note that if

y P V pf1, . . . , fn; ϵq :� tx P X : |fipxq � fipx0q|   ϵ for all i � 1, . . . , nu,

then by the triangle inequality

∥y � x0∥ �

∥∥∥∥∥ ņ

i�1

pfipyq � fipy0qqei

∥∥∥∥∥ ¤ ņ

i�1

|fipyq � fipy0q|   nϵ.

So
V pf1, . . . , fn; r{nq � Bpx0, rq

for any x0 P X, r ¡ 0, which concludes the proof by Proposition 2.73-(ii).
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If X is a normed vector space over C, it can also be viewed as a normed vector space
over R. Then it has two dual spaces from these two different viewpoints, say X�

R and X�
C.

So there are two weak topologies on X that arise T pX,X�
Rq and T pX,X�

Cq by viewing X
as a vector space over R and C respectively. We claim that these two weak topologies are
the same. To see this, recall relationship between X�

R and X�
C in Proposition 2.24

X�
R � tRepfq|f P X�

Cu, X�
C � tF : X Ñ C|F pxq � upxq�iupixq for all x P X, where u P X�

Ru.

Let f P X�
C. Then Repfq, Impfq P X�

R. This shows that T pX,X�
Rq � T pX,X�

Cq as every
f P X�

C is continuous with respect to T pX,X�
Rq as both real and imaginary parts are

continuous. Conversely, if u P X�
R, there exists f P X�

C such that u � Repfq. So u is
continuous with respect to T pX,X�

Cq and hence T pX,X�
Rq � T pX,X�

Cq. This concludes
the proof that T pX,X�

Rq � T pX,X�
Cq.

So for the purposes of proving Theorem 2.78, we may assume without any loss of
generality that X is a vector space over R for the remainder of §2.7.

Let us recall the definition of the notion of kernel and range of a linear operator.

Definition 2.80. Let T P LpX, Y q. Then the kernel (or nullspace) of T denoted by N pT q
is defined as

N pT q � tx P X : T pxq � 0u.

The range of T denoted by RpT q is defined as

RpT q � tT pxq : x P Xu.

Note that N pT q and RpT q are subspaces of X and Y respectively and N pT q is closed
in X (check these elementary facts). The following algebraic lemma is a consequence of
Hahn-Banach separation theorem.

Lemma 2.81. Let X be a normed vector space over R and let ϕ1, ϕ2, . . . , ϕn P X� be
linear functionals. Let ϕ : X Ñ R be a linear functional such that

n£
i�1

N pϕiq � N pϕq. (2.24)

Then there exists λ1, . . . , λn P R such that

ϕpxq �
ņ

i�1

λiϕipxq, for all x P X.

Proof. Define T : X Ñ Rn�1, where

T pxq � pϕpxq, ϕ1pxq, . . . , ϕnpxqq, for all x P X,

where Rn�1 is a normed linear space equipped with the norm given in Exercise 2.20. Then
by (2.24), the point y0 � p1, 0, . . . , 0q does not belong to the range RpT q of T .
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By Hahn-Banach separation theorem (Theorem 2.38-(2)), there exists G P pRn�1q�

and α P R such that
Gpy0q   α   GpT pxqq, for all x P X.

By Exercise 2.25, there exists λ, λ1, . . . , λn P R such that Gppz0, z1, . . . , znqq � λz0 �°n
i�1 λizi for all pz0, z1, . . . , znq P Rn�1. Therefore

λ   α   λϕpxq �
ņ

i�1

λiϕipxq, for all x P X. (2.25)

Substituting x � 0 in the above gives λ   α   0. If λϕpxq �
°n

i�1 λiϕipxq � 0 for some
x P X, then replacing x with tx in (2.25) leads to a contradiction as either t Ñ 8 or
tÑ �8. Hence λ � 0 and λϕpxq �

°n
i�1 λiϕipxq � 0 for all x P X.

Proposition 2.82. Let X be a normed vector space over R such that the weak topology
is metrizable, then X is finite dimensional.

Proof. As the proof is long, we break it into three steps:

1. X� admits a basis that is either finite or countably infinite.

2. X� is finite dimensional.

3. X is finite dimensional.

Step 1 : Let d : X � X Ñ r0,8q be a metric on X such that the metric space pX, dq
induces the weak topology T pX,X�q. Recall from Example 1.18-(ii) that

tBk : k P Nu, where Bk � tx : dpx, 0q   k�1u

is a neighborhood base of 0 in the weak topology. By Proposition 2.73-(ii), for all k P N
there exists a finite set Fk � X� and ϵk P p0,8q such that

tx P X : |fpxq|   ϵk for all f P Fku � Bk. (2.26)

Let F �
�8

k�1 Fk. Since each Fk is finite, F is either finite or countably infinite. We
claim that spanpF q � X�; that is, every g P X� is a finite linear combination of elements
of F . Let g P X� be arbitrary. Since tx P X : |gpxq|   1u is a neighborhood of zero (by
Proposition 2.73-(ii)), and tBk : k P Nu is a neighborhood base, by (2.26), there exists
m P N such that

tx P X : |fpxq|   ϵm for all f P Fmu � Bm � tx P X : |gpxq|   1u.

So if x P
�

fPFm
N pfq, then � |t||gpxq| � |gptxq|   1 for all t P R, which in turn implies

gpxq � 0. Therefore £
fPFm

N pfq � N pgq.
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By Lemma 2.81, g P spanpFmq � spanpF q and hence

X� � spanpF q.

Since F is either finite or countably infinite, by choosing a maximal (by inclusion) linearly
independent subset of F using Zorn’s lemma, we obtain a basis that is either finite or
countably infinite.
Step 2 : From step 1, we need to rule out the possibility that X� has a countably infinite
basis. This is an easy consequence of Exercise 2.60-(iii) and the fact that X� is a Banach
space (by Proposition 2.16). Therefore X� is finite dimensional space.
Step 3 : By step 2 and Exercise 2.25-(iii), X�� is finite dimensional. Since there is a
one-to-one linear map J : X Ñ X�� (by Corollary 2.30-(ii)), we conclude that X is finite
dimensional.

We are now ready to prove Theorem 2.78.

Proof of Theorem 2.78. (b) ùñ (a) follows from Proposition 2.79.
(a) ùñ (b) follows from Proposition 2.82 and the discussion after Proposition 2.79 which
reduces the analysis to the case K � R.

A slight modification of the proof of Theorem 2.78 also shows a similar result for weak*
topologies as stated in the exercise below.

Exercise 2.83. Let X be a normed vector space over K. Then the following are equiva-
lent:

(a) The weak* topology T pX�, Xq on X� is metrizable.

(b) X is a finite dimensional space.

Hint: Imitate the proof of Theorem 2.78. It might help to solve Exercise 2.75 first.

3 Hilbert spaces

Hilbert spaces can be viewed as generalizations of Banach space where the norm is replaced
with an inner product. The notion of inner product can be viewed as a refined version of
norm.

Definition 3.1 (inner product). Let H be a vector space over C. An inner product on
H is a function x�, �y : H �H Ñ C such that:

(i) For any x, y, z P H and a, b P C, we have

xax� by, zy � axx, zy � bxy, zy.

(ii) For any x, y P H,
xy, xy � xx, yy.
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(iii) xx, xy P r0,8q for all x P H and xx, xy � 0 if and only if x � 0.

A complex vector space H equipped with an inner product is called a pre-Hilbert space.
If H is a pre-Hilbert space with inner product x�, �y, we define

∥x∥ :�
a
xx, xy, for all x P H. (3.1)

Remark 3.2. Note that properties (i) and (ii) in Definition 3.1 implies that, for all
x, y, z P H and a, b P C, we have

xx, ay � bzy � axx, yy � bxx, zy.

The notation in (3.1) suggests that every inner product defines a norm. In order
to verify the triangle inequality for the ‘norm’ defined in (3.1), we need the Schwarz
inequality.

Theorem 3.3 (Schwarz inequality). Let H be a pre-Hilbert space with inner product x�, �y.
Then for all x, y P H, we have

|xx, yy| ¤ ∥x∥ ∥y∥ ,
with equality if and only if x and y are linearly dependent.

Proof. If xx, yy � 0, then the result holds trivially.

So we may assume that xx, yy � 0 (and hence ∥x∥ � 0, ∥y∥ � 0; why?) Let α �
sgnpxy, xyq, so that if z � αy, we have xx, zy � xαy, xy � αxx, yy � sgnpx, yqxx, yy �
|xx, yy|. For any t P R, we have

0 ¤ xx� tz, x� tzy � xz, zyt2 � 2|xx, yy|t� xx, xy.

Since the quadratic function t ÞÑ xz, zyt2�2|xx, yy|t�xx, xy is non-negative and it achieves
its minimum at t0 � ∥y∥�2 |xx, yy| and hence

0 ¤ xx� t0z, x� t0zy � ∥x∥2 � ∥y∥�2 |xx, zy|2.

Note that this implies the desired inequality, with equality if and only if (by Definition
3.1-(iii))

x � t0z � t0αy

which happens if and only if x and y are linearly independent.

Proposition 3.4. The function x ÞÑ ∥x∥ defined in (3.1) is a norm on H.

Proof. Note that ∥x∥ ¥ 0 with equality if and only if x � 0 (by Definition 3.1-(iii)). By
Definition 3.1-(i),(ii), we have ∥λx∥ � |λ| ∥x∥ for all x P H, λ P C. It remains to verify
the triangle inequality. To this end, note that

∥x� y∥2 � xx� y, x� yy � ∥x∥2 � ∥y∥2 � 2Rexx, yy. (3.2)

Therefore by Theorem 3.3, for all x, y P H, we have

∥x� y∥2 � ∥x∥2 � ∥y∥2 � 2Rexx, yy ¤ ∥x∥2 � ∥y∥2 � 2|xx, yy|
¤ ∥x∥2 � ∥y∥2 � 2 ∥x∥ ∥y∥ � p∥x∥� ∥y∥q2 .
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Given the norm induced by the inner product one can recover the inner product using
the following formula (called the polarization identity).

Exercise 3.5. Let H be an inner product space equipped with inner product x�, �y and
the norm given by (3.1). Then we have

xx, yy �
1

4

3̧

k�0

�
ik
∥∥x� iky

∥∥2
	
, for all x, y P H.

By Proposition 3.4, every pre-Hilbert space is a normed vector space, and hence is a
metric space (recall Exercise 2.2). The definition of Hilbert space is similar to that of
Banach space.

Definition 3.6 (Hilbert space). A pre-Hilbert spce what is complete with respect to the
norm ∥x∥ �

a
xx, xy is called a Hilbert space.

Example 3.7. Let pX,M, µq be a measure space. Let L2pX,M, µq be equipped with
the inner product (Exercise: check the properties of inner product)

xf, gy �

»
X

fg dµ.

Then the corresponding norm is the L2-norm in Definition 2.46 and hence the above inner
product is called the L2-inner product. By Theorem 2.51, this pre-Hilbert space a Hilbert
space.

Lemma 3.8 (Parallelogram law). For all x, y P H,

∥x� y∥2 � ∥x� y∥2 � 2
�
∥x∥2 � ∥y∥2

�
Proof. This follows from (3.2) as

∥x� y∥2 � ∥x∥2 � ∥y∥2 � 2Rexx, yy, ∥x� y∥2 � ∥x∥2 � ∥y∥2 � 2Rexx, yy.

Remark 3.9. We can also define real Hilbert spaces for vector spaces of R. In this case,
the real inner product on a vector space HR over R is a function x�, �y : HR � HR Ñ R
such that:

(i) For any x, y, z P H and a, b P C, we have

xax� by, zy � axx, zy � bxy, zy.

(ii) For any x, y P H,
xy, xy � xx, yy.

(iii) xx, xy P r0,8q for all x P H and xx, xy � 0 if and only if x � 0.

The proof that a real inner product defines a norm ∥x∥ �
a
xx, xy is exactly the same as

in the complex case. In fact, all results in §3 works for real vector spaces.
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3.1 Projection onto a closed convex set

Theorem 3.10 (Projection onto a closed convex set). Let K be a nonempty closed convex
set of a Hilbert space H. Then for every x P H, there exists a unique u P K such that

∥x� u∥ � min
vPK

∥x� v∥ . (3.3)

Moreover, the distance minimizing property (3.3) is equivalent to

u P K, and Re pxx� u, v � uyq ¤ 0, for all v P K. (3.4)

Proof. Existence: Let pvnqnPN be a minimizing sequence for infvPK ∥x� v∥; that is, vn P K
for all n P N and

dn :� ∥x� vn∥Ñ d :� inf
vPK

∥x� v∥ .

We claim that pvnq is a Cauchy sequence. By parallelogram law (Lemma 3.8) applied to
x�vn

2
and x�vm

2
, we have∥∥∥x� vn � vm

2

∥∥∥2

�
1

4
∥vn � vm∥2 �

1

2

�
d2n � d2m

�
Since vn�vm

2
P K (by the convexity of K) and thus

∥∥x� vn�vm
2

∥∥ ¥ d. It follows that

1

4
∥vn � vm∥2 ¤

1

2

�
d2n � d2m

�
� d2, and lim

m,nÑ8
∥vn � vm∥ � 0.

Therefore pvnq converges to some u P K (since K is closed) with d � ∥x� u∥. This
completes the proof fo existence of u P K that satisfies (3.3).

Equivalence: Before we show uniqueness, we show the equivalence between (3.3) and
(3.4). Assume that u P K satisfies (3.3) and let w P K. By the convexity of K we have

v � p1� tqu� tw P K, for all t P r0, 1s,

and hence
∥x� u∥ ¤ ∥x� pp1� tqu� twq∥ � ∥x� u� tpw � uq∥ .

Therefore by (3.2),

∥x� u∥2 ¤ ∥x� u∥2 � 2tRe pxx� u, v � uyq � t2 ∥w � u∥2 .

As t Ó 0, we obtain (3.4).

Conversely, assume that u P K satsifies (3.4), then for any v P K, we have by (3.2)

∥u� x∥2 � ∥v � x∥2 � 2Rexx� u, v � uy � ∥v � u∥2
(3.4)

¤ 0,

which implies (3.3).

Uniqueness : Assume that u1, u2 P K satisfy (3.4). Therefore

Re pxx� u1, v � u1yq ¤ 0, for all v P K. (3.5)
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Re pxx� u2, v � u2yq ¤ 0, for all v P K. (3.6)

By setting v � u2 in (3.5) and v � u1 in (3.6), and adding the inequalities, we obtain

0 ¥ Re pxx� u1, u2 � u1y � xx� u2, u1 � u2yq � Rep∥u1 � u2∥2q � ∥u1 � u2∥2 .

Therefore u1 � u2.

Notation: For x P H and a closed convex subset K � H, by PKpxq P K, we denote the
unique u � PKpxq P K that satisfies (3.3) in Theorem 3.10. We call PKpxq the projection
of x onto K.

For a Banach space, the existence and uniqueness described in Theorem 3.10 can fail
even for the case x � 0 (equivalent to elements of minimal norm) as outlined in the
exercise below.

Exercise 3.11. (a) (failure of existence) Consider the Banach space X � Cpr0, 1sq
equipped with the supremum(or uniform) norm. Then show that the set

M �

#
f P X :

» 1
2

0

fpxq dx�

» 1

1
2

fpxq dx � 1

+
is a nonempty closed convex set of X with no element of minimal notm.

(b) (failure of uniqueness) Consider the Banach space Y � L1pR,B,mq, where m is
the Lebesgue measure and B is the Borel-σ-field. Show that the set K � tf P
X :

³
R fpxq dx � 1u is a non-empty closed convex subset of Y with infinitely many

elements of minimal norm.

The projection onto K maps cannot increase distances as shown below.

Proposition 3.12. Let K be a nonempty closed convex set of a Hilbert space H. Then

∥PKpx1q � PKpx2q∥ ¤ ∥x1 � x2∥ , for all x1, x2 P H.

Proof. Let x1, x2 P H and u1 � PKpx1q, u2 � PKpx2q P K. Then by (3.4) in Theorem
3.10, we have

Re pxx1 � u1, v � u1yq ¤ 0, for all v P K. (3.7)

Re pxx2 � u2, v � u2yq ¤ 0, for all v P K. (3.8)

By setting v � u2 in (3.5) and v � u1 in (3.6), and adding the inequalities, we obtain

0 ¥ Re pxx1 � u1, u2 � u1y � xx2 � u2, u1 � u2yq

� Rep∥u1 � u2∥2q � Re pxx1 � x2, u1 � u2yq � ∥u1 � u2∥2 � Re pxx1 � x2, u1 � u2yq .

Therefore by Schwarz inequality (Theorem 3.3), we have

∥u1 � u2∥2 ¤ Re pxx1 � x2, u1 � u2yq ¤ |xx1 � x2, u1 � u2y| ¤ ∥u1 � u2∥ ∥x1 � x2∥ .

This implies the desired estimate.
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Corollary 3.13. Assume that M � H is a closed subspace of a Hilbert space H. Let
x P H. Then u � PMpxq is characterized by

u PM, and xx� u, vy � 0, for all v PM . (3.9)

Furthermore, PM : H Ñ M is a bounded linear operator and is called the orthogonal
projection onto M .

Proof. Suppose u PM satisfies

∥x� u∥ � min
vPM

∥x� v∥ .

Then by (3.4), we have

Re pxx� u,w � uyq ¤ 0, for all w PM .

For any v PM,α P C, we have w � αv � u PM and hence

Re pxx� u, αvyq ¤ 0, for all v PM and α P C.

By choosing α P C such that Re pxx� u, αvyq � Re pαxx� u, vyq � |xx� v, vy| in the
above estimate, we obtain (3.9).

Conversely, if u PM satisfies (3.9), then it satisfies

xx� u,w � uy � 0, for all w PM .

and hence implies (3.4). Therefore by Theorem 3.10, we have u � PMpxq.

Note that for all a, b P C, x, y P H and v PM , by (3.9), we have

xax� by � paPMpxq � bPMpyqq, vy � axx� PMpxq, vy � bxy � PMpyq, vy
(3.9)
� 0.

By the characterization in (3.9), we conclude that

PMpax� byq � aPMpxq � bPMpyq, for all x, y P H and a, b P C.

Hence PM is linear (over C). Furthermore, by Proposition 3.12, we have ∥PMpxq∥ ¤ ∥x∥
for all x P H. So PM is bounded.

3.2 Dual of a Hilbert space

Next, we describe the dual space of a Hilbert space. For any y P H, the map ϕy : H Ñ C
defined by

ϕypxq � xx, yy (3.10)

is clearly linear (over C) by Definition 3.1-(i). Note that, by Schwarz inequality,

|ϕypxq| � |xx, yy| ¤ ∥y∥ ∥x∥ .
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Therefore ϕy P H� and the operator norm ∥ϕ∥ satisfies ∥ϕ∥ ¤ ∥y∥. The fact that ∥ϕ∥ �
∥y∥ follows from ∥y∥2 � |ϕypyq| ¤ ∥ϕy∥ ∥y∥. The map y ÞÑ ϕy is conjugate linear from H
to H�, as

ϕa1y1�a2y2 � a1ϕy1 � a2ϕy2 , for all a1, a2 P C and y1, y2 P H.

Hence y ÞÑ ϕy defines a conjugate linear isometry from H to H�. The surjectivity of this
map is called the Riesz–Fréchet representation theorem.

Theorem 3.14 (Riesz–Fréchet representation theorem). For any ϕ P H�, there exists a
unique y P H such that ϕpxq � xx, yy for all x P H.

Proof. Existence: If ϕ � 0, then we may choose y � 0. Otherwise, consider the kernel of
ϕ, that is, M � ϕ�1pt0uq. Then M is a closed subspace (due to continuity and linearity
of ϕ) and M � H. Choose x1 P HzM and let u1 � PMpx1q. Then by Corollary 3.13,
x2 � ∥x1 � u1∥�1 px1 � u1q satisfies

x2 RM, ∥x2∥ � 1, and xv, x2y � 0, for all v PM. (3.11)

Since ϕpx2q � 0, for any x P H we have

x�
ϕpxq

ϕpx2q
x2 PM,

and hence by (3.11), we have

0 � xx�
ϕpxq

ϕpx2q
x2, x2y � xx, x2y �

ϕpxq

ϕpx2q
xx2, x2y � xx, x2y �

ϕpxq

ϕpx2q
, for all x P H.

Therefore, choosing y � ϕpx2qx2, we have

ϕpxq � ϕpx2qxx, x2y � xx, ϕpx2qx2y � xx, yy, for all x P H.

Uniqueness: If there exist y1, y2 P H such that ϕpxq � xx, y1y � xx, y2y for all x P H, by
choosing x � y1 � y2, we have ∥y1 � y2∥2 � 0 and hence y1 � y2.

Note that the Riesz-Fréchet representation theorem defines a bijection C : H Ñ H�

between a Hilbert space and its dual defined by

pCpyqqpxq � xx, yy for all x, y P H.

It is not linear over C, but rather conjugate linear, that is,

pCpxqq pa1y1 � a2y2q � a1 pCpxqq py1q � a2 pCpxqq py2q, for all a1, a2 P C, x, y1, y2 P H.

Note that, if T : H Ñ H is a bounded linear operator on a Hilbert space, then the adjoint
T � : H� Ñ H� is a bounded linear operator on its dual (recall Definition 2.39). By the
Riesz-Fréchet representation theorem, we can define can view the adjoint operator as an

69



operator in LpH,Hq be conjugating with the map C : H Ñ H�; that is, we define the
Hilbert space adjoint as the operator T : :� C�1 � T � � C : H Ñ H. So we have

xx, T :pyqy � xx, pC�1 � T � � Cqpyqy � pT �pCpyqqqpxq � pCpyqqpT pxqq � xT pxq, yy,

for all x, y P H. It is easy to verify that T : is linear and bounded. By Proposition 2.40
and Theorem 3.14, we have ∥∥T :

∥∥ � ∥T∥ .

That is, the Hilbert space adjoint T : : H� Ñ H� of T P LpH,Hq is the unique linear
operator in LpH,Hq characterized by

xT pxq, yy � xx, T :pyqy, for all x, y P H. (3.12)

We say that a bounded operator T P LpH,Hq is self-adjoint if T � T :.

3.3 Orthonormal basis

Definition 3.15. Let H be a Hilbert space. We say a subset tuα : α P Au � H is
orthonormal if xuα, uαy � 1 for all α P A and

xuα, uβy � 0, for all α, β P A such that α � β.

Proposition 3.16 (Bessel’s inequality). If tuα : α P Au is an orthonormal subset of H
and x P H, then ¸

αPA

|xx, uαy|2 ¤ ∥x∥2 .

In particular, tα P A : xx, uαy � 0u is countable.

Proof. It suffices to show that
°

αPF |xx, uαy|2 ¤ ∥x∥2 for any finite subset F � A. Note
that

0 ¤

∥∥∥∥∥x� ¸
αPF

xx, uαyuα

∥∥∥∥∥
2

� ∥x∥2 �
¸
αPF

∥xx, uαyuα∥2 �
¸
αPF

2Rexx, xx, uαyuαy

� ∥x∥2 �
¸
αPF

|xx, uαy|2 � 2
¸
αPF

|xx, uαy|2 � ∥x∥2 �
¸
αPF

|xx, uαy|2.

By Bessel’s inequality, tα P A : |xx, uα| ¡ n�1u is finite for each n P N.

An useful consequence of Schwarz inequality is the continuity of inner product in both
variables.

Lemma 3.17. If xn Ñ x and yn Ñ y, then xxn, yny Ñ xx, yy.
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Proof.

|xxnyny � xx, yy| ¤ |xxn � x, yny � xx, yn � yy|
¤ |xxn � x, yny|� |xx, yn � yy| ¤ ∥xn � x∥ ∥yn∥� ∥x∥ ∥yn � y∥ .

Since ∥yn∥Ñ ∥y∥, we obtain the result.

We describe properties of a maximal (see Exercise 3.20) orthonormal set.

Theorem 3.18. If tuα : α P Au is an orthonormal subset of H, the following properties
are equivalent:

(a) (Completeness) If x P H satisfies xx, uαy � 0 for all α P A, then x � 0.

(b) (Parseval’s identity) For each x P H, we have ∥x∥2 �
°

αPA |xx, uαy|2.

(c) For each x P H, x �
°

αPAxx, uαyuα, where the sum has only countably many non-zero
terms and converges in the norm topology regardless of how the terms are ordered.

Proof. (b) implies (a) follows from the non-degeneracy of norm.

(a) ùñ (c): Let x P H. Let α1, α2, . . . be an enumeration (finite or infinite sequence) of
all α’s such that xx, uαy � 0. Since the sum converges if it is finite, we assume that we
have an infinite sum. By Bessel’s inequality, we have

°
j

∣∣xx, uαj
y
∣∣ converges, and hence∥∥∥∥∥ ņ

j�m

xx, uαj
yuαj

∥∥∥∥∥
2

�
ņ

j�m

∣∣xx, uαj
y
∣∣2 Ñ 0, as m,nÑ 8.

By the completeness of H, the series
°

jxx, uαj
yuαj

converges. If y � x �
°

jxx, uαj
yuαj

,
then xy, uαy � 0 for all α P A (by the continuity of inner product; see Lemma 3.17).
So by the completeness of the orthonormal set, we conclude that y � 0, or equivalently
x �

°
jxx, uαj

yuαj
.

(c) ùñ (b): With αj’s as above, the calculation in the proof of Bessel’s inequality implies
that

∥x∥2 �
ņ

j�1

∣∣xx, uαj

∣∣2 � ∥∥∥∥∥x� ņ

j�1

xx, uαj
yuαj

∥∥∥∥∥
2

nÑ8
ÝÝÝÑ 0.

Definition 3.19. If an orthonormal subset of a Hilbert space satisfies any of the equaiva-
lent conditions of Theorem 3.18, we say that it is a orthonormal basis.

Exercise 3.20. Let H be a Hilbert space.

(a) Consider the collection of all orthonormal subsets partially ordered by inclusion. Show
using Zorn’s lemma that there is a maximal orthonormal subset.
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(b) Show that if tuα P Au is a maximal orthonormal subset of H, then it is complete (in
the sense of Theorem 3.18-(a)).

(c) Conclude that every Hilbert space has an orthonormal basis.

The following is a notion is when two Hilbert spaces can be considered the ‘same’ (or
isomorphism).

Definition 3.21. Let H1 and H2 be Hilbert spaces with inner products x�, �y1 and x�, �y2
respectively. We say that a map U : H1 Ñ H2 is unitary, if it is linear, invertible and
preserves inner products

xUpxq, Upyqy2 � xx, yy1, for all x, y P H1.

Using a orthonormal basis every Hilbert space can be viewed as an L2 space.

Proposition 3.22. Let teα : α P Au be an orthonormal basis of a Hilbert space H. The
map U : H Ñ ℓ2pAq defined by pUpxqqpαq � xx, eαy is a unitary map.

Proof. Linearity of U follows from the linearity of inner product in the first argument.

Completeness of orthonormal basis implies that U is one-to-one. If f P ℓ2pAq, then it
is easy to check (similar to proof of (a) implies (c) Theorem 3.18), that

°
αPA fpαqeα has

atmost countably many non-zero terms and converges in H in the norm topology such
that the limit does not depend on the order of terms. Furthermore Up

°
αPA fpαqeαq � f .

This proves that U is surjective.

By Parseval’s theorem,

∥Upxq∥ℓ2pAq � ∥x∥ , for all x P H.

This along with the polarization identity (Exercise 3.5) implies that U preserves inner
product.

4 Compact operators

We introduce the notion of compact operators. Throughout §4, we assume that pX, ∥�∥Xq
and pY, ∥�∥Y q are Banach spaces over the field K, where K is R or C. So by Proposition
2.16, the vector space of bounded linear maps LpX, Y q from X to Y equipped with the
operator norm is a Banach space. Compact operators are a special class of bounded linear
operators.

Definition 4.1. A bounded linear operator T P LpX, Y q is said to be compact is image
of every bounded set under T has compact closure.

There are various equivalent definitions of compact operators.

Exercise 4.2. Show that the following are equivalent for an operator T P LpX, Y q.
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(a) The image of every bounded set under T has compact closure.

(b) The image of the unit ball (centered at origin) in X under T has compact closure.

(c) The image of the unit ball (centered at origin) is totally bounded (that is, for any
ϵ ¡ 0, the image of the unit ball is covered by finitely many balls of radii ϵ).

(d) For any bounded sequence pxnqnPN in X, the sequence pT pxnqqnPN has a convergent
subsequence in Y .

Hint: recall Theorem 1.71.

Compact operators composed with bounded operators lead to compact operators as
explained in the exercise below.

Exercise 4.3. Let X, Y, Z be Banach spaces over K and let T P LpX, Y q, S P LpY, Zq.
Then S � T P KpX,Zq if either T P KpX, Y q or S P KpY, Zq. (Hint: Use Exercise 4.2)

The set of compact operators in LpX, Y q is denoted by KpX, Y q.

Proposition 4.4. The set of compact operators KpX, Y q forms a closed subspace of
LpX, Y q.

Proof. The fact that KpX, Y q is a subspace follows from the characterization in Exercise
4.2-(c). For any a1, a2 P K,T1, T2 P KpX, Y q and any bounded sequence pxnqnPN in X,
by the compactness of T1 and T2, there is a common subsequence pxnk

qkPN such that
pT1pxnk

qqkPN and pT2pxnk
qqkPN converge. Therefore ppa1T1 � a2T2qpxnk

qqkPN converges and
hence a1T1 � a2T2 P KpX, Y q.

We again use the characterization in Exercise 4.2-(c) to show that KpX, Y q is closed.
Let pTnqnPN be a sequence in KpX, Y q such that it converges to T P LpX, Y q; that is
limnÑ8 ∥T � Tn∥ � 0. Let pxnqnPN be any bounded sequence in X and let B P p0,8q be
such that ∥xn∥ ¤ B for all n P N. By the compactness of T1, there exists a subsequence
pxnj,1

qjPN such that pT1pxnj,1
qqjPN converges. By the compactness of T2, this subsequence

in turn has a further subsequence subsequence pxnj,2
qjPN such that pT1pxnj,2

qqjPN converges.
Repeating this procedure, and choosing the diagonal subsequence

yk � xnk,k
, for all k P N,

we have that the sequence pTnpykqqkPN converges for each n P N. Hence

∥T pykq � T pylq∥ ¤ ∥T pykq � Tnpykq∥� ∥Tnpykq � Tnpylq∥� ∥Tnpykq � Tnpylq∥
¤ ∥T � Tn∥ ∥yk∥� ∥Tnpykq � Tnpylq∥� ∥T � Tn∥ ∥yl∥
¤ 2 ∥T � Tn∥B � ∥Tnpykq � Tnpylq∥ .

For any ϵ ¡ 0, there exists n P N such that 2 ∥T � Tn∥B   ϵ{2 (since limmÑ8 ∥T � Tm∥ �
0). Since pTnpymqqqmPN converges, there exists N P N such that ∥Tnpykq � Tnpylq∥   ϵ{2
for all k, l ¥ N .
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Recall the definition of kernel N pT q and range RpT q of a linear operator T from
Definition 2.80.

Example 4.5. Let T P LpX, Y q be a finite rank operator; that is, the range RpT q �
tT pxq : x P Xu is finite dimensional. Then T P KpX, Y q.
Proof. If pxnq is a bounded sequence in X, then pT pxnqqnPN is a bounded sequence in
the range RpT q. Since closed balls centered at origin is compact (see Exercise 2.20),
pT pxnqqnPN has a bounded subsequence due to Theorem 1.75.

As a result of Proposition 4.4 and Example 4.5, any limit of finite rank bounded
operators is compact.

Theorem 4.6 (Schauder’s theorem). Let X, Y be Banach spaces over K and let T P
KpX, Y q be a compact operator. Then T � P KpY �, X�q.

Proof. By Exercise 4.2, it suffices to show that the image T �pBY �q of the unit ball BY � �
tg P Y � : ∥g∥   1u is totally bounded. To this end, let ϵ ¡ 0. By Exercise 4.2, the image
T pBXq of the unit ball BX :� tx P X : ∥x∥   1u is totally bounded. Hence there exists
x1, x2, . . . , xn P BX such that

min
1¤j¤n

∥T pxq � T pxjq∥  
ϵ

3
, for all x P BX . (4.1)

Define A : Y � Ñ Kn as

Apgq � pgpT px1qq, . . . , gpT pxnqqq , for all g P Y �.

Here we equip Kn with the norm ∥pa1, . . . , anq∥ �
°n

i�1 |ai| for all pa1, . . . , anq P Kn.
Clearly, A is linear. Note that A P LpY �, Knq as

∥Apgq∥ �
ņ

i�1

|gpT pxiqq| ¤
ņ

i�1

∥g∥ ∥T pxiq∥ ¤
ņ

i�1

∥g∥ ∥T∥ � n ∥T∥ ∥g∥ , for all g P Y �.

By Exercise 4.5, A is a compact operator. Therefore by Exercise 4.2, there exist
g1, . . . , gm P BY � such that

min
1¤k¤m

∥Apgq � Apgkq∥  
ϵ

3
, for all g P BY � . (4.2)

We claim that balls of radii ϵ centered at T �pg1q, . . . , T
�pgmq cover T

�pBY �q or equivalently,

min
1¤k¤m

∥T �pgq � T �pgkq∥   ϵ, for all g P BY � . (4.3)

In order to prove (4.3), let x P BX , g P BY � be arbitrary. By (4.2), there exists k such
that 1 ¤ k ¤ m and ∥Apgq � Apgkq∥   ϵ

3
. By (4.1), there exists j such that 1 ¤ j ¤ n

and ∥T pxq � T pxjq∥   ϵ
3
. Combining these we obtain

|T �pgqpxq � T �pgkqpxq| � |gpT pxqq � gkpT pxqq|
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¤ |gpT pxqq � gpT pxjqq|� |gpT pxjqq � gkpT pxjqq|� |gkpT pxjqq � gkpT pxqq|
¤ ∥g∥ ∥T pxq � T pxjq∥� |gpT pxjqq � gkpT pxjqq|� ∥gk∥ ∥T pxq � T pxjq∥
¤ 2 ∥T pxq � T pxjq∥� ∥Apgq � Apgkq∥   ϵ.

Since the above estimate holds for all x P BX , g P BY � , we have

min
1¤k¤m

∥T �pgq � T �pgkq∥   ϵ for all g P BY � .

This implies T �pBY �q is totally bounded, or equivalently, T � P KpY �, X�q.

Schauder’s theorem can be used to prove its converse.

Exercise 4.7. Let X, Y be Banach spaces over K and let T P LpX, Y q be such that
T � P KpY �, X�q is a compact operator. Then T P KpX, Y q. (Hint: Schauder’s theorem
implies that T �� P KpX��, Y ��q).

We would like to analyze the spectrum of a compact operator whose definition we
introduce below.

Definition 4.8 (Spectrum and its classification). Let X be a Banach space over K and
let T P LpX,Xq. Let I denote the identity map in LpX,Xq. The resolvent set of T ,
denoted by ρpT q, is defined as

ρpT q : tλ P K : pT � λIq is a bijection from X onto Xu.

The spectrum of T , denoted by σpT q, is the complement of the resolvent set, that is,

σpT q � KzρpT q.

A number λ P K is said to be an eigenvalue of T if N pT � λIq � t0u. The set of all
eigenvalues is called the point spectrum of T , denoted by σppT q. If λ P σpT qzσppT q, then
T �λI is injective but not surjective. In this case, we further subdivide the spectrum into
two cases depending on whether or not the range RpT � λIq is dense. If λ P σpT qzσppT q
and RpT � λIq is dense in X, then we say that λ belongs to the continuous spectrum
(denoted by σcpT q). If λ P σpT qzσppT q and RpT � λIq is not dense in X, then we say
that λ belongs to the residual spectrum (denoted by σrpT q). This classification expresses
the spectrum σpT q as a disjoint union σpT q � σppT q Y σcpT q Y σrpT q.

Remark 4.9. (a) Note that if λ P ρpT q, then pT�λIq�1 P LpX,Xq due to open mapping
principle (Corollary 2.67).

(b) If X is finite dimensional, then σpT q � σppT q. To see this, note that if λ R σppT q,
then T � λI is one-to-one and hence surjective (due to the rank-nullity theorem). So
λ P ρpT q, or equivalently λ R σpT q. However, on infinite dimensional spaces it is
possible that σppT q � σpT q (see assignment for such an example).
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(c) If T P KpX,Xq and 0 P ρpT q, then X is finite dimensional. By (a), T�1 P LpX,Xq
and hence by Exercise 4.3, I � T � T�1 P KpX,Xq. So by Theorem 2.22, X is finite
dimensional.

(d) Equivalently, if X is an infinite dimensional Banach space and T P KpX,Xq, then
0 P σpT q.

By Remark 4.9-(b), the spectrum can be considered as a generalization of the set of
eigenvalues that we know from linear algebra. The following exercise outlines an argument
that the spectrum of a bounded operator is a compact subset.

Exercise 4.10. Let X be a Banach space over K.

(i) If T P LpX,Xq and ∥I � T∥   1, then show that T is invertible and T�1 P LpX,Xq.
(Hint: show that T�1 �

°8
n�0pI�T qn and that the series converges is in the Banach

space LpX,Xq).

(ii) If S, T P LpX,Xq is such that S is invertible with a bounded inverse S�1 P LpX,Xq
and ∥S � T∥   ∥S�1∥�1

, then show that T is invertible with a bounded inverse.
(Hint: Note that (ii) is a generalization of (i)).

(iii) If T P LpX,Xq and λ P K is such that |λ| ¡ ∥T∥, then λ P ρpT q. (Hint: Note that
T � λI is a bijection if and only if I � λ�1T is a bijection and use (i)).

(iv) If T P LpX,Xq, then show that the resolvent set ρpT q is open in K. (Hint: Use (ii)
and Remark 4.9-(a))

(v) Conclude that the spectrum σpT q for any T P LpX,Xq is a compact subset of K.

4.1 Riesz theory of compact operators

Throughout §4.1, let X be a Banach space over K and let T P KpX,Xq.

Lemma 4.11. If pxnqnPN is a bounded sequence in X and ppI � T qpxnqqnPN converges,
then pxnqnPN has a convergent subsequence.

Proof. Since T is compact, there is a subsequence pxnk
qkPN such that pT pxnk

qqkPN con-
verges, to say y. Then if w � limnÑ8pI � T qpxnq, we have limkÑ8 xnk

� limkÑ8pI �
T qpxnk

q � T pxnk
q � w � y.

Definition 4.12. An operator S P LpY, Zq between normed linear spaces Y, Z is said to
be bounded below if there exists c P p0,8q such that ∥Spyq∥Z ¥ c ∥y∥Y for all y P Y .

Lemma 4.13. If I � T is one-to-one, then it is bounded below.
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Proof. Suppose to the contrary that I�T is not bounded below. Then there is a sequence
pxnqnPN such that ∥xn∥ � 1 for all n P N and limnÑ8 ∥pI � T qpxnq∥ � 0. Therefore, by
Lemma 4.11, pxnq has a subsequence that converges, to say x P X. By continuity of norm
(see Exercise 2.3) and I � T , we have ∥x∥ � 1 and pI � T qpxq � 0, which contradicts the
assumption that I � T is one-to-one.

Proposition 4.14. Let X be a Banach space over K and let T P KpX,Xq. Then N pI�T q
is finite dimensional.

Proof. Let Y � N pI � T q. Note that T
��
Y
� I
��
Y
, so the closed unit ball in Y is compact

but the compactness of T . Therefore Y is finite dimensional by Theorem 2.22.

The following is an algebraic notion associated with a subspace of a vector space.

Definition 4.15 (Complement of a subspace). Let X be a vector space over K and let
Y be a subspace of X. Then a subspace M of X is said to be a complement of Y in X if
the following hold:

(i) Y XM � t0u

(ii) Y �M � X; that is, for all x P X, there exists y P Y,m PM such that x � y �m.

If (i) and (ii) hold, we denote this by Y ` M � X. Note that (i) implies that the
decomposition in x � y �m in (ii) is unique.

Every finite dimensional subspace has a closed complement. This is a consequence of
Hahn-Banach theorem.

Lemma 4.16. Let F be a finite dimensional subspace of a normed vector space Y (over
K). Then there is a closed subspace M � Y such that Y � F `M .

Proof. Let e1, . . . , en be a basis of F . For each 1 ¤ i ¤ n, the linear functional fi : F Ñ K
defined by

fi

�
ņ

j�1

ajej

�
� ai, for all pa1, . . . , anq P Kn

is a bounded linear functional (by Exercise 2.25). So for each 1 ¤ i ¤ n, by the Hahn-
Banach extension theorem, there is a bounded extension Fi : X Ñ K such that fi � Fi

��
F
.

Define an operator PF : Y Ñ Y such that

PF pyq �
ņ

i�1

Fjpyqej.

Note that, PF P LpY, Y q, PF pxq � x for all x P F , RpPF q � F and PF � PF � PF (you
check this!).

Now let M � N pPF q. Since PF is continuous M is closed and M X F � t0u. If
y P Y , then y � PF pyq � py � PF pyqq, where PF pyq P F and y � PF pyq P M (since
PF � pI � PF q � 0).
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Proposition 4.17. Let X be a Banach space over K and let T P KpX,Xq. Then RpI�T q
is closed.

Proof. Since the kernel N pI � T q is finite dimensional (by Proposition 4.14), it has a
closed complementary subspace M by Lemma 4.16 such that X � N pI � T q `M . So
RpI�T q � RppI � T q

��
M
q. Let pxnqnPN be a sequence inM such that pI�T qpxnq converges,

to say w P X. We need to show that w P RpI � T q. By the argument in Lemma 4.13,
pI � T q

��
M

is bounded below. So pxnqnPN is a convergent sequence, and converges, to say
x PM . Therefore w � pI � T qpxq P RpI � T q.

Proposition 4.18. Let X be a Banach space over K and let T P KpX,Xq. Then the
following are equivalent:

(a) I � T is onto.

(b) I � T is one-to-one.

Proof. (a) ùñ (b): Let X0 � t0u and for n P N, set Xn � N ppI � T qnq, where pI � T qn

is the n-fold composition of I � T . Clearly, t0u � X0 � X1 � X2 � �. Note that each Xn

is a closed subspace by Lemma 2.18.

Assume to the contrary that if I�T is not one-to-one; that is, there exists x1 P X1zX0.
Then since I � T is onto, there exists x2 P X such that pI � T qpx2q � x1. By induction,
we obtain xn P X such that pI � T qpxnq � xn�1 for all n ¥ 2. Therefore, pI � T qnpxnq �
pI � T qpx1q � 0 and pI � T qn�1pxnq � x1 for all n ¥ 2. So xn P XnzXn�1 for all n P N.

By Lemma 2.21, for each n P N, there exists yn P Xn with ∥yn∥ � 1 and ∥yn � x∥ ¥ 1
2

for all x P Xn�1. For any n ¡ m, we have

T pynq � T pymq � yn � pym � pI � T qpymq � pI � T qpynqq � yn � x, where x P Xn�1.

So ∥T pynq � T pymq∥ ¥ 1
2
for any m � n, which contradicts the compactness of T .

(b) ùñ (a): Suppose I � T is one-to-one. Then by Lemma 4.13, I � T is bounded below.
So if M is a closed subspace of X, then so is pI � T qpMq :� tpI � T qx : x PMu (why?).

Suppose to the contrary that I � T is not onto. Let Y0 � X, Y1 � pI � T qpY0q, Y2 �
pI � T qpY1q, . . .. Since pI � T q is one-to-one and not onto, we have that Ym�1 is a proper
closed subspace of Ym for all m. By Lemma 2.21, there exists zn P Yn such that ∥zn∥ � 1
and ∥zn � x∥ ¥ 1

2
for all x P Yn�1 for all n P N. For any n ¡ m, we have

T pzmq � T pznq � zm � pzn � pI � T qpzmq � pI � T qpznqq � yn � x, where x P Xm�1.

So ∥T pznq � T pzmq∥ ¥ 1
2
for any m � n, which contradicts the compactness of T .

The following theorem describes important properties of the spectrum of a compact
operator.

Theorem 4.19. Let X be a Banach space over K and let T P KpX,Xq be a compact
operator. Then we have the following.
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(i) σpT qzt0u � σppT q; that is, all non-zero points in the spectrum are eigenvalues.
Furthermore, if λ P σpT qzt0u, then dimpN pT � λIqq   8; that is, each non-zero
eigenvalue has finite multiplicity.

(ii) If pλnqnPN is a sequence of distinct points in σpT q such that limnÑ8 λn � λ, then
λ � 0. In other words, the only possible cluster point in the spectrum is zero, or
equivalently, all non-zero points in the spectrum are isolated.

Proof. (i) Let λ P σpT qzt0u. Then I �λ�1T is not invertible. So I �λ�1T is either not
one-to-one or not onto. By Proposition 4.18, we have that I�λ�1T is not one-to-one
in both cases. Therefore λ P σppT q. Note that by Proposition 4.14, we have

dimpN pT � λIqq � dimpN pI � λ�1T qq   8.

(ii) By (a) and removing one point in the sequence if necessary, we assume that λn � 0
for all n P N so that λn P σppT q for all n P N. So for each n P N, there exists
‘eigenvectors’ xn P Xzt0u such that T pxnq � λnxn.

We claim that txi : i P Nu is a linearly independent set. We prove this by induction
on n, by verifying that txi : 1 ¤ i ¤ nu is linearly independent for each n P N.
Clearly, this is true for n � 1 as x1 � 0. Suppose the induction hypothesis that
txi : 1 ¤ i ¤ nu is linearly independent. Assume to the contrary that txi : 1 ¤ i ¤
n � 1u is not linearly independent. Then there are scalars a1, . . . , an P K such that
xn�1 �

°n
i�1 aixi. Hence

ņ

i�1

λn�1aixi � λn�1xn�1 � T pxn�1q �
ņ

i�1

aiT pxiq �
ņ

i�1

aiλixi.

So aipλn�1�λiq � 0 for all 1 ¤ i ¤ n, which in turn implies ai � 0 for all 1 ¤ i ¤ n,
which contradicts xn�1 � 0

Define Xn � spantxi : 1 ¤ i ¤ nu for all n P N and X0 � t0u. By the linear
independence of txi : i P Nu and Exercise 2.20-(e), Xn is a proper, closed subspace
of Xn�1 for all n P N. So by Riesz’s lemma (Lemma 2.21), for each n P N, there
exists yn P Xn such that ∥yn∥ � 1 and ∥yn � x∥ ¥ 1

2
for all x P Xn�1. By writing

any vector Xn in terms of the basis txi : 1 ¤ i ¤ nu, we note that

pT � λnIqpxq P Xn�1, for all x P Xn and n P N.

Therefore for any n ¡ m, we have

T pλ�1
n ynq � T pλ�1

m ymq � pT � λnIqpλ
�1
n ynq � pT � λmIqpλ

�1
m ymq � yn � ym � yn � x,

where x P Xn�1. So for any n ¡ m, we have∥∥T pλ�1
n ynq � T pλ�1

m ymq
∥∥ ¥ 1

2
. (4.4)
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If λn Ñ λ and λ � 0, then (4.4) would contradict the compactness of T as pλ�1
n ynqnPN

is a bounded sequence such that pT pλ�1
n ynqqnPN does not have a convergent subse-

quence. Hence λ � 0.

Exercise 4.20. Let 1 ¤ p ¤ 8 and let X � ℓppNq. Let pλnqnPN be a bounded sequence
of complex numbers and T P LpX,Xq is defined by

T ppx1, x2, . . .qq � pλ1x1, λ2x2, . . .q.

Prove that T P KpX,Xq if and only if limnÑ8 λn � 0.

Exercise 4.21. Let X, Y be Banach spaces and let T P KpX, Y q. Assume that the range
RpT q is a closed subspace of Y .

(a) Show that T is a finite rank operator (cf. Example 4.5). Hint: Use the open mapping
principle.

(b) If in addition the nullspace N pT q is finite-dimensional, then X is a finite dimensional
space.

4.2 Spectral decomposition of self-adjoint compact operators

Definition 4.22. Let H be a Hilbert space and let T P LpH,Hq. We say that T is
self-adjoint if T : � T .

The following exercise outlines some useful relations between the spectrum of an op-
erator and its adjoint.

Exercise 4.23. Let T P LpX,Xq where X is a Banach space. Show the following.

1. If λ is in the residual spectrum of T , then show that λ is in the point spectrum of
T � P LpX�, X�q; that is σrpT q � σppT

�q.

2. If λ is in the point spectrum of T �, then show that λ is either in the point spectrum
or the residual spectrum of T . In other words, σppT

�q � σppT q Y σrpT q.

(c) Let T P LpH,Hq be operator on a Hilbert space H. Let T � P LpH�,H�q and
T : P LpH,Hq denote the adjoint and the Hilbert space adjoint respectively. Then
show the following

σppT
�q � σppT :q, σcpT

�q � σcpT :q, σrpT
�q � σrpT :q.

Here for A � C, we set A � ta : a P Au.

The following theorem lists some basic properties of the spectrum of a self-adjoint
operator.
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Theorem 4.24. Let T P LpH,Hq be a self-adjoint operator on a Hilbert space H.

(a) xT puq, uy P R for all u P H.

(b) If M :� sup uPH,
∥u∥�1

xT puq, uy and m :� inf uPH,
∥u∥�1

xT puq, uy, then we have

tm,Mu � σpT q � rm,M s, ∥T∥ � maxp|m|, |M |q.

(c) If σpT q � t0u, then T � 0.

Proof. (a) For any u P H, since T : � T we have

xT puq, uy � xu, T puqy � xu, T :puqy
(3.12)
� xT puq, uy.

Therefore xT puq, uy P R for all u P H.

(b) Step 1: σpT q � rm,M s. Let λ P C. Then by (a), we have

RepxpT �λIqu, uyq � xT puq, uy�Repλqxu, uy, ImpxpT �λIqu, uyq � � Impλqxu, uy

Setting c � maxp|Impλq|,Repλq �M,m�Repλqq, by the above equality and Schwarz
inequality, we have

∥pT � λIqpuq∥ ∥u∥ ¥ |xpT � λIqu, uy| ¥ c ∥u∥2 .

Note that c ¡ 0 if λ R rm,M s and hence T�λI is bounded below for all λ P Czrm,M s.
This implies that T � λI is injective and has a closed range. Therefore λ P Czrm,M s
implies that λ P ρpT q Y σrpT q, or equivalently,

Czrm,M s � ρpT q Y σrpT q.

We claim that Czrm,M s � ρpT q. Suppose to the contrary that λ P σrpT q X
pCzrm,M sq, then by Exercise 4.23 we have λ P σppT

�q which in turn implies
λ P σppT

:q � σppT q. Since λ P Czrm,M s, we have λ P σppT q X pCzrm,M sq �
σppT q X pρpT q Y σrpT qq � H, a contradiction. Therefore Czrm,M s � ρpT q or equiv-
alently,

σpT q � rm,M s.

Step 2: m,M � σpT q. We define a function a : H �H Ñ C such that

apu, vq :� xpMu� T puq, vy.

It is easy to obtain the following (inner product-like) properties:

� apu, uq P r0,8q for all u P H.

� apλ1u1 � λ2u2, vq � λ1apu1, vq � λ2apu2, vq for all λ1, λ2 P C and u1, u2 P H.
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� For all u, v P H, apu, vq � apv, uq. To see this note, that

apu, vq �Mxu, vy � xT puq, vy �Mxv, uy � xv, T puqy

�Mxv, uy � xv, T :puqy �Mxv, uy � xT pvq, uy � apv, uq.

These properties imply the Scharwz inequality,

|apu, vq| ¤
a
apu, uqapv, vq, (4.5)

as the quadratic function fptq � apu � tv, u � tvq for all t P R does not have two
distinct real roots. Since M � sup uPH,

∥u∥�1
xT puq, uy, there exists a sequence punqnPN in

H such that

∥un∥ � 1 for all n P N and, lim
nÑ8

xMun � T punq, uny � 0. (4.6)

By Riesz-Fréchet representation theorem (Theorem 3.14) and Hahn-Banach extension
theorem (Corollary 2.30-(i)), for all w P H, we have

∥w∥ � sup
vPH,
∥v∥�1

|xw, vy|. (4.7)

By Schwarz inequality, for any v P H with ∥v∥ � 1, we have

|apv, vq| � |xMv � T pvq, vy| ¤ ∥Mv � T pvq∥ ∥v∥ ¤ ∥MI � T∥ ¤M � ∥T∥ . (4.8)

Hence for all n P N,

∥Mun � T punq∥
(4.7)
� sup

vPH,
∥v∥�1

|apun, vq|
(4.5)

¤
a
apun, unq sup

vPH,
∥v∥�1

apv, vq
(4.8)

¤ pM�∥T∥q
a
apun, unq.

Hence by (4.6), we conclude,

lim
nÑ8

∥Mun � T punq∥ � 0, with ∥un∥ � 1 for all n P N. (4.9)

This implies that MI � T does not have a bounded inverse (since if pMI � T q�1 P
LpH,Hq, we have ∥u∥ ¤ ∥pMI � T q�1∥ ∥Mu� T puq∥ for all u P H which contradicts
(4.9)). Therefore M P σpT q.

The proof thatm P σpT q is similar by considering the function bpu, vq � xT puq�mu, vy
(or by replacing T with �T ).
Step 3: ∥T∥ � maxp|m|, |Mq|. The desired lower bound on ∥T∥ follows easily from
Schwarz inequality as

maxp|m|, |M |q � sup
vPH,
∥v∥�1

|xT pvq, vy| ¤ sup
vPH,
∥v∥�1

∥T pvq∥ ∥v∥ � sup
vPH,
∥v∥�1

∥T pvq∥ � ∥T∥ .
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For each u, v P H, there exists α P C with |α| � 1 so that |xT puq, vy| � xT puq, αvy

(for example, α � xT puq,αvy
|xT puq,αvy| if xT puq, αvy � 0 and 1 otherwise). This along with (4.7)

implies that
∥T puq∥ � sup

vPH,
∥v∥�1

RepxT puq, vyq

and hence
∥T∥ � sup

u,vPH,
∥u∥�∥v∥�1

RepxT puq, vyq (4.10)

Since T � T : using properties of inner product (why?), we obtain

RepxT puq, vyq �
1

2
pxT puq, vy � xv, T puqyq �

1

2

�
xT puq, vy � xv, T :puqy

�
�

1

2
pxT puq, vy � xT pvq, uyq

�
1

4
pxT pu� vq, u� vy � xT pu� vq, u� vyq , for all u, v P H.

Using the definition of M and m, for all u, v P H with ∥u∥ � ∥v∥ � 1, we have

RepxT puq, vyq ¤
1

4
pMxu� v, u� vy �mxu� v, u� vyq

¤
1

4
p|M |xu� v, u� vy � |m|xu� v, u� vyq

¤
1

4
maxp|m|, |M |q pxu� v, u� vy � xu� v, u� vyq

� maxp|m|, |M |q1
2

�
∥u∥2 � ∥v∥2

�
� maxp|m|, |M |q.

Hence (4.10) implies the desired upper bound

∥T∥ ¤ maxp|m|, |M |q.

(c) Since t0u � σpT q � tm,Mu, we have M � m � 0. Since ∥T∥ � maxp|m|, |M |q � 0,
we conclude T � 0.

We can now combine the spectral theorems for compact operators (Theorem 4.19)
and for self-adjoint operators (Theorem 4.24) to obtain a spectral theorem for self-adjoint
compact operators. This can be viewed as a generalization of the result in linear algebra
that any Hermitian matrix can be diagonalized.

Theorem 4.25. Let H be a Hilbert space and let T P KpH,Hq be a self-adjoint compact
operator. Then there exists an orthonormal basis tei : i P Iu of H such that for each i P I,
ei is an eigenvector of T .
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Proof. For λ P σppT q, let Eλ � N pT�λIq denote the corresponding eigenspace. We claim
that if λ, µ P σppT q are distinct (µ � λ), then Eλ and Eµ are mutually orthogonal; that
is,

xu, vy � 0, for all u P Eλ, v P Eµ. (4.11)

To prove this, let λ, µ be two distinct eigenvalues. By Theorem 4.24-(b), we have
λ, µ P R. Hence for all u P Eλ, v P Eµ, we have

λxu, vy � xT puq, vy � xu, T :pvqy � xu, T pvqy � µxu, vy � µxu, vy.

This implies pλ� µqxu, vy � 0 and hence xu, vy � 0 which prove (4.11)

Since for each λ P σppT q, Eλ is a closed subspace of a Hilbert space (being the kernel
of a bounded operator), Eλ is a Hilbert space and hence admits an orthonormal basis Bλ

of Eλ. By (4.11), we have that

B �
¤

λPσppT q

Bλ

is an orthonormal set in H such that each vector in B is an eigenvector. We claim that
B is an orthonormal basis of H. We verify the completeness of B. To this end set

M � tv P H : xv, ey � 0 for all e P Bu.

Note that M is a closed subspace of H (why?) and is a Hilbert space. We claim that
T pMq �M . To see this note that for any v PM , e P Bλ, λ P σppT q, we have

xT pvq, ey � xv, T :peqy � xv, T peqy � λxv, ey � 0.

This implies that the restriction T
��
M

: M ÑM can be viewed as a compact, self-adjoint
operator on the Hilbert space M . We claim that

σpT
��
M
q � t0u. (4.12)

Suppose to the contrary, if λ P σpT
��
M
qzt0u, then by Theorem 4.24-(i) we have λ P σppT q

and there exists v PM X Eλ with v � 0. This implies the existence of v � 0 with v P Eλ

and xv, ey � 0 for all e P Bλ which contradicts the completeness of orthonormal set Bλ.
This completes the proof of (4.12). Now by Theorem 4.24-(c), we have T pvq � 0 for all
v PM . We claim thatM � t0u. Suppose not. Then 0 P σppT q and there exists v P E0XM
with v � 0. As above we obtain a contradiction to the completeness of orthonormal set
B0. Therefore M � t0u, or equivalently, B is a complete orthonormal set (orthonormal
basis).

Remark 4.26. Every compact, self-adjoint operator T on a Hilbert space can be viewed
as a limit of finite rank operators.

To see this, we use Theorem 4.19 and Exercise 4.10-(iii), to conclude the set of eigen-
values σppT q is countable (finite or infinite). This is because the set tλ P σppT q : |λ| ¡
n�1u � tλ P C : n�1 ¤ |λ| ¤ ∥T∥u is finite (otherwise, we obtain a contradiction to
Theorem 4.19-(ii) as tλ P C : n�1 ¤ |λ| ¤ ∥T∥u is compact).

Let tλn : n P N, 1 ¤ n ¤ Nu where N P NY8 denote an enumeration of σpT qzt0u �
σppT qzt0u. By Theorem 4.25, T is a limit of Tn �

°n
k�1 λnPEλn

, where PEλn
is the

projection map (see Corollary 3.13) to the (closed) eigenspace Eλn � N pT �λnIq (why?).
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4.3 The adjoint operator revisited

We will show that several properties of an operator is shared by its adjoint operator.
We already encountered one such result as we showed that compactness of a operator is
equivalent to its adjoint (Theorem 4.6 and Exercise 4.7).

Theorem 4.27. Let X, Y be Banach spaces and let T P LpX, Y q. Then the following are
equivalent.

(a) T is a bijection.

(b) T � P LpY �, X�q is a bijection.

Proof. (a) ùñ (b): Let S � T�1 : Y Ñ X. Then by Corollary 2.67, S P LpY,Xq with
S � T � IX and T � S � IY . By Exercise 2.41-(a), we have

S� � T � � pT � Sq� � I�Y � IY � , T � � S� � pS � T q� � I�X � IX� .

Therefore T � is a bijection.
(b) ùñ (a): Conversely, if T � is a bijection, then by Theorem 2.65 (open mapping
principle) there exists c ¡ 0 such that

T �pBY �p0, 1qq � T �pBX�p0, cqq.

Therefore for any x P X, by Corollary 2.30-(i) we have

∥T pxq∥ � sup
fPBY � p0,1q

|fpT pxqq| � sup
gPT�pBY � p0,1qq

|gpxq| ¥ sup
gPBX� p0,cq

|gpxq| ¥ c ∥x∥ , for all x P X.

This implies that T is injective as T pxq � 0 implies c ∥x∥ ¤ ∥T pxq∥ � 0 which in turm
implies x � 0.

It remains to show that T is onto. Next, we show that RpT q is closed. To see this,
let y P RpT q, then there exists a sequence pxnqnPN in X such that limnÑ8 T pxnq � y.
Since ∥xn � xm∥ ¤ c�1 ∥T pxnq � T pxnq∥ for all n,m P N, we conclude that pxnqnPN is a
Cauchy sequence in X and hence converges to x � limnÑ8 xn. By the continuity of T ,
we have y � limnÑ8 T pxnq � T plimnÑ8 xnq � T pxq P RpT q. Therefore RpT q is closed;
that is RpT q � RpT q. Since T � is injective, by Exercise 2.42, RpT q � Y and hence
RpT q � RpT q � Y .

Corollary 4.28. Let X be a Banach space and let T P LpX,Xq. Then σpT q � σpT �q.

Proof. Note that pT � λIXq
� � T � � λIX� (by Exercise 2.41-(b)). Therefore by Theorem

4.27, λ P ρpT q if and only if λ P ρpT �q.

Definition 4.29. Let X be a normed vector space and let X� denote the dual space. For
a subspace M of X, we set

MK :� tf P X� : fpxq � 0 @x PMu .

For a subspace N of X�, we define

NK :� tx P X : fpxq � 0 @f P Nu .
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Exercise 4.30. Let X be a normed vector space and let X� denote the dual space. Let
M and N be subspaces X and X� respectively. Show the following:

(a) MK and NK are closed subspaces of X� and X respectively.

(b) M � pMKqK.

(c) pNKqK � N .

Lemma 4.31. Let X and Y be Banach spaces over K. Let T P LpX, Y q be such that T �

is injective and has a closed range. Then T is onto.

Proof. We may assume that K � R without loss of generality by considering X and Y are
vector spaces over R. If K � C, then the injectivity of T � and the closed range property
for the real case follows from Proposition 2.24.

Note that since T � P LpY �, X�q is injective and closed range, T � viewed as a bijection
from the Banach space Y � to the Banach space T �pY �q. By open mapping principle
(Corollary 2.67), there exists c ¡ 0 such that

∥T �pfq∥ ¥ c ∥f∥ , for all f P Y �. (4.13)

We claim that
T pBXp0, 1qq � BY p0, cq, (4.14)

where BXpx, rq (respectively, BY px, rq) denotes an open ball with center x and radius r
in X (respectively, Y ). We prove (4.14) by contradiction. To this end, assume to the
contrary that y P BY p0, cqzT pBXp0, 1qq Since T pBXp0, 1qq is closed, convex set (being a
closure of a convex set; see HW 4, Question 1) and f R T pBXp0, 1qq by Hahn-Banach
separation theorem (Theorem 2.38-(2)) there exists α P R and f P Y � such that

|pT �pfqqpxq| � |fpT pxqq| ¤ α   fpyq, for all x P BXp0, 1q. (4.15)

By (4.15) and y P BY p0, cq, we have

∥f∥ ¥ |fpyq|
∥y∥

¡
α

c
, ∥T �pfq∥ � sup

xPBXp0,1q

|pT �pfqqpxq| ¤ α. (4.16)

By (4.13) and (4.16), we obtain the desired contradiction. This proves (4.14).

The same argument in the proof of Step 2 of Theorem 2.65 (open mapping principle)
implies that

T pBXp0, 1qq � BY p0, c{2q.

Hence S is surjective.

Exercise 4.32 (Quotient space). Let pX, ∥�∥q be a normed vector space and let M be a
proper, closed subspace of X. We define an equivalence relation � on X as x � y if and
only if x� y PM . We denote the equivalence class containing x P X by x�M � tx� y :
y PMu and the collection of equivalence classes tx�M : x PMu by X{M .
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1. Check that � defines an equivalence relation on X and that X{M is a vector space
equipped with the scalar multiplication and vector addition defined by

αpx�Mq � pαxq �M, px�Mq � py �Mq � px� yq �M

for all α P K and x, y P X. Verify that the scalar multiplication and vector addition
operations defined above are well-defined in the sense that they do not depend on
the choice of representatives from the equivalence class.

2. Show that the quotient norm on X{M defined by

∥x�M∥ :� inf
yPM

∥x� y∥

is a norm on the vector space X{M .

3. Let π : X Ñ X{M denote the map defined by

πpxq � x�M, for all x PM .

Show that π is a bounded linear map whose operator norm is one. (Hint: Use
Riesz’s lemma).

4. Let BX � tx P X : ∥x∥   1u and BX{M � tx � M P X{M : ∥x�M∥   1u
denote the open unit balls centered at zero in X and X{M respectively. Show that
πpBXq � BX{M .

5. Show that a subset U � X{M is open in X{M if and only if π�1pUq is open in X.

6. Show that if X is complete, then so is X{M equipped with the quotient norm.

Theorem 4.33 (Closed range theorem). Let X and Y be Banach spaces and let T P
LpX, Y q. Then RpT q is closed (in Y ) if and only if RpT �q is closed (in X�).

Proof. ùñ Let RpT q be closed. Then the map rT : X{N pT q Ñ RpT q defined byrT px � N pT qq � T pxq is (well-defined) a bounded (since by Exercise 4.32-(4), we have∥∥∥rT∥∥∥ � ∥T∥), linear bijection between Banach spaces (see Exercise 4.32-(6) and recall

that RpT q being a closed subspace of a Banach space is a Banach space). Therefore by

Corollary 2.67, rT is invertible and rT�1 P LpRpT q, X{N pT qq. Let π P LpX,X{N pT qq
denote the quotient map as defined in Exercise 4.32-(3) and let ι P LpRpT q, Y q denote
the inclusion map, so that we have

T � ι � rT � π.
By Exercise 2.41-(a), we have

T � � π� � rT � � ι�.
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By Hahn-Banach extension theorem (Corollary 2.28), Rpι�q � RpT q�. Since rT is in-

vertible (that is, rT�1 P LpRpT q, X{N pT qq), by Exercise 2.41-(a), we have RprT � � ι�q �
pX{N pT qq�. Therefore

RpT �q � Rpπ� � rT � � ι�q � Rpπ�q.

We claim that Rpπ�q � N pT qK. Note that if f P Rpπ�q, then f � g � π for some
g P pX{N pT qq� and hence N pfq � N pπq � N pT q. Hence f P N pT qK.

Conversely, if f P N pT qK, then gpx �N pT qq � fpxq defines a well-defined, bounded
linear functional such that g P pX{N pT qq� that satisfies ∥g∥ � ∥f∥ (by Exercise 4.32-(4)).
So f � g � π � π�pgq P Rpπ�q. This proves

RpT �q � Rpπ�q � N pT qK.

Hence RpT �q is closed by Exercise 4.30-(a).
ðù : Conversely, let RpT �q be closed. Let Z � RpT q and let S P LpX,Zq denote
the map Spxq � T pxq for all x P X. By Hahn-Banach extension theorem (Corollary
2.28), RpS�q � RpT �q. Clearly, S� P LpZ�, Y �q is injective, since if f P Z� satisfies
S�pfq � 0, then fpT pxqq � fpSpxqq � 0 for all x P X and hence N pfq � RpT q which
implies N pfq � RpT q � Z or equivalently f � 0 (see also Exercise 2.42). Since S� is
injective with closed range (as the range is RpT �q), S is onto by Lemma 4.31. Hence
RpT q � RpSq � RpT q.

5 Appendix: Integration and measure

This appendix is meant to be a reminder of some basic results concerning integration
which were covered in the prerequisite (MATH 420). Let pX,Mq be a measurable space.
If E PM, then the indicator function of E is the function χE : X Ñ R is given by

χEpxq �

#
1 if x P E,

0 if x R E.

A simple function f : X Ñ C is a measurable function with finite range; or equivalently,
there exists n P N, z1, . . . , zn P C, E1, . . . , En P M such that fpxq �

°n
i�1 ziχEi

pxq for all
x P X. The following result concerning approximation of measurable functions by simple
functions.

Theorem 5.1 (Approximation by simple functions). Let pX,Mq be a measurable space
and let f : X Ñ C be a measurable function. Then there exists a sequence of simple
functions pϕnqnPN such that 0 ¤ |ϕ1| ¤ |ϕ2| ¤ . . . ¤ |f | and limnÑ8 ϕnpxq � fpxq for all
x P X. Furthermore, the convergence is uniform on any set on which f is bounded.

There are several results that concerning limits of functions and integrals as we recall
below.
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Theorem 5.2 (Monotone convergence theorem). Let pX,M, µq be a measure space. If
pfnqnPN is a sequence of non-negative, measurable functions such that 0 ¤ fnpxq ¤ fn�1pxq
for all x P X and n P N. Then f � limnÑ8 fn � supnPN fn is measurable and satisfies»

X

f dµ � lim
nÑ8

»
X

fn dµ.

Theorem 5.3 (Fatou’s lemma). Let pX,M, µq be a measure space. If pfnqnPN is a se-
quence of non-negative, measurable functions, then lim infnÑ8 fn is a measurable function
and satisfies »

X

lim inf
nÑ8

fn dµ ¤ lim inf
nÑ8

»
X

fn dµ.

We recall the dominated convergence theorem. We say that a measurable function
f : X Ñ C on a measure space pX,M, µq is integrable, if

³
X
|f | dµ   8.

Theorem 5.4. Let pX,M, µq be a measure space. If pfnqnPN be a sequence of integrable
(complex-valued) measurable functions and such that

(a) there exists f : X Ñ C measurable such that fn Ñ f µ-almost everywhere;

(b) there exists a non-negative, integrable and measurable function g such that |fn| ¤ g
µ-almost everywhere for every n P N.

Then f is integrable and »
X

f dµ � lim
nÑ8

»
X

fn dµ.

Definition 5.5 (Complex measure). A complex measure on a measurable space pX,Mq
is a map ν : MÑ C such that

(a) νpHq � 0,

(b) if pEnqnPN is a sequence of pairwise disjoint sets in M, then

ν

�
8¤

n�1

En

�
�

8̧

n�1

µpEnq,

where the series above converges absolutely.

We recall the Lebesgue-Radon-Nikodym theorem for complex measures. This is a
simple consequence of the corresponding result for signed measures as real and imaginary
parts of a complex measure are signed measures.

Theorem 5.6 (Lebesgue-Radon-Nikodym theorem). Let ν be a complex measure and µ
be a positive, σ-finite measure on a measurable space pX,Mq. Then there exist a complex
measure λ and an integrable function f : X Ñ C such that λ K µ and dν � dλ � f dµ.
Furthermore, the decomposition above is unique; that is, if there exist a complex measure
λ1 and an integrable function f 1 : X Ñ C such that λ1 K µ and dν � dλ1 � f 1 dµ, then
λ � λ1 and f � f 1 µ-almost everywhere.
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