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Preface

We will cover the following topics in this course:

1. Point set topology.

2. Normed vector spaces.
3. LP spaces.

4. Hilbert spaces.

5. Compact operators and their spectrum.

This notes will be updated throughout the term and made available at https://
personal.math.ubc.ca/~mathav/teaching/notes/421notes.pdf. Please check the date
on the first page to determine if you have the latest version. If you find any mistakes,
typos, or have any other feedback, please let me know. Most of this material can be found
in Folland’s book [Fol].

There are various exercises throughout these notes. Try them alll Some of the exercises
will be part of assignments (available on Canvas) and results mentioned in some of the
exercises will be used in lectures. The notes will include all the topics covered in class.
However the notes are rather terse as many oral discussions that gave further explanations
or put results into a broader context are omitted. Additionally, diagrams drawn on the
blackboard in class will not be reproduced in the notes.
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1 Point set topology

The notions of continuity, limits and convergence are central to analysis. Usually, we first
learn this in the setting of metric spaces (for example, e-0 definition of continuity or e-IN
definition of limits of a sequence). There are good reasons to go beyond metric spaces to
study these notions such as

(1) Many useful modes of convergence do not have a metric associated with them (for
example, notion of pointwise convergence of functions).

(2) Even for metric spaces, the properties of continuity, limits and convergence do not
depend on the specific choice of metric but rather on the topology induced by the
metric; that is, the collection of open sets associated with a metric.

The basic idea is to define a family of open sets.

Definition 1.1 (Topology). Let X be a non-empty set. A topology 7 on X is a family
of subsets of X such that

() &.XeT.

(ii) (closed under arbitrary unions) If {U, : a € A} is a collection such that U, € T for
all we A, then | J ., Ua e T.

acA

(iii) (closed under finite intersections) For any n € N and Uy,...,U, € T, we have

Ui Uie T.
The pair (X, T) is called a topological space.

Example 1.2. (1) {J, X} is a topology (called the trivial topology). P(X) (power set
of X) is a topology (called the discrete topology).

(2) In a metric space, open sets with respect to the metric form a topology (Exercise).
Recall that a metric space (X,d) is a set X along with a non-negative function
d: X x X —|0,00) (called the metric or distance function) such that

(i) d(x,y) = 0 for all x,y € X and d(x,y) = 0 if and only if z = y.

(il) (symmetry) d(x,y) = d(y,x) for all z,y € X.

(iii) (triangle inequality) d(z,y) < d(z,z) + d(z,y) for all x,y,z € X.
A set U in a metric space (X, d) is said to be open if for any x € U, there exists r > 0
(r can depend on x) such that B(z,r) c U, where B(x,r) = {y € X : d(x,y) <r} is
the open ball with center x and radius r. Then the collection of open sets T = {U :

U < X and U is open} is a topology on X and is called the topology induced by the
metric d.



(3) Let X be an infinite set. Then
T={Ac X: A= or A°is finite}
is a topology and is called the co-finite topology.

Notation: A < B allows for the possibility of equality; that is A c B is same as A € B.

There are various constructions of new topological spaces from old ones. For example,
a topology on X induces a topology on any subset Y < X.

Definition 1.3 (Relative topology). Let (X,7) be a topological space and let Y < X.
Then
Ty ={YnU:UeT}

is a topology on X and is called the relative topology or subspace topology on Y.

Exercise 1.4. Verify that all the topologies in Example 1.2 and Definition 1.3 satisfy
properties (i),(ii),(iii) in Definition 1.1.

Question 1.5. Let (X,dy) be a metric space and let A = X be a non-empty subset.
The function dy : A x A — R defined as d4(z,y) = dx(x,y) for all z,y € A is a metric
on A (called the restricted metric on A). Let Tx denote the topology on X induced by
dx. Let us consider two topologies on A.

1. The topology on A induced by the restricted metric d4.
2. The relative topology on A in the topological space (X, Tx).
What is the relation between the above two topologies on A7 Are they the same?

Unless stated otherwise, we always assume that (X, 7)) is a topological space for the
rest of this section.

Definition 1.6 (Open/closed sets). Let (X,7) be a topological space. Elements of 7
are called open sets. We say A c X is closed if A°is open; that is, A€ T.

Let A < X. We define the interior of A (denoted by A°) and the closure of A (denoted
by A) as

A° = interior of A = U V,

V' is open,
VcA

A = closure of A = ﬂ F.

F' is closed,
AcF

Note that A° is an open set and A is a closed set. Furthermore, A° is the largest open
subset of A and A is the smallest closed set that contains A.

The set A\A° is called the boundary of A and is denoted as JA.

If A= X, we say that A is dense in X.

If (A)° = &, we say A is nowhere dense in X.
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Since closed sets are complement of open sets, each of properties in Definition 1.1 can
be rephrased in terms of closed sets.

Exercise 1.7. Let (X, 7T) be a topological space.

(i) &, X are closed sets.
(ii) If (Fa)aea is a collection of closed sets, then () .4 Fu is closed.

(iii) If ne N and Fi, ..., F, are closed sets, then U?:l F} is closed.

We collect some basic properties of closure and interior of sets.
Lemma 1.8. Let (X, 7T) be a topological space and let A, Ay, Ay < X.
(1) A°c Ac A.

(2) A° is open and A is closed.

(3) A is open if and only if A = A°.

(4) A is closed if and only if A = A.

(5) (A°)° = (A) and (A°)° = A,

(6) (A°)° = A° and (A) = A.

(7) Ay = Ay implies A < A3 and A < A,.
(8) A1 U Ay = Aj U A,.

(9) (A1 N Ag)° = A n AS.

Proof. (1),(2) are immediate from the definition.

(3) If A is open, then A is one of V' in the definition of A° and hence A° > A. Hence

A° = A. The converse follows from (2).

(4) is similar to (3).

(5) Since A < A, we have (A)° = A°. Since (A)¢ is open (by (2)), we have (4)° < (A°)°.

Let B = (A°)°, so B is open (by (2)). Then B < A¢ (by (1)), so A < B°. Since B° is

closed, we have A = B°. So (A°)° = B < (A)°. Hence we conclude (A°)° = (A)°.

Replacing A with A¢ in (A9)° = (A)¢, we obtain A° = A", which in turn implies

(A%)° =

(6),(7) are easy (you do this!).

(8) A; U Ay is closed (by (2)) and contains A; U Ay (by (1)) and hence A; U Ay < A; U Ay,
onversely, A} c A; U Ay and Ay = A; U Ay implies (using (7)) that A; < A; U A, and

Ay A} U Ay, This in turn implies 4; U Ay < Ay U As.

(9) is similar to (8). O




Exercise 1.9. Let A and B be nowhere dense subsets of a topological space. Then show
that A U B is also nowhere dense.

The notion of closure is related to accumulation points.

Definition 1.10 (Neighborhood and accumulation points). Let 2 € X and A < X. We
say that A is a neighborhood of x if there exists an open set U such that z € U and U < A.
We say that x is an accumulation point of A it An (U\{z}) # & for any neighborhood U
of . By acc(A), we denote the set of accumulation points of A.

Note that if U is a neighborhood of x, then there exists an open set V withz e V < U.
So V is also a neighborhood of x. Therefore, x is an accumulation point of A if and only

if An (V\{z}) # & for all open neighborhood of z.
Proposition 1.11. (1) A= A U acc(A).
(2) A is closed if and only if acc(A) < A.

Proof. (1) “2”: A c A, so we need to show that acc(4) = A. Equivalently, it suffices to

show that (A)¢ < (acc(A))°. Solet x € (A)°. Hence V = (A)is an open neighborhood
of . Since A = A, we have V n A = &, and hence = ¢ acc(A). In other words,
x € (acc(A))°.

“=”: We need to show A = A U acc(A) or equivalently, A° N (acc(A))¢ < (A)°. To
this end, let z € A° (acc(A))¢, so x ¢ A, x ¢ acc(A). Therefore, there exists an open
neighborhood V' of x such that A n (V\{z}) = &J. Since x ¢ A, we have AnV = ;
that is, A = V¢ so A < V¢ (since V° is closed) and hence V < (A)¢. Since x € V, we

have x € (A)¢ which concludes the proof.

(2) =: Ais closed implies A = A and hence acc(4) = A = A (by (1)).
<« acc(A) < A implies A = Auacc(A) = A (by (1)). Hence A is closed.

We introduce a terminology to compare two topologies on a space.

Definition 1.12. Let 77,75 be two topologies on X. If 7; < T3, we say that T; is weaker
(or coarser) than Ty. If Ty < Ts, we say that Ty is stronger (or finer) than 7.

The following property is readily verified from the definition of a topology.

Exercise 1.13. If {7; : i € I} is a collection of topologies on X, then [,.; 7; is a topology
on X.

The following is a common way to define a topology (we will use this method to define
weak topology and product topology in §1.2).



Definition 1.14 (Topology generated by a collection of sets). Let X be a set and £ <
P(X) be a collection of subsets of X. Then

TE) = ﬂ{T :Ec T, T is a topology on X }
is a topology (see Exercise 1.13) and is called the topology generated by E.

In other words, the topology T (&) is the smallest topology that contains £ in that it
has the fewest open sets among all topologies that contain £.

The following exercise provides a more concrete description of the topology generated
by £.

Exercise 1.15. Let £ <« P(X) denote a collection of subsets of X. Let £ denote the set
of finite intersections of elements of &; that is

5’2{ﬂEi:neN,Eieé’forallz’:1,...,n}.

j=1
Show that
T(E) =1{, X}U{U U, : A is an arbitrary set and {U, : « € A} is a collection of sets in &'},

acA
(1.1)

In other words, 7 (£) contains the empty set, X, and arbitrary unions of finite intersections
of elements in £. Hint: For the inclusion ‘>’, use Definition 1.1. For the inclusion ‘c’,
show that the right hand side of (1.1) is a topology containing €.

It is a convenient property that the usual topology on R is generated by unbounded
open intervals as described in the following exercise.

Exercise 1.16. Let d be the usual metric on R; that is d(z,y) = |z —y| for z,y € R.
Let 7 denote the topology on R induced by d (see Remark 1.2-(2)). Let £ denote the
collection

E={(—wo,t) : te R} U {(t,00) : t € R}.

Show that T =T (&).
It is often useful to describe topology not by giving all open sets but just some collec-

tion of open sets. This is similar to how open balls are used to describe all open sets for
metric spaces.

Definition 1.17 (Base and neighborhood base). (1) Let (X,7T) be a topological space
and x € X. A neighborhood base for T at x is a family N, of subsets of X such that

(a) every V € N, is a neighborhood of .
(b) if U € T and z € U, then there exists V € N, such that V < U.



(2) A base B for T is a family B < T such that B contains a neighborhood base for T at
x for all x € X.

The following example illustrates the above definition.

Example 1.18. Let (X, d) be a metric space and let 7 be the topology induced by d on
X (recall from Example 1.2-(2)).

(i) Let 2 € X. Then N, = {B(z,r) : r > 0} is a neighborhood base at x.
(ii) For any x € X, {B(z,n" ') : n € N} is a neighborhood base at z.
(i) B={B(y,r):ye X,r > 0} is a base for T.

Any collection of neighborhood base uniquely determines the topology as outlined in
the following exercise.

Exercise 1.19. (a) Suppose that X is a set and for each = € X, we are given a collection
N, of subsets of X satisfying:

(i) for all V e N, we have z € V.
(i) if Vi, V4 € N, there exists V3 € NV, such that V5 < V; n V4.
(iii) for each z € X, N, # &.
)

(iv) For each U € N (z), there exists V < X such that x € V < U and such that for
every y € V, there exists W € N, such that W < V.

Then show that there is a unique topology T on X such that N, is a neighborhood
base at x, for all x € X.

(b) Conversely, if (X, T) is a topological space and N, is a neighborhood base at x for
each x € X, then show that the collection N, of subsets of X satisfy the properties
(i), (ii), (iii), (iv) above.

Here is a description of all open sets in terms of sets in the base.

Proposition 1.20. Let (X, T) is a topological space and € < T. Then & is a base for T
if and only if every U € T is a union of sets in .

Proof. (= ): Let € be a base for T and U € T. If x € U, there exists V, € £ such that
x €V, c U. Therefore U =, Va-

() Forze X, weset & ={V, € & :2xeV} < & Letus check that &, is a
neighborhood base for 7 at x. Note that property (a) in Definition 1.17-(1) is true by
the definition of &,. For (b), note that if z € U € T, then U = | Jyp B for Ep € E for
all 8 € B (since every U € T is a union of sets in £). So there exists 5, € B such that
x € Eg,. Thus Eg, € &, and Eg, < U. O



Not every collection of subsets can be a base for a topology. The following proposition
describes a necessary and sufficient condition for a collection of subsets to be a base for a
topology.

Proposition 1.21. Let £ < P(X). & is a base for a topology on X if and only if the
following conditions are satisfied:

(a) For all x € X, there exists V € € with x € V.

(b) For allU,V € € and for allx € U NV, there exists W € € such that te W c UnV.

Proof. (=) (a) follows from the fact that £ contains a neighborhood basis at z. For
(b), note that x € U n'V € T, so there exists W € £ such that te W c U n V.

(«<=): Let T ={U < X : for each x € U, there exists V € £ such that x € V < U} (by
Definition 1.17, this is the correct way to define the topology from the base). Let us verify
that 7T is a topology on X. Note that ¢, X € T (by (a)). If {U, : a € A} is a collection
of sets in T, then U = |J,.4 U also satisfies the definition condition for 7 and hence
U € T. To show closure under finite intersections, it is enough to show that Uy, Uy € T
implies Uy nUy € T (why?). To this end, let Uy, U; € T and z € Uy nUy. By the definition
of T, there exists Vi, V5 € € such that x € Vi < U; and x € V5 < Uy. By (b), there exists
W e € such that z € W < Vi n V5 < Uy n Usy. Therefore by the definition of 7, we have
that Uy n Uy € T. Hence T is a topology on X and £ is a base of T (by the definition of
7). O

The class of topological spaces are far too general. Topological spaces that occur in
applications often satisfy additional conditions. We focus on two types of such conditions
called axioms of countability and axioms of separability. We start with countability axioms
for a topological space (X, 7) which imposes conditions on existence of countable base or
neighborhood base (recall Definition 1.17).

Definition 1.22 (Countability axioms). We say that (X, 7)) is first countable if for each
x € X, there is a countable neighborhood base for T at x.
We say that (X, 7)) is second countable if there is a countable base B for 7.

Obviously, every second countable space is first countable. Any metric space (X, d) is
first countable (this follows from Example 1.18-(ii)).

Exercise 1.23. Find a first countable topological space that is not second countable.

First countable topological spaces can be understood using convergence properties of
sequences.

Definition 1.24 (Convergence of a sequence). Let (z,).en be a sequence in X and let
x € X. We say that x, converges to x as n — o0, if for any neighborhood U of z (or,
equivalently, any open neighborhood of x), there exists N € N such that z, € U for all
n = N. We denote this by x, — o or x, RNy



Question: Let X = [0,1],7 = {0, X} and x,, = + for all n € N. Which y € X does z,
converge to in the topological space (X,7)? Hint: Use the above definition.

The following exercise is meant to check that the notion of convergence in Definition
1.24 is a generalization of the usual definition in metric spaces.

Exercise 1.25. Let (X, d) be a metric space and let T denote the topology induced by
the metric d. Let (z,)neny be a sequence in X and let « € x. Then the following are
equivalent:

(a) x, — x in the sense of Definition 1.24 on the topological space (X, 7).
(b) For any € > 0, there exists N € N such that d(z,,z) <€ for alln > N.
(¢) limp—eo d(xp, x) = 0.

The following proposition describes the closure of a set in a first countable topological
space using sequences. It is pleasing to know that the characterization of closure using
limits of sequences for metric spaces also works for first countable topological spaces.

Proposition 1.26. Let (X, T) be a first countable space and A = X. Then z € A if and
only if there exists a sequence (Ty)nen 0 A such that x,, — x.

Proof. ( <= ): Suppose = ¢ A and (x,)nen. Then V = (A)¢ is an open neighborhood of
x. Therefore x,, ¢ V for all n € N (since x,, € A for all n € N and V n A = ). Hence
(n)nen does not converge to x as n — . (Note that we don’t need first countability for
this implication. We only need it for the proof of the converse).

(= ): Let x € A and let {U; : j € N} be a countable neighborhood base for T at
x. Set 'V, = ;L:l U; for all n € N (since finite intersections of neighborhoods of x is
a neighborhood of x; why?). Then z € V,, and V,, is open for all n € N. Therefore
{V,, : n € N} is also a neighborhood base for 7 at z. Since v € A = A U acc(A) (see
Proposition 1.11-(1)), we have V,, n A # ¢J for all n € N. Let x, € V;, n A for all n € N.

We claim that (z,,) is the desired sequence that converges to x. To this end, let G be
a open neighborhood of . Since {V,, : n € N} is a base, there exists m € N such that
V., G. Then z,, €V, cV,, © G for all n = m. Hence z,, — =. ]

We say that (X, T) is separable if there is a countable dense set (that is, there is a
countable set A ¢ X such that A = X).

Exercise 1.27. (1) If (X, 7) is second countable, then X is separable. (Hint: Pick one
element from each set in a countable base to form a countable set and show that this
set is dense).

(2) Suppose that (X,7T) is a topological space induced by a metric d : X x X — [0, 00)
such that X is separable. Then show that (X, 7) is second countable. (Hint: Use a
countable dense set to define a countable base).
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Next, let us introduce the axioms of separation (usually denoted by Ty, T, 1o, T3, Ty).
The letter ‘T’ is due to the German term Trennungsazriom which means separation axiom.

Definition 1.28 (Separation axioms). (1) We say that (X,7) is T} if for all z,y € X
with  # y, there exists an open set U, € T such that y € U, and = ¢ U, (by
symmetry, there exists U, € T such that z € U, and y ¢ U,).

(2) We say that (X,7) is Ty (or Hausdorff) if for all x,y € X with z # y, there exist
open sets U,, U, with U, nU, = J,x € U,y € U,,.

(3) We say that (X,T) is T3 (or regular) if (X,7T) is T} and if F is closed and = € F¢,
there exist disjoint open sets U,V with FF c U and z € V.

(4) We say that (X, T) is Ty (or normal) if (X,7T) is T; and if F, F; are disjoint closed
sets, there exist disjoint open sets Uy, Uy with Fy; < U; and Fy, < Us.

Singletons are closed in T spaces as shown below.

Lemma 1.29. (X, 7) is Ty if and only if for all x € X, {x} is closed.

Proof. == For y # z, let U, be the open set with y € Uy,z ¢ Uy. Then J ¢\, }Uy =
X\{x} is open, so {x} is closed.
—: Ifz,y e X withz # y, then U, = {y}¢, U, = {x}° satisfies the desired properties. [

Clearly every T, space is T}. By Lemma 1.29, it follows that every T} space is T3 and
every T3 space is T5.
Sequences in Hausdorff (or 73) spaces can have at most one limit.

Lemma 1.30. Let (X, T) be Ty and x,y € X with y # x. If x,, — z, then =, b y.

Proof. Choose disjoint open sets U,, U, such that x € U,,y € U,. Since z, — x, there
exists N € N such that x, € U, for all n € N. Thus z, ¢ U, for all n = N (since
U, n Uy, = &). Therefore z,, does not converge to y. [

1.1 Continuous maps

We define the notion of continuity of a function between two topological spaces.

Definition 1.31. Let (X, 7x) and (Y, 7Ty) be topological spaces and let f: X — Y be a
function. We say that f is continuous if f~1(V) is open in X for all open sets V in Y;
that is, f~1(V) e Tx for all V € Ty.

Let C(X,Y) denote the set to continuous maps from X to Y. f Y =RorY =C
with the usual topology induced by the Euclidean metric, then we abbreviate C'(X,Y) as
C(X).

Since closed sets are the complement of open sets and f~1(Y\A) = X\ f~!(A) for any
A c Y, we have the following alternate criterion for continuity: a function f: X — Y is
continuous if and only if f~1(A) is closed in X for any closed set A in Y.

The following the definition of continuity at a point.
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Definition 1.32. Let (X, Tx) and (Y, 7y) be topological spaces. Let z € X and f: X —
Y be a function. We say that f is continuous at z if for any neighborhood V' of f(x)
there exists a neighborhood U for z such that f(U) < V (or equivalently, f~*(V) is a
neighborhood of x).

Remark 1.33. If f: X — Y and g : Y — Z are continuous maps between topological
spaces, then h = go f : X — Z is continuous. Proof: Note that if V' is an open subset
of Z, then h~'(V) = f~!(¢7(V)). Thus ¢ '(V) is open in Y (by continuity of g) and
hence f~!(g7!(V)) is open in X by the continuity of f.

Exercise 1.34. Let (X, 7T) be a topological space and let f : X — Y be a surjective (or
onto) function. Then show that

Ty ={UcY|f'(U)eT}

is a topology on Y (this is called the quotient topology). Furthermore, show that 7y is
the strongest (or finest) topology on Y such that f is a continuous function.

If X and Y are metric spaces, then Definitions 1.31 and 1.32 for the corresponding
induces topologies are equivalent to the usual e-0 definition. This is the content of the
following exercise (you have likely encountered the equivalence between (b) and (c¢) below
in an earlier course).

Exercise 1.35. Let (X,dx), (Y,dy) be metric spaces and let Tx, 7y denote the corre-
sponding topologies induced by the metrics dx,dy respectively. Let f : X — Y be a
function and let x € X. Then the following are equivalent:

(a) fis a continuous at = between the topological spaces (X, Ty) and (Y, 7y) in the sense
of Definition 1.32.

(b) For any € > 0, there exists § > 0 such that if 2’ € X satisfies dx(2',z) < 9, then
dy (f(2), f(z)) <e.

(c) For any sequence (z,),en such that z,, — x, we have f(x,) — f(x).

We confirm the familiar relationship between Definitions 1.31 and 1.32.

Proposition 1.36. Let X, Y be topological spaces. Then f: X — Y is continuous if and
only if f: X —Y is continuous at all v € X.

Proof. = : Let x € V and V be a neighborhood of f(z). Then there exists V' open
in Y with f(z) € V' < V. By the continuity of f, f~!(V’) is open with z € f~1(V’). So
f~1(V') is a neighborhood of .

«=: Let V<Y beopen. If z€ f~1(V), then f(z) € V, so V is a neighborhood of f(z).
By the continuity of f at z, f~'(V) is a neighborhood of z. So there exists an open set
U, such that x € U, < f~4V). Therefore x € (f~1(V))°. Hence f~1(V) < (f~1(V))°
which implies that f~'(V) is open. O
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Proposition 1.37. Let (X, Tx) and (Y, Ty) be topological spaces such that Ty = T(E)
where £ < P(Y). Then f : X — Y is continuous if and only if f~(F) € Tx for all
Ee€.

Proof. Since £ < Ty, the ‘only if’ part follows immediately from the continuity of f.
For the converse, we use (1.1) along with f~ (", E5) = (2, f HE), [ (U uen Ba) =

i=1

Uwea f7H(Es) and Definition 1.1. O
Definition 1.38 (Homeomorphism). Let f : X — Y be a bijection (one-to-one and onto)
between topological spaces such that f and f!:Y — X are continuous. Then we say
that f is a homeomorphism between X and Y.

We say that two topological spaces X and Y are homoemorphic if there exists a
homeomorphism f between X and Y.

A topological property of a space is one which is preserved under homeomorphisms.

Example 1.39. (1) R and (0,1) are homeomorphic. To see this, note that x — tanz
is a homeomorphism between (—m/2,7/2) to R. Therefore f : (0,1) — R defined
by f(z) := tan (7 (z — })) is one-to-one, onto and continuous such that f~! is also
continuous.

(2) The relation of being homeomorphic forms an equivalence relation among topological
spaces. That is, every topological space is homeomorphic to itself (reflexive). If X and
Y are homeomorphic, then Y and X are homeomorphic (symmetric). If X and Y are
homeomorphic and Y and Z are homeomorphic, then X and Z are homeomorphic.

(3) (0,1) and [0, 1] are not homeomorphic (with respect to the topologies induced by
the usual metric). This is not clear now but we will see why by finding a suitable
topological property which [0, 1] has but (0, 1) does not.

(4) The property of being Hausdorff (or 7%) is preserved under homeomorphism and hence
is a topological property. This is also true for other axioms of separation and axioms
of countability.

The following exercise outlines an argument that metric spaces are normal.

Exercise 1.40. Let (X, d) be a metric space and let T denote the topology induced by
the metric d.

(a) If F' < X is closed, then show that the function dp : X — R defined by
dp(z) = inf{d(z,y) : y € F}

is a continuous function such that dp(z) = 0 if and only if 2 € F. Hint: Show that
|dp(x1) — dp(z2)| < d(z1, x2) for all 21,29 € X and use this to prove continuity.

13



(b) If Fy, F, are disjoint closed sets, show that the function g : X — R defined by
g(x) =dp (x) — dp,(x), forall xe X,

where dp,dp, : X — R is as given in (a) satisfies the following properties: ¢ is
continuous, g(x) > 0 for all x € F; and g(z) < 0 for all z € F}.

(c) Using the function in (b), show that (X, 7) is Ty. Hint: Consider g~!(U) for suitable
open sets U.

1.2 Weak and product topologies

We already saw one way to construct new topological spaces from old; namely, induced
topology (see Definition 1.3). We will see two more constructions: weak topology and
product topology. Weak topology is defined so as to make a collection of maps continuous.

Definition 1.41 (weak topology). Let X be a set and (Y, 7.),« € A be a collection of
topological spaces. Let f, : X — Y,,a € A be a collection of functions (usually, Y, = R
or C). Let T be the weakest (or coarsest) topology on X which makes all the functions
fo continuous. Then 7T is called the weak topology on X generated by {f. : o € A}.

Equivalently, 7 is the topology generated by {f,*(U,) : « € A,U, € T,}. A base for
T is given by (check this using Proposition 1.21!)

{ﬂ o, (Ua)

In the following exercise, we see that the relative topology can be viewed as a special case
of weak topology.

a; € AUy, €T, forallizl,...,n}.

Exercise 1.42. Let (X, T) be a topological space and let Y < X be a non-empty subset
of X. Let ¢ : Y — X denote the inclusion map «(y) = y for all y € Y. Then show that
the weak topology on Y generated by {:} is the relative topology on Y (recall Definition
1.3).

The following exercise outlines an useful condition for continuity of functions whose
target space is equipped with weak topology (cf. Proposition 1.37).

Exercise 1.43. Let X be a set and (Y,,7,),« € A be a collection of topological spaces.
Let f, : X — Y,, a € A be a collection of functions and let X be equipped with the weak
topology on X generated by {f, : @« € A}. Let Z be another topological space and let
g : Z — X be a function (not necessarily continuous). Then the following are equivalent:

(a) ¢g: Z — X is continuous.

(b) faog:Z —Y, is continuous for all o € A.
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Next, we would like to define a topology on product of topological spaces. Let X, a €
A be a collection of sets. The product space (as a set) | [,c4 Xo is defined as

nXaz{f:AHUXa:f(a)eXaforallaeA}. (1.2)

This is consistent with the previous definition of products you may have seen. For
example, elements of R x R are usually denotes as ordered pairs (x, y), which is equivalent
to representation as a function f : {1,2} — R which corresponds to the ordered pair
(f(1), f(2)). If X, =Y for all @ € A, we abbreviate [[, X, as Y. Similarly, if X, =Y
for all o € A and A = {1,2,...,n}, we denote [ [, X, as Y, which can also be though of
as ordered n-tuples of elements of Y.

For each oy € A, we define projection maps (or coordinate maps) ma, : [ [,e4 Xa = Xa,
by
oy (f) = flaq), forall fe]] caXa (1.3)

Question: If X, # J for all o € A, then is [ [ 4 Xo # &7 Intuitively, we can choose
fiA—U,eaXa as f(a) = z, where z, is an arbitrary element of X, for each o € A.
This gives f € [[,c4 Xo and hence [ .4 Xo # . However, this ‘proof’ does not follow
from the usual axioms of set theory and this property has to be assumed as an additional
axiom called the aziom of choice: if X, # & for all a« € A, then [[ ., Xo # &. We will
always assume that axiom of choice holds.

acA

Now, that we have defined the product space | [,.4 Xa as a set, we need to define a
topology on it.

Definition 1.44 (Product topology). Let (X,,7.),« € A be a family of topological
spaces. Then the product topology 7 on X := [[,c4 Xa is the weak topology on X
generated by the projection maps {m, : X — X,|a € A} (see (1.2)). So a base for T is

given by
e

Warning: It is not true in general that if U, € T, for all o« € A, then [ [ .4, Us € T. That
is, product of open sets need not be open in the product topology. However it is true if
A is finite.

Product topology preserves some topological properties of the components.

Yo € A, Uy, eﬁiforallizl,...,n}. (1.4)

Proposition 1.45. If each X,,a € A is a Hausdorff topological space, then ||
equipped with the product topology T is Hausdorff.

aeA

Proof. Let f,g : A — |, Xa belong to X = [] .4 Xa such that f # g. Then there
exists ap € A such that f(ag) # g(a). Since (Xao, Tay) is Hausdorff, there exist
Uy ao),Ug(ao € To such that Usg) N Ugag) = flag) € Uf (a0), 9(0) € Ug(ao) There-
fore T oo (Uf(ao ) W_I(Ug(ao ) €T and f € Tag (Uf(ao)),g € m,, ( g(ao)) with T oo (Uf(ao))

? ag

T (Ug(ag)) = - Therefore (X, T) is Hausdorf. O
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We say that a sequence (f,,) of functions in X4 converges pointwise to f : X — A, if
for each a € A, (f.(«)) converges to f(a) in (X, T) (see Definition 1.24). The product
topology is the topology that corresponds to pointwise convergence of functions as we see
below (see also Exercise 1.60).

Proposition 1.46. Let (X, T) be a topological space and let A be a set. Let (f)nen be a
sequence in X4 and let f: A — X. Then the following are equivalent:

(a) fo— f in XA with respect to product topology.
(b) fn converges pointwise to f.

Proof. (a) = (b): Fix a € A. Let U be a open neighborhood of f(a) € A. Then
V = 7, }(U) is an open subset of f in X#. Since f, — f in X4, there exists N € N such
that f, € V for all n = N. Therefore f,(a) € U for all n = N; that is, f,(a) — f(«@) in
(X, 7).

(b) = (a): Let W be an open neighborhood of f in X“. Since a base for product
topology is given by (1.4), there exist ay,...,ap € A and U,, € T for all 1 < i < k such
that f e V and V < W, where

V={geX":gloy)eU, foralll<i<kl.

Since f € V, f(a;) € U,, for all 1 < i < k. Since f,(o;) — f(;) as n — oo for each
1 < i < k, there exists Ny, ..., N, € N such that f,(a;) € U,, for all n = N; and for all
1 < i < k. Therefore by letting N = max;<;<x N;, we have f, e V. W foralln = N. So
£, fin XA, 0

The argument in the proof of Proposition 1.46 also works if all X, are different spaces
for different values of o € A.

The following exercise clarifies an useful relation between weak and subspace topolo-
gies.

Exercise 1.47. Let X be a set and (Y, 7,),« € A be a collection of topological spaces.
Let f,: X — Y,,a € A be a collection of functions. Let T denote the weak topology on
X generated by {f, : a« € A}. Let W < X be non-empty. We have two possible ways to
define a topology on W.

(1) Let S denote the subpace (or induced) topology on W of the weak topology 7 gen-
erated by {f, : a € A}.

(2) Let S denote weak topology on W generated by {go : a € A}, where g, := fa‘w is
the restriction of f, to W for all a € A.

Show that

~

S§=38.

In words, the above equality can be paraphrased as follows: weak topology on subspace is
equal to the subspace topology of weak topology.

16



1.3 Urysohn’s lemma and Tietze extension theorem

The next few results say that normal (or 7)) topological spaces have lots of continuous
functions. We begin with a technical lemma that is key to construction of continuous
functions.

Lemma 1.48. Let X be a normal topological space and let A, B be disjoint closed sets.
LetD ={k27": k,ne N, 1<k <2"—1} < (0,1). Then there exists a family {U, : p € D}
of open sets such that for all 0 <r < s <1 with r,s € D, we have

AcU,cU, cU,c B

Proof. As A, B are closed, there exists open U,V with A <« U, B c V,UNV = .
Therefore

AcUcUcV°c B
Set U1/2 =U.

Now, we can proceed by induction by the same argument as above. For, this purpose,
set Uy = Uyp = A and U; = B°. Suppose Upp-n < Upg—n < Ugy1)2-» is given for all
0 <k <2"—1, where Uggs1)2-— 1s open. Then Uy~ and U(CkH)Q_n are disjoint closed
sets. Therefore by the argument above, there exists an open set U such that

Uszn cUc U (e U(k—&-l)Q*"-
We set Ugpi1)2-(n+1y = U. This completes the induction step. O]

The family of open sets in Lemma 1.48 is useful to construct continuous functions.
(Compare the proof below with the construction in Exercise 1.40-(b)).

Theorem 1.49 (Urysohn’s lemma). Let X be a normal topological space and let A, B be
disjoint closed sets. Then there exists a bounded, continuous function f: X — [0,1] such
that f =0 on A and f =1 on B.

Proof. Let {U, : p € D} be the family of open sets as given in Lemma 1.48. Set U, =
A, U; = X. Define f: X - R as

f(x) :=inf{peDu{0,1} :z e U,}. (1.5)
We claim that f satisfies the desired properties. Clearly 0 < f(x) < 1forallze X, f =0
on Aand f=1on B¢

It remains to show that f is continuous. So it is enough to prove that f=!((—oo,t))
and f~1((t,0)) are open for all t € R (Do you see why? If not, review Proposition 1.37).

Let us first consider f~'((—o0,t)) for t e R. If ¢ > 1 (resp. t < 0), f~1((—o0,1)) is X
(resp. &) and hence open. It suffices to assume ¢ € (0, 1]. Note that f(z) < ¢ if and only
if there exists p < ¢, p € D such that z € U,. Therefore

FH (=0, ) = {a: f(2) <t} = | U,

p<t7
peD
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which is open (being an union of open sets).

Next, we need to show that f~1((,00)) is open for all t € R. If t < 0 (resp. t = 1),
then f=1((¢,00)) is X (resp. &). So it suffices to assume ¢ € [0,1). Note that f(x) > t if
and only if x ¢ U, for some p > t, p € D which in turn holds if and only if = ¢ Fq for some
q>t,qeD (since U, c U, for all t < q < p). Therefore

FH o) = [ us = @)

p>t, q>1,
peD qeD
which is open (being an union of open sets). O

Notation: Let B(X,R) denote the set of bounded functions f : X — R.
Let BC(X,R) denote the set of bounded and continuous functions f: X — R.

Let do(f,9) = sup,ex | f(x) — g(2)] for all f,g€ B(X,R).

Lemma 1.50. (i) (B(X,R),dy) is a complete metric space.
(11) BC(X,R) is a closed subspace of (B(X,R),dy).

Proof. (i) Let f, be a Cauchy sequence in B(X,R). Note that |f,(z) — fm(z)| <
deo(fn, fm) for all m;n € N, for each 2 € X. So for any z € X, (f,(z))nen is a
Cauchy sequence in R, and converges to a limit, say f(x) € R. Since (f,) is Cauchy,
for any € > 0, there exists N € N such that |f,(z) — fi(z)| < € for all m,n = N
and all x € X. Let m — o0, to obtain sup,.y | fn(z) — f(z)| < € for all n € N with
n = N. Therefore lim, o do(fn, f) = 0, supex |f(2)| < sup,ey | [y (z)] + € < o0
and hence f € B(X,R).

(ii) Let f, € BO(X,R), f, = f in (B(X,R),dy); that is lim,,_,o do(fn, f) = 0.

By (i), it suffices show that f € C'(X,R). To this end, let z € X,e > 0. Let N e N
be such that do(f,, f) < €/3 for all n = N. Using the continuity of fy at z, choose
a neighborhood U of = such that |fy(y) — fn(x)| < €/3 for all y € U. Therefore, for
all y e U, we have

1F () = f@) < |F) = In@) + [n(y) = fn(@)] + [fn(z) = f )]

<
< 2o (fn, ) + [ fn(y) = fn(z)| <e

Therefore, f is continuous at x.

By Lemma 1.50, the space (BC(X,R),dy) is a complete metric space.
Our next goal is to prove Tietze extension theorem.

Theorem 1.51 (Tietze extension theorem). Let X be a normal topological space and let
A c X be closed and f € C(A,[a,b]). There exists F € C(X,[a,b]) such that F|, = f:
that is F(z) = f(x) for all x € A.
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Remark 1.52. The assumption that A is closed is necessary. For example, if X =
[0,1], A = (0,1], f(z) = sin(1/z) for all z € A, then there is no continuous extension F' of
f to X.

The proof of Tietze extension theorem relies on repeated use of the following lemma.

Lemma 1.53. Let X be a normal topological space and let A < X be closed and h €
C(A,]0,A]), where A > 0. Then there exists g € C(X,[0,)/3]) such that g < h < g+ 2\
on A.

Proof. Set Fy = h™'([0,A/3]) and F, = h'([2)\/3, A]). By the continuity of h, F} and
F, are closed subsets of A (with respect to the relative topology). Since A is closed, F}
and F; are closed in X (verify this!). By Urysohn’s lemma (Theorem 1.49), there exists
§ € C(X,[0,1]) such that g = 0 on F; and g = 1 on F. Set g = 347 € C(X,[0,A/3]).
Then we have

A
g(x) =0, 0<h(z)< 3 for all x € Fy,
A2
g(x) = 3 §>\ < h(z) <\, forall z € Fy,
2
0<g(x) < %, % < h(z) < ?A’ for all x € A\(F} u F3).
Combining the three cases, we obtain ¢ < h < g + %)\ on A. O

Proof of Theorem 1.51. By replacing f with (f —a)/(b— a) if necessary, we may assume
[a,b] = [0, 1].

Use Lemma 1.53 with h = f,A = 1, to obtain ¢; such that ¢, € C(X,[0,1/3]),
91<f<§+glonA;thatis,0<f—gl<%onA.

Use Lemma 1.53 again with h = f — g1, A = 2/3 to obtain ¢, € C(X,[0,2/3%]) with
0<f—gl—92 < (2/3)2 on A.

Continuing, we obtain ¢1, go, ..., gn,... such that 0 < g, < 2;—;1,0 <=0 10k <
(2)" on A. Therefore F,, := >},_; gi, converges in (BC(X,R), dy) to a continuous function
F (by Lemma 1.50) as n — oo such that F' = f on A. O

1.4 Nets

Nets are generalizations of sequences. Sequences are indexed by N while nets are indexed
by a (possibly uncountable) directed set.

Definition 1.54 (Directed set). A directed set A is a set with a relation < such that

(i) (reflexive) o < « for all « € A.

(i) (transitive) o < and 8 <y implies a < 7 for all «, 5,7 € A.
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(iii) (existence of arbitrarily large elements) For any «, 5 € A, there exists v € A such
that a <~y and § < 7.

Notation: We will denote oo <  also as = «a.

Example 1.55. (1) (N, <) is a directed set, where < has the usual meaning; that is a < b
if and only if b — a is non-negative.

(2) Z% with relation < defined by (z1,...,24) < (y1,...,%qa) if 7; < y; foralli=1,...,d.

(3) This is the most important example for us. Let (X, 7) be a topological space and let
x € X. Let NV, denote the set of neighborhoods of z. We define U <V for U,V € N,
if V< U (order by reverse inclusion).

(4) Let (A, <a),(B,<p) be two directed sets. Then the product A x B equipped with
the relation < defined by (aq,b) < (ag,be) if and only if a; <4 as and by <p by is a
directed set.

Exercise 1.56. Verify that each of the directed sets in Example 1.55 satisfies the prop-
erties in Definition 1.54.

Since nets generalize sequences (due to Example 1.55-(1)), we need to define a suitable
notion of convergence (or limits) of nets. Cluster points are generalization of subsequential
limits.

Definition 1.57. A net in X is a function o : A — X; often denoted as o — x, or
(Za)aea, where (A, <) is a directed set.

Let (X,7T) be a topological space and let (x4)aea be a net.

1. We say that (24)aea converges to x € X if for every neighborhood U of z, there
exists o € A such that zg € U for all 8 = ap. We denote this by z, — .

2. We say that x € X is a cluster point of (24)aea if for every neighborhood U of z
and for any a € A, there exists 8 > « such that x3 € U.

Let us recall that points in the closure of a set can be characterized as sequential limits
for first countable topological spaces (see Proposition 1.26). However, if the topological
space is not first countable, not every point in the closure is a sequential limit as given
in Proposition 1.26 (you will encounter such an example in Assignment). The following
extension of Proposition 1.26 is one of the motivations behind studying nets.

Proposition 1.58. Let (X,T) be a topological space, E < X, and x € X.

(a) x € acc(E) if and only if there exists a net in E\{zx} which converges to x.

(b) x € E if and only if there exists a net in E which converges to .
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Proof. We only prove (a) as (b) is very similar.

= : Let (N, <) denote the directed set in Example 1.55-(3). For U € N, since z is
an accumulation point of E, there exists zy € (U\{z}) n E # . So (zy)ven, is a net
in E\{z}. For any U € N, and any V € N, such that U < V', we have zy € V < U, so
Ty —> 1.

<« Let x4, — x, where (24)aea is anet in E\{z}. Given any U € N,, by the convergence
of (z,) to z, there exists aw € A such that z, € U n (E\{z}). So U n (E\{z}) # . Since
U is an arbitrary neighborhood of z, = € acc(FE). O

Recall that for a map f: (X,dx) — (Y, dy) between metric spaces, f is continuous at
x € X if and only if for any sequence (z,),en converging to z, we have that the sequence
(f(xn))nen converges to f(x) (see Exercise 1.35). The following is an extension of that
statement to arbitrary topological spaces.

Proposition 1.59. Let (X, Tx), (Y, Ty) be topological spaces, x € X, and f : X —Y be
a function. Then f is continuous at x if and only if for every net (z,) that converges to
x, we have that (f(x,)) converges to f(z).

Proof. == : (this implication is shown exactly as in the sequence case) Let x, — z. Let
V be a neighborhood of f(z). By the continuity of f, f~!(V) is a neighborhood of x. As
T, — T, there exists o such that x, € f~H(V) for all & = ag. So f(z4) € V for all a =
and hence f(z,) — f(x).

<= : (Contrapositive) Suppose f is not continuous at z. There is a neighborhood V' of
f(x) such that f~'(V) is not a neighborhood of z; that is = ¢ (f~'(V))°. By Lemma
1.8-(5), z € ((f7X(V))°)" = f (V) = f1(Ve). By Proposition 1.58, there exists a net
(To)aea in f7H(VC) such that z, — x. Hence f(z,) € V¢ for all a € A, so f(za) + f(2)
(since V' is a neighborhood of f(z)). O

The following exercise is an application of Proposition 1.59. It provides an alternate
description of limit of nets in weak topology.

Exercise 1.60. Let X be a set and (Y}, 7;),i € I be a collection of topological spaces. Let
fi : X > Y;,i €I be a collection of functions. Let X be equipped with the weak topology
T generated by {f; : i € I}. Let (z4)aea be a net in X and let © € X. Then show that
the following are equivalent.

(a) (24)aea converges to x in (X, 7).

(b) (fi(za))aea converges to fi(x) in (Y;, T;) for each i € I.

1.5 Compact sets

Compactness is an important topological property.
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Definition 1.61. We say that (X, 7)) is a compact topological space if whenever (U;);es is
an open cover of X (thatis, U; € T foralli e [ and | J,.; U; = X), then there exists a finite

subcover (that is, there exists a finite subset {iy,..., 4} of I such that U§:1 U, = X).

We say a subset A < X is compact if it is compact in the relative topology.

Here is an equivalent description of compactness of a subset A < X. If (V) is an
open cover of A in X (that is V,, € T for all @ and (J, V., D A), there exists ia finite
subcover of A (that is aq, ..., a such that Ule Vo, 2 A). To see the equivalence, note
that U, = A n V, are open in the relative topology.

Several familiar results for compact subsets of a metric space are also true more gen-
erally for topological spaces. For instance, closed subset of a compact space is compact.

Proposition 1.62. Let (X,7T) be a compact topological space and let F' < X be closed.
Then F' 1s compact.

Proof. Let F' < |J,Wa,, where W, € T for all a. Then X < F°u |, Wa, so by

compactness of X, there exists aq, ..., «a, such that

XcFu

W,

=1

Then F < |J | Wa,. O
Compactness of a set can be characterized using finite intersection property.

Definition 1.63 (Finite intersection property). Let (F,)a.ea be a collection of sets. We
say that (F,)aea has the finite intersection property (abbreviated as FIP) if for any n €
N,a1,...,a, € A, we have (\_, F,, # .

Proposition 1.64. X is compact if and only if whenever (Fy)aea is a collection of closed
sets satisfying the finite intersection property, then (\,ca Fo # .

Proof. = : Let X be compact and let (F},)qea be a collection of closed sets satisfying

the FIP. Assume to the contrary that () .4 Fa = &. Then (F¢)aea is an open cover of

X, which given as finite cover | ;' FS = X. Therefore ()}, F,, = ¢ which contradicts

the FIP.

< Let (U,) be an open cover of X and let F,, = US. Then since (), Fo = (U, Ua)" =

., so (Fy) does not admit FIP. Therefore, there exists oy, . . . , v, such that ﬂ?zl F,, =4J.
L]

Therefore X = (J | U,
Any compact subset of a Hausdorff topological space is closed.

Proposition 1.65. Let (X,T) be a Hausdorff topological space. If F' < X is compact,
and x ¢ I, there exists disjoint open sets U,V € T such that x € U, F' < V. In particular,
F' is closed.
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Proof. Let y € F, there are disjoint open sets U,,V, such that x € U,,y € V. Then
F c UyeFVy, so (V,)yer is an open cover of F. By compactness of F', there exists
Yt,...,Yn € Fsuch that F < |J_; V,, =V. Thenif U = (\_, Uy,, we have x e U,U € T
and U,V are disjoint.

Finally, if x € F°, there exists U open such that x e U < F°, so F° is a neighborhood
of each of its points and hence open (see Lemma 1.8-(3)). O

Compact Hausdorff spaces are normal.

Proposition 1.66. If (X, 7) is a compact, Hausdorff (Tz) space, then it is normal (Ty).

Proof. Let E, F be disjoint, closed sets; so they are compact (by Proposition 1.62). By

Proposition 1.65 and compactness of F', if x € E' there exist disjoint open sets U,, V,, such
that r e U,, F c V,.

Let us repeat the argument from the proof of Proposition 1.65. Since (ﬁ;)er is
an open cover of F, (by compactness of F) there exists xi,...,x, € E such that E c

UL, U, =UeT. Then Fc (", Vo =VeT withUnV = &. 0O
Continuous image of a compact set is compact.

Proposition 1.67. If X is compact and f : X — Y is continuous, then f(X) is compact.

Proof. Let (V,) be an open cover of f(X). Then by the continuity of f, (f~*(V,)) is
an open cover of X, so there exists a finite subcover (f~*(V,,))1<icm of X. Therefore
(Vi )1<i<m 1s a finite subcover of f(X). O

The following exercise is an important application of Proposition 1.67.

Exercise 1.68. Show that compactness is a topological property of a space (cf. Definition
1.38). Using this verify the claim in Example 1.39-(3).

Another application of Proposition 1.67 is relevant for optimization problems.

Corollary 1.69. If X is compact and f : X — R is continuous, then f(X) is compact.
In particular, f attains its supremum and infimum, and C(X,R) = BC(X,R).

Proof. Since f(X) is compact subset of R, it is closed and bounded (by Heine-Borel
theorem) and hence C(X,R) = BC(X,R). Since sup,cy f(x),infex f(x) € f(X) =
f(X), f attains its supremum and infimum. O

Proposition 1.70. Let f: X — Y be a continuous bijection, where X is compact and Y
1s Hausdorff. Then f is a homeomorphism.

Proof. Let g = f~1:Y — X, then g7}(F) = f(F) for F < X.
If F is closed in X, then F is compact (by Proposition 1.62), so f(FE) is closed (by

Proposition 1.65). Hence g !(E) is closed in Y, whenever FE is closed in X. So g is
continuous, and hence f is a homeomorphism. O
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1.6 Nets, subnets, and compactness

A metric space X is compact if and only if every sequence in X has a convergent sub-
sequence. More precisely, we have the following characterization of compact subsets of
metric space.

Theorem 1.71. Let (X,d) be a metric space and let A < X. Then the following are
equivalent:

(a) A is compact.
(b) Every sequence in A has a subsequence that converges to a limit in A.

(¢) (A,d|,. ) is a complete metric space and is totally bounded (that is, for any e > 0,
A is covered by finitely many balls of radii €).

The equivalence between (a) and (b) in Theorem 1.71 can be extended to arbitrary
topological spaces if we replaces sequences with nets. The following is an important
characterization of compactness in terms of existence of cluster points for nets.

Theorem 1.72. Let X be a topological space. Then the following are equivalent:

(a) X is compact.
(b) Every net in X has a cluster point.

Proof. (a) = (b): Let X be compact and let (z,) be a net in X. Set E, = {z3: f = a}
and F, = E,. For any finite collection, o, ..., ,, there exists v such that a; < 7
for all ¢ = 1,...,m (by using (iii) in Definition 1.54 repeatedly). So z, € E,, for all
1 <i<m and hence (-, Fo, 2 (2, Eua; # &, so (F,) satisfies FIP. Hence (), Fy # &
(by Proposition 1.64). Let z € 1), F, and U be an open neighborhood of z. Then z € F,
for all @ and hence U n E, # ¢ for all . So for all o, there exists f > « such that
xp € U. In other words, z is cluster point of (z,).

(b) = (a): We will show the contrapositive. Let us assume that X is not compact. We
need to show that there exists a net with no cluster point.

Choose an open cover (V4,)aea of X with no finite subcover. Now let (B, <) be the
directed set of finite subsets of A ordered by inclusion (that is, By < By if and only
if By < B, for all By, By € B). Since (V,)aea has no finite subcover, for any B € B,
(Uues Vo) # . Let us choose g € (| J ez Vo) for all B € B, so that (zp)ges is a net.

Suppose y € X, so that there exists ag such that y € V,, (since (V,,)aea covers X) and
let By = {ap} € B. If By = By, then xp, ¢ V,,, so y is not a cluster point of (xp)pges.
Since y € X is arbitrary, there are no cluster points for the net (zg)pes. O

Cluster points are generalizations of sub-sequential limits. In order to describe this,
we need to first come up with a notion of subnet (analogue of subsequence). There are
two ways to think about a subsequence:
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(1) by choosing a subset of a sequence and renumbering the elements, or

(2) by composing the sequence considered as a function N — X with a strictly increasing
function from N to N.

Perhaps a first guess would be to consider some subset of the directed set that forms the
index of a net. The actual definition is a modification of the second way mentioned above.

Definition 1.73. A subnet of a net (z,)aea is a pair

(1) (yp)ses which is a net; and
(i) a map 8+ ag from B — A such that

(a) for all ag € A, there exists fy € B such that az > o for all § = S.
(b) ys = x4, for all g e B.

The following lemma clarifies the relationship between cluster points and convergence
along subnet.

Lemma 1.74. Let (24)aca be a net in X. Then x € X is a cluster point of (X4)aea if
and only if there is a subnet (ys)sen of (Ta)aca Which converges to x.

Proof. <= : Let yg — x and U be a neighborhood of . We need to show that for all
o € A there exists o’ € A such that z,, € U and o > «.

As ysz — x, there exists 3; € B such that yg € U for all 5 > ;. Now let a € A. Then
there exists fy such that ag = «a for all § > f, (recall Definition 1.73-(ii)-(a)). Choose S,
such that By > (1, B2 = By (recall Definition 1.54-(iii)). Then o/ = ag, = a (as B2 = o)
and Zo,, =yp, € U as B = b1.
= We need to construct a subnet that converges to x. Let N, denote the set of
neighborhoods of z and let B = N, x A. We define a relation < on B: say (U, ) < (U’, &)
if and only if U’ < U and o < o' (this is the relation defined in Example 1.55-(4)). It is
easy to see that (B, <) is a directed set (you check this!).

For (U,v) € B, let o = a(u4) be such that
(1) a=7,
(2) x4 € U (such a point exists since z is a cluster point of (z,)).

Now set, yw,) = Ta,, for all (U,v) € B. We claim that (yw,))wq)ep along with the
map (U,7) + au,y) is the desired subnet. First, let us check why it is a subnet.

e It is a not on B since B is a directed set.
® YU = Tag,, forall (U,v) € B.

o If ag € A, let Uy € N, be arbitrary. Set 8y = (Up, ap). If 3= (V,7) = (Uy, o), then
O[ﬁ = Oé(V,'y) Z ry Z Q.
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So it is a subnet.

Let U be a neighborhood of z and let ag € A. If (V) = (U, ap), then yv) = 7o, €
V < U. Therefore (yg)sep converges to z. O

Combining Lemma 1.74 and Theorem 1.72, we obtain the following

Theorem 1.75. Let X be a topological space. Then the following are equivalent.
(i) X is compact.
(i1) Every net in X has a cluster point.

(111) Every net in X has a convergent subnet.

Next, we will study compactness properties of product spaces using Theorem 1.75.

Lemma 1.76. Let X,Y be topological spaces such that' Y is compact. Let (zo)aca be a
net in X xY and let x € X be a cluster point of (x(2a))aca. Then there exists y € Y
such that (x,y) is a cluster point of (zo)aea-

Proof. By Lemma 1.74, there exists a subnet (ug)gep of (7x(24))aca such that ug — .
Set o = Tx(2a),Ya = Ty (2a) for all a € A, 50 24 = (74, ¥a). Note that ug = z,, for all
B € B. Set vg = ya, for § € B. Since (vg)sen 1s a net in a compact space Y, there is a
cluster point y € Y for (vs)gep (by Theorem 1.72).

Next, we show that z = (x,y) is a cluster point of (z,)aea. Let U be a neighborhood
of z; then (using the base in (1.4)) there exists open sets V, and V, in X,Y such that
reVyyeV,and (z,y) eV, xV, cU.

Let oy € A. By Definition 1.73-(ii)(a), there exists fy € B such that § > [, implies
ag = op. As ug — x, there exists 5, € B such that ug € V, for all 5 > ;. Let B2 € B be
such that £y > [y, B2 = (1 (cf. Definition 1.54-(iii)). Since y is a cluster point of (vg)sep,
there exists 83 = (B2 such that vg, € V},. Since 83 = (5 = 1, we have ug, € V,. Therefore
Zag, = (ugy,vg,) € Vi x V, < U and g, = g, since f3 = B2 = fo. Since U € N, and
ap € A are arbitrary, z is a cluster point of (z4)aea- O

The following is a consequence of Lemma 1.76.

Corollary 1.77. Let X,Y be compact topological spaces, then X XY 1is compact.

Proof. Let (24)aea be a net in X x Y. Then by the compactness of X, there exists a
cluster point x € X for the net (7x(z4))aca. By Lemma 1.76, there exists is a cluster
point of (24)aea- O

We would like to extend the above result to arbitrary product of compact spaces. The
basic idea is to extend the compactness to one coordinate at a time using Lemma 1.76.
This works without much difficulty in the case of finite products but for infinite products
we need an useful tool called Zorn’s lemma.
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Definition 1.78 (Zorn’s lemma). (a) We say that a relation < on a set P is called a
partial order if it is

o reflexive (x < x for all x € P),
e transitive (z < y,y < z implies x < z for all x,y, z € P),

e antisymmetric (if z <y and y < x for z,y € P, then x = y).

(b) We say that a subset Q < P of a partially ordered set is totally ordered (or linearly
ordered), if for all z,y € @, either z < y or y < x (or both).

(c) Let @ < P be a subset of a partially ordered set P and let ¢ € P. We say that ¢ is
an upper bound for Q) if a < c for all a € Q.

(d) We say that m € P is a maximal element of P if there is no element z € P such that
m < z other than = m. (Note that a maximal element of P need not be an upper

bound for P).

(e) Zorn’s lemma: If P is a non-empty, partially ordered set and every totally ordered
subset of P has an upper bound, then P has a maximal element.

Zorn’s lemma is useful to show various existence results as illustrated in the exercise
below (see also Exercise 2.60-(i)).

Exercise 1.79. Show that the Zorn’s lemma implies the axiom of choice: if X, # ¢ for
all @ € A, then [[, 4 Xo # & (this is the axiom of choice. In fact, the converse is also
true as axiom of choice implies Zorn’s lemma).

We will prove several important results in this course using Zorn’s lemma such as
Tychonoff’s theorem (Theorem 1.80) and Hahn-Banach theorem (Theorem 2.26).

Compactness of a space can be viewed as existence of cluster points for nets (see
Theorem 1.72) and hence Zorn’s lemma is useful as we illustrate below.

Theorem 1.80 (Tychonoff’s theorem). Let X;,i € I be a collection of compact topological
spaces. Then X = [],.; Xi is compact.
Proof. Let (z4)aea be a net in X = [[,.; X;. For J < I, we define the projection map
X = [, Xias my(x) = @ 7 where x‘J : J = |UJ,e; Xi denote the restriction of
x: I — |, X to J forall x € X. Let

i€l
P = {(J,p) Jclpe HXi,p is a cluster point of (WJ(xa))aeA} :
1€eJ

We define a partial order on P as (Ji,p1) < (J2,pe) if J; < Jy and py is the restriction of
po on Jp (or py is an extension of py).

Let us verify that (P, <) satisfies the assumptions of Zorn’s lemma.
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(i) P is non-empty since if J = {i} for some i € I, then (7;(x4))aea has a cluster point
by the compactness of X; and Theorem 1.72.

(ii) Next, let us check that every totally ordered subset has an upper bound. Let Q =
{(Js,ps) : B € B} be a totally ordered subset of P. Then define J = | 4.5 Js and

P € [ lies Xi by
p(i) = ps(i), forallie Jsz and for all e B.

We need to check that the above function p is well-defined as the same i can be in
different Jgz’s. Suppose ¢ € Jz, N Jg, for some fy, Bz € B, then either (Js,,ps ) <
(Jsy:08,) Or (J3,,P8,) < (Jp,,ps,) (since @ is totally ordered). In either case, since
ps, and pg, agree on Jg N Jg,, we have pg (i) = ps,(i) and hence p € [],_; X; is
well-defined.

We need to show that p is a cluster point of (m;(2a))aca in Xy := [[;c; Xi. Let
U be an open neighborhood of p in X; and let g € A. So [[,.; Vi © U, where
U; = X; for all but finitely many ¢ € J and U; open in X; for all i € J (see (1.4)).
Let K ={ieJ:V,# X;} = {i1,...,%n}. Then there exists § € B such that
K < Jg (since @ is totally ordered). Since pg is a cluster point in [, 7 X;, there
exists a = g such that 7;,(7,) € HieJB Vi. So z,(i) € V; for all i € K and hence
ms(xq) € U. Hence p is a cluster point of (7;(24))aeca ; that is, (J,p) € P. Also, it
is clear that (Jg,pg) < (J,p) for all B € B. So (J,p) is an upper bound for Q.

By Zorn’s lemma, there exists a maximal element (J,5) € P of P. If J # I, let i € I\J

and consider ]_[je 57 X; x X;. By the conclusion of Lemma 1.76, there exists p’ € Hje Fogiy X

such that (J U {i},p') € P with (J,p) < (J u {i},p') which contradicts the maximality of
(J,p). So J = I. The compactness of X follows from Theorem 1.72. O

2 Normed vector spaces

Throughout §2, K = R or C and let X be a vector space over K.
Notation: 0 € X is the zero vector. A subspace Y of X is a subset Y < X that is also a
vector space over K. If Y7,Y5 are two subspaces of X, then

Yi+ Yo ={y1 +y2:11 €Yr,y2 € Ya}.
Y1 + Y5 is also a subspace of X (check this).

Definition 2.1 (Norm). A norm ||| is a function from X to [0,00) = R, (denoted by
x +— ||z]|) such that

(i) ||z|| = 0 if and only if = 0.
(i) |[Ax|| = [A|||x| for all A\ e K,z € X.
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(i) ||z + y| < ||z| + [|ly|| for all z,y € X.

If ||-]| just satisfies (ii) and (iii), we say that is a seminorm. A vector space equipped with
a norm is called a normed vector space.

A norm induces a metric and hence a topology (by Example 1.2-(2)). We call this
topology the norm topology on X.

Exercise 2.2. If ||-|| is a norm on a vector space X, then
dz,y) = ||lr —y|, forallz,ye X (2.1)

defines a metric. Hint: The properties (i)-(iii) in Definition 2.1 correspond to the analo-
gous properties in Example 1.2-(2).

Exercise 2.3. Let (X, ||-||) be a normed vector space. Then show that the norm ||-|| :
X — R is a continuous function, where X is equipped with the norm topology. (Hint:
Show that |||z|| — [|y||| < ||z — y|| for all z,y € X.)

Since the norm induces a metric, we can speak of metric properties like Cauchy se-
quences, completeness, boundedness, on a normed vector space. For example, a sequence
(Zn)nen in a normed vector space is Cauchy if for any € > 0, there exists N € N such that
|zp — Tp|| < € for all n,m = N.

Definition 2.4. A normed vector space is complete if every Cauchy sequence converges.
A Banach space is a complete normed vector space.

Example 2.5. Let X be a topological space, let H-Hsup denote the supremum norm on
B(X,R) defined as || f[|,,, = sup,ex [f(z)| for all f € B(X,R). Then by Lemma 1.50,
(B(X,R), [Illsp) and (BC(X,R), [||l,,,) are Banach spaces.

Not all normed vector spaces are complete, however any normed vector spaces that is
not complete must necessarily be infinite dimensional (you will see why in an assignment).
Here is an example of a normed vector space that is not complete.

Example 2.6. Let X = {f € C(]0,2],R) : f(0) = 0}. Clearly X is a vector space as
linear combinations of continuous functions that vanish at 0 are continuous functions that
vanish at 0. We define the norm on X as

2
[Kdl :Jo |f(z)|dx, forall fe X.

Consider the sequence of functions (f,)nesy in X defined by (notation: a A b =
min(a,b),a v b = max(a, b))

falz) =2" A1, forall ze0,1].

Note that

1 N 1
n+1 m+1’

1
T =f " — o™ do <
0

for all m,n € N,
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and hence (f,,)nen is a Cauchy sequence in X. Let g : [0,2] — R be defined as g(z) =0
if z <1 and g(z) =1if z > 1. Note that

1 1
(1) — g(x)| de = "dy = ———.
‘[u Dlde = | ande = —

This suggests that g should be the limit but it does not belong to X, as it is not continuous
at 1. We claim that (f,) does not converge in X. Suppose to the contrary that f, — f
for some f in X, then for any n € N

f\f(x)—g(:cﬂdxéf\f(x)—fn(:v)\d:chJOQ]fn(:c) ydx_f \f(x (2)] da+

n+1

Letting n — oo and using lim,,_,« || fn, — f|| = 0, we obtain

f|f 2)] dz = 0.

Therefore f(x) = g(z) for almost every (with respect to Lebesgue measure) x € [0,2].
This contradicts the continuity of f at x = 1 (why?).

Definition 2.7 (Equivalent norms). We say that two norms |[|-||; and ||-||, on X are
equivalent if there exists C' € (0, 00) such that

O all, < lall, < Cllall,, for all z€ X.

The terminology equivalent is justified by the following exercise.

Exercise 2.8. Let ||-||; and [|-||, be equivalent norms on X. Then show that the corre-
sponding norm topologies are the same. Furthermore, show that (X, ||-||,) is complete if
and only if (X, |-]|,) is complete.

Exercise 2.9. Let (X, ||-[y), (Y,]|-]ly-) be normed vector spaces.

(a) Show that ||(z,y)] yxy = max(||z|y,|lylly) defines a norm the vector space on X x Y.

(b) Show that the norm topology induced by the norm in (a) coincides with the product
of the norm topolgies for X,Y.

(c) Show that the norm in (a) is equivalent to the norms ||(z,y)|| — |lz|x + ||y|ly and
2 1/
Iz, )l = (llzl% + lylly)

(d) Show that (X xY, ||-|| .y ) is a Banach space if and only if both (X, ||-|| ) and (Y, [|-||y/)
are Banach spaces.

Definition 2.10. Let (z,) be a sequence in a normed vector space (X, ||-]|). We say that
the series > | x,, converges (in X) if there exists # € X such that limy_,« || — Zivzl Tl =

0. We say that the series >, | x, is absolutely convergent if >, ||z, | < oo.
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Theorem 2.11. A normed vector space (X, ||-||) is complete if and only if every absolutely
convergent series in X converges.

Proof. == : (This part is same as the usual argument in R) Let > ;7 |lz;]| < oo and
e>0. Let y, = X', x; for all n.€ N. Since » ., ||zi|| < oo, there exists N € N such that
Yo w @i < oo. Therefore for any m,n # N, we have

mvn )
lym =yl < > llwill < ] il < e
t=mAn i=N

Therefore (y,)nen is Cauchy.

<= : Let (Yn)neny be Cauchy (in X). Since (y,) is Cauchy, there exists a subsequence
(Yn, )ien such that n; < n;y for all i € N and ||y — Yn,|| < 27 for all m > n; and all
1€ N. Let z; = yp, — yn,_, for all i = 2 and z; = y,,, so that the partial sums of Zfil T

coincides with the subsequence (yy,)ien. Since ||z;|| = Hyn — Yn,;_4 H < 2 for all i = 2,
the series >~ z; is absolutely convergent and hence the subsequence (Y, )ien converges
to say y € X. Since (yn)nen is Cauchy, y, — y as well. O

2.1 Bounded linear maps and linear functionals

Let T': X — Y be a linear map (also known as operator or linear operator) between
normed vector spaces (X, ||-]|yx) and (Y, ||-[ly); that is, T'(x; + @) = T'(x1) + T'(z2) and
T(M\x) = AT'(z) for all A e K, x, 21,29 € X.

Definition 2.12 (Bounded linear map). We say that a linear map 7' : X — Y is bounded
if there exists C' € (0, 00) such that ||7'(z)|y < C ||z| 5 for all z € X.

It turns out that boundedness of a linear map is same as continuity (with respect to
norm topology).

Proposition 2.13. Let T : X — Y be a linear map between normed vector spaces
(X, |-l x) and (Y,||-ly-). Then the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.

(c) T is bounded.

Proof. (a) = (b) is trivial.

(b) = (c): Since T is continuous at 0, by Exercise 1.35, for every € > 0 there exists
d > 0 such that ||z||, < ¢ implies |T(x)|y- < €. Let z € X be arbitrary. If z # 0, then
w=0(2]z|lx) 'z € X satisfies ||w||y = /2 < ¢ and hence

J

2 1Ty = 1Ty <e
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Therefore 5
€
1Ty < 5 |2]lx  for all z € X\{0}.

The above estimate also holds for z = 0 since T'(z) = 0 by linearity of 7'

(©) = (a): I |T(@)]ly < Cllz]x for all z € X, then |T(y) — T(x)ly = IT(y — 2)]ly <
C|ly — x||y. For any € > 0, the choice 6 = ¢/C' ensures the e-6 definition of continuity at
any r € X. [

Definition 2.14. Given, normed vector spaces (X, ||-||y), (Y, ||-ly), let £(X,Y") denote
the set of all bounded linear maps 7' : X — Y. Note that £(X,Y) is a vector space as
a1y + axTy € L(X,Y) for any aj,as € K, T1,Ty € L(X,Y), where (a1} + aT3)(x) =
a1Ty(z) + aTy(x) for all x € X.

For T € L(X,Y), the operator norm of T is defined as
1T := sup{[|IT(2)[ly : lzllx <1}

The operator norm is also equal to (check that they are equal!)

[T ()|
|71l = sup{[|T(@)]ly : [lllx < 1} = sup ==

zeX, ”xHX
x#0

= sup{[[T(2)[ly - llzllx =1} (2.2)

Exercise 2.15. Check the claims made in the above definition. That is £(X,Y) is a
vector space and that the operator norm defines a norm on £(X,Y’). Show that [|T'(x)|, <
|T|| ||| for all x € X.

Proposition 2.16. Let (X, ||-||y), (Y, |]|ly) be normed vector spaces. If Y is complete,
then so is L(X,Y).

Proof. Let (T},)neny be Cauchy in £(X,Y). Fix z € X. Since

ITn(z) = Ton(@)lly = [(Tn = T) (@) ly < T = Tl [l x

(T.(z))nen is a Cauchy sequence in Y, and hence it converges to say y € Y. Define
T:X —>Y as T(x) =y, where y € Y is as above. Then it is easy to check

(i) T is linear.

(i) ||T|| < oo; that is, T e L(X,Y).

(iii) |7 — T,,|| = 0 as n — oo. In particular, ||T|| = lim,_ ||T}.||. O
Exercise 2.17. Check (i),(ii),(iii) in the proof above.

Lemma 2.18. Let XY, Z be normed vector spaces and let T € L(X,Y),S € L(Y, Z),
then ST € L(X,Z) and ||ST| < [[S|||T||, where ST is the composition of S and T
(ST (z) = S(T(x)) for allze X ).
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Proof. For any xz € X, we have
ST @)z < IS @)z < ISTIT @)y < ST ]l -
Therefore ST € L(X,Z) and ||ST|| < ||S] ||T]]- O

Two normed vector spaces are the ‘same’ if there is a norm-preserving bijection be-
tween them. This notion is called isometric isomorphism.

Definition 2.19. We say that a linear map f : (X, ||-[|x) — (Y, ]]ly-) between two normed
linear space is an isometry if || f(x)||y = ||| for all z € X. We say that f is an isometric
isomorphism, if it is a bijective (or equivalently, surjective) isometry. We say that two
normed vector spaces X and Y are isometrically isomorphic, if there exists an isometric
isomorphism f : X — Y between them.

Any two norms in finite dimensional vector space are equivalent. So by Exercise 2.8,
there is the norm topology is uniquely determined. The following exercise outlines a proof
of this fact.

Exercise 2.20. Let (X, ||-||) be a finite dimensional vector space over K. Then there is
a finite basis (e;)1<i<n for the vector space X. Therefore, the linear map ¢ : K™ — X
defined by

olay,...,a,) = Zaiei, for all (aq,...,a,) € K™,
i=1
is a bijection. Let K™ be equipped with the norm |[[(ay,...,a,)|; = >, |a;| for all
1=1,...,n.

(a) Show that ¢ is a bounded linear map from (K™, ||-||,) to (X, ||]])-

(b) Show that the unit sphere in K", S = {(ay,...,a,) € K" : > | |a;| = 1} is a compact
subset of K™.

(¢) Show that ¢=' : (K™, |||l,) — (X, |]]) is also bounded. (Hint: Use previous parts
and Exercise 2.3)

(d) Conclude that any two norms on X are equivalent.

(e) Show that any finite dimensional normed vector space is a Banach space.

Since closed and bounded sets in K™ are compact, by Exercise 2.20, the closed unit ball
{r € X :||z]| <1} is compact on any finite dimensional normed vector space. It turns out
that the compactness of closed unit ball characterizes finite dimensional normed vector
spaces. To prove this, we need Riesz’s lemma.

Lemma 2.21 (Riesz’s lemma). Let X be a normed linear space and M is a closed proper
subspace. Then for any e € (0,1), there exists xg € X\M such that ||xo|| = 1 and
|xo—z|| = 1—¢€ for allxz e M.
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Proof. Let y € X € M be arbitrary. Since M is closed d = infep ||y — 2| > 0 (b
Exercise 1.40-(a)). Let § > 0. Then there exists y; € M such that d < ||y — || < d + 0.
Let

YU
To= T
ly —wll
so that ||zo|| = 1 and for any x € X,
[y =y —zlly —wllll -1 . d 0
xo— x| = > |y — inf lly—z||lz2——=1———.
H 0 H Hy_ylH Hy yl“ zeMHy H d+ 6 d+6
So we obtain the desired conclusion by choosing § = 1‘1;. m

Theorem 2.22. A normed vector space is finite dimensional if and only if the closed unit
ball is compact in the norm topology.

Proof. As explained after Exercise 2.20, it suffices to show that the closed unit balls is
not compact for an infinite dimensional normed vector space.

Let X be an infinite dimensional normed vector space. We will construct a sequence
(Zn)nen such that ||z,|| = 1 for all n € N and ||z, — @, = 5 for all n # m. This implies
the desired conclusion due to Theorem 1.72 (or Theorem 1.71) as this sequence cannot
have a Cauchy (and hence convergent) subsequence.

We construct such a sequence by induction. Let x; be any vector such that ||z1]| = 1.
Suppose 1, ..., T, have been chosen, then we construct x, 1 € X\M, by choosing € = %
in Lemma 2.21, where M, is the subspace span{zy,...,z,}. Note that M, is a closed
subspace due to Exercise 2.20-(e) and is proper since X is infinite dimensional. O

2.2 Dual space

Definition 2.23 (linear functionals, dual space). Let X be a vector space over K = R or
C. A bounded linear map f : X — K is called a linear functional (that is, f € £(X, K)).

The set of all bounded linear functionals of a normed vector space X is called the
dual space of X and is denoted by X* (that is, X* = L(X, K)). The dual space is also a
normed vector space equipped with the operator norm.

For z € C, we define

= if2#£0
sen(z) = { 1?7 ! ’ 2.3
sn(2) {0 if 2 = 0, 23

so that [sgn(z)| < 1 and sgn(z)z = |z| for all z € C.

Note that by Proposition 2.16, the dual space X* is a Banach space (even if X is not).
So far, we did not distinguish between the cases K = R and K = C. If X is a normed
vector space over C, it is also a normed vector space of R. So we can consider dual space
either over R or over C. Let us see how these dual spaces are related.
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Proposition 2.24. Let X be a vector space over C.

(a) Let f: X — C be complex linear function on X. Then u = Re(f) : X — R is a real
linear function and f(x) = u(x) — iu(iz) for all x € X.

(b) If u : X — R is a real linear function then f(x) = u(z) — u(iz) for all x € X is a
C-linear function.

Moreover, if f and u are related as above, then their operator norms are equal.
Proof. (a) Let f be C-linear. Then
u(z1+xa) = Re(f)(z1+x2) = Re(f(z1)+ f(22)) = u(z1)+u(zre), for any xy,z9€ X,
and
u(Ax) = Re(f)(A\x) = Re(Af(x)) = ARe(f)(z) = \u(z)for any z € X, \ e R.

Therefore u is R-linear. Similarly, v = Im(f) : X — R is also R-linear and f(z) =
u(z) +iv(z) for all z inX. For any x € X, by C-linearity of f, we have

u(iz) +v(iz) = f(ix) =if(x) = iu(z) —v(zr), forallze X.
Therefore v(z) = —u(ix) for all z € X.

(b) The function f is clearly R-linear. So we just need to check f(iz) = if(x) for all
x € X. To this end, note that

fliz) = uliz) — iu(i®z) = u(iz) +iu(x), if(zx) =ifu(z) —iu(iz)] = u(z) + u(iz),
for all z € X.
Let us now consider the operator norms. Note that
Jul| = sup{|u(z)| : lzl| < 1}, [If[| = sup{[f(2)] : [lz]| < 1}.

Since |u(z)| = |[Re(f)(x)] < |f(x)| for all z € X, we have ||ul| < ||f]|-

Let © € X. There exists a = sgn(f(x)) € C with |a|] < 1 such that |f(z)| = af(x).
Therefore [f(z)| = af(z) = flaz) = |Ju(ax)| < [ull [lex] < [lull{|z]| (since |of < 1).
Therefore || f|| < ||u/|. O

The following exercise gives a description of the dual space of a finite dimensional
normed vector space.

Exercise 2.25. Let X be a finite dimensional normed vector space over K. If the dimen-
sion is n, let us choose a basis eq,...,e, € X. Then every x € x can be uniquely written
as a linear combination z = Z?:l a;e;, where a; € K for all 1 < i < n. Foreach 1 <i < n,

ef : X — K as
ef (Z ajej) =a;, forall (ay,...,a,)€ K™

J=1
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(i) Show that ef € X* for each ¢ = 1,...,n. (Hint: See Exercise 2.20)
(ii) Show that {ef : 1 < i < n} is a basis for the vector space X*.
(iii) Conclude that the dimension of X* is same as the dimension of X.

For infinite dimensional spaces, the Hahn-Banach theorem allows us to construct lots
of bounded linear functionals.

Theorem 2.26 (Hahn-Banach extension theorem:real version). Let X be a vector space
over R and let p: X — R be a function satisfying*

p(Az) = Ap(z), forallze X,\ >0, (2.4
p(z +y) <pz)+ply), foralzxyeX. 2.5

~— N —

Let M be a subpace of X and f : M — R be a linear function on M such that f(z) < p(x
for all x € M. Then there exists a linear function F : X — R such that F(x) = f(zx) for
allz e M and F(x) < p(z) for all v € X.

Proof. Let P denote the set of all linear functions g : D(g) — R that satisfies the following:

e The domain D(g) is a subspace of X that contains M.
e g(x) = f(x) for all z € M.

e g(z) < p(x) for all z € D(g).

We define a partial order < on P: for any ¢g1,92 € P, g1 < ¢ if and only if D(g;) < D(gs)
and ¢;(x) = go(x) for all z € D(gy).

It is clear that P is non-empty as f : M — X belongs to P. Let Q) < P be a totally
ordered subset. Let Q) = {h; : i € I}. We define h: D(h) — R by

D(h) = UD(hi), h(z) = hy(x), if e D(h;),i€l.

It is easy to that h is well-defined (by the same argument as in the proof of Theorem
1.80). We can therefore use Zorn’s lemma to find a maximal element F : D(F) — R.

We claim that D(F') = X. Suppose to the contrary that D(F') # X. Let g € X\D(F).
Set D(G) = span(D(F) U {xo}) = {x + txg : x € D(F),t € R}. We would like to define a
linear function G : D(G) — R such that G(z) = F(x) for all x € D(F') and G(x) = a € R.
Then G € P if and only if

F(z) +ta < p(x +tzg) forallze D(F),teR;
which is equivalent (divide by |t| on both sides) to

F(z)+a <p(r+z), and F(z)—a <p(z—uxy), forallxze D(F),

la function satisfying (2.4) and (2.5) is called a sublinear functional.
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which in turn is equivalent to

sup (F(z) —p(xr —x0)) s o< inf (p(y + z0) — F(y)) .
zeD(F) yeD(F)

Such an « exists, since for all z,y € D(F)
F(z) + F(y) = F(z +y) <ple +y) < plr + o) + ply — o),

which in turn implies

Sup () = ple =) < inf (py +70) = Fy)

This implies F' < G and F' # G, which contradicts the maximality of F'. O

Theorem 2.27 (Hahn-Banach extension theorem: complex version). Let X be a vector
space over C and let p : X — R be seminorm. Let M be a subpace of X and f : M — C be
a linear function on M such that |f(x)| < p(x) for all x € M. Then there exists a linear
function (over C) F : X — C such that F(z) = f(x) for allx € M and |F(x)| < p(z) for
all v € X.

Proof. Let u = Re(f) : M — R be R-linear functional as given in Proposition 2.24. By
Theorem 2.26, there exists a linear function U : X — R over R such that U(z) = u(zx) for
allz e M and U(x) < p(x) forall z € X. Define F : X — Cas F(x) = U(x)—iU (iz) for all
x € X. By Proposition 2.24, F' is C-linear function. For x € X, choose o = sgn(F(z)) € C
with |a] < 1 and F(ax) = aF(z) = |F(x)| as given in the proof of Proposition 2.24.
Therefore

|F(z)] = Ulax) < plax) = |alp(z) < p(z).

]

Corollary 2.28. Let X be a normed vector space over K and let M be a subspace of X .
Let f: M — K belong to L(M, K). Then there exists F'€ X* such that F(z) = f(x) for
all xe M and |F|| = ||f]-

Proof. Note that |f(z)| < ||G|| ||x| for all z € M. By applying either Theorem 2.26 (if
K = R) or Theorem 2.27 (if K = C), with p(z) = || f]| ||z|| for all x € X, we obtain the
existence of F' with ||F'|| < ||f]]. We obtain the desired conclusion since

[E] = sup{[F(z)| : |=]] < 1,2 € X} = sup{[f(2)] : [l«]| < 1, w e M} = f].
O

The operator norm of F' in Corollary 2.28 is as small as possible as can be verified in
the following easy exercise.
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Exercise 2.29. Let X be a normed vector space over K and let M be a subspace of X.
Let F' € X*. Then show that the restriction f := F|,, : M — K (that is; f(z) = F(x)
for all x € M) belongs to the dual space M* (M is equipped with the restriction of the
norm on X ) and satisfies

IFIF< £ (2.6)

The following corollary provides a large family of linear functionals.

Corollary 2.30. Let X be a normed vector space over K.

(i) For any x € X with x # 0, there exists f € X* such that || f|| =1 and f(z) = ||z||.

(i1) For any x € X, the evaluation map E, : X* — K defined by E,(f) = f(x) satisfies
E, e X** and the map x — E, s a linear isometry from X to X**.

Proof. (i) Let X 3 x # 0. Define the linear functional h : span{z} — K as h(\zx) =
Allz|| for all A € K. Note that ||| = 1. So by Corollary 2.28, there is f € X* such
that | f] =1 and f(z) = [|].

(ii) Note that E, is linear over K, since

E.(Mfi+ Aaf2) = (Aifi + Aafo) (@) = M fi(n) + Xafal) = M EL(f1) + Ao Er(f2)
for all f1, fo € X*, and for all A, Ay € K. Since
|Ez(f)| = [f@)] < [lz][ |, for all fe X* zeX,

we have ||E,|| < ||z]|, so we have the desired conclusion if z = 0.

If x # 0, by considering f by (i), we have

2]l = 1f(@)] = [E(F)| < B[]} = 1 £l

Combining the estimates, we obtain ||E,|| = ||z|| for all x € X. It is clear that
x — FE, is linear over K.

]

Definition 2.31 (Reflexive spaces). Let (X, |]|) is a normed linear space. Let J : X —
X** denote the linear isometry in Corollary 2.30-(ii). We say that the normed vector
space (X, ||-||) is reflezive if the isometry J is surjective.

Note that reflexive normed vector spaces are necessarily Banach spaces due to Propo-
sition 2.16 but not all Banach spaces are reflexive. Nevertheless, all finite dimensional
normed vector spaces are reflexive.

Exercise 2.32. Show that if (X, ||-]|) is a finite dimensional normed vector space, then it
is reflexive. (Hint: see Exercise 2.25).
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Exercise 2.33. If X is an infinite dimensional normed vector space, show that X* is also
infinite dimensional. (Hint: see Exercise 2.25).

The Hahn-Banach theorem also has useful geometric consequences.
Definition 2.34. Let X be a normed vector space over R.
(1) A closed hyperplane in X is a subset H < X of the form
H={reX: f(z)=a}

where f : X — R is a non-zero bounded linear functional and a € R. We abbreviate
H as [f = «a] in this case.

(2) Let A, B < X. We say that the closed hyperplane [f = «| separates A and B if

fr)<a forallze A, and f(z) >« forall ze B.

(3) We say that the closed hyperplane [f = «] strictly separates A and B if there exists
€ > 0 such that

flz)<a—e forallze A, and f(x)>a+e forallzeB.

(4) We say that C' < X is convez, if

tr + (1 —t)ye C, forallte][0,1] and for all z,y € X.

Exercise 2.35. Let (X, ||-||) be a normed vector space, z € X and r > 0. Then the open
ball
Bx(z,r) ={ye X :|ly —zl <r}, (2.7)

and the closed ball o
Bx(z,r) ={ye X ||y —z| <r} (2.8)

are convex sets.

Convex sets also leads to sublinear functionals. The functional p in the following
lemma is sometimes called the Minkowski functional associated with a convex set.

Lemma 2.36. Let X be a normed vector space over R. Let C be an open, convex subset
of X such that 0 € C. Define p: X — [0,0] as

p(z) = inf{a > 0:a 'z e C}.
The p is a sublinear functional (that is; satisfies (2.4) and (2.5)) and such that
C={reX: :px) <1} (2.9)
Furthermore, there exists M > 0 such that

p(x) < M ||z||, forallxze X. (2.10)
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Proof. 1t is clear that (2.4) holds.

Let r > 0 be such that Bx(0,r) c C (as C is open and 0 € C). Then p(x) < r~! ||z||
for all x € X which implies (2.10).

Let x € C, then (1 + €)z € C for some € > 0. Therefore p(x) < (1 +¢€)™' < 1. Hence
C c {x € X : p(x) < 1}. Conversely, if p(x) < 1, then there exits a € (0,1) such that
a 'z e C. Since 0,a 'z € C' and C is convex, we have r = a(a'z) + (1 —a)0 € C. This
proves (2.9).

In order to prove (2.5), consider x,y € X and let € > 0. Using (2.9), we have

1

(p(x) +¢) "o, (p(y) + €)'y e C.

Choosing
p(z) +€

P S

by the convexity of C', we have

tp(e) + o)t + (1= )p(y) + )"y = (p(a) +p(y) +2¢) (z +y) € C
Therefore p(z + y) < p(z) + p(y) + 2¢. Since € > 0 is arbitrary, we obtain (2.5). O

The following lemma shows that points outside an open convex set is separated by a
closed hyperplane.

Lemma 2.37. Let X be a normed vector space over R. Let C < X be a non-empty open
convex set and let xg € X\C. Then there exists f € X* such that f(x) < f(xo) for all
x € C. In particular, the closed hyperplane [f = f(xo)] separates {x¢} and C.

Proof. After a translation, we may assume that 0 € C'. Consider the sublinear function
p: X — [0,00) defined Lemma 2.36. Consider the subspace {\zy : A € R} and the linear
functional g : G — R defined as g(tzo) = ¢ for all ¢t € R. Note that

g(x) < p(x) forall z € G.

To see this, if z = tz for ¢ < 0 then the above inequality is true since p(x) > 0. If
t > 0, then since z ¢ C, p(z) = tp(xg) =t = g(x) (by Lemma 2.36). By Theorem 2.26,
there exists f € X* such that f(z) < p(x) for all x € E and f(z9) = 1. By Lemma 2.36,
f(z) <1forall zeC. O

Theorem 2.38 (Hahn-Banach separation theorem). Let X be a normed vector space over
R.

(1) Let A, B < X be two non-empty, disjoint, convexr subsets. Assume that one of them
1s open. Then there exists a closed hyperplane that separates A and B.

(2) Let A, B < X be two non-empty, disjoint, convex subsets. Assume that A is closed
and B is compact. Then there exists a closed hyperplane that strictly separates A and
B.
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Proof. (1) Assume that A is open. Let C = A— B ={a—b:ae A be B}. It is easy to

check (do this!) that C'is convex, 0 ¢ C' and C = | J,.5(A — {b}) is open. By Lemma
2.37, there exists f € X* such that f(z) <0 for all ze C. So

f(z) < f(y) forall z € A and for all y € B.
Therefore, there exists o € R such that

sup f(z) < o < inf f(y).
€A yeB

So [f = a] is the desired closed hyperplane that separates A and B.

Let C' = A — B. It is easy to check (do this!) that C' is convex, and 0 ¢ C. We claim
that C is closed. To show this claim, it is enough to prove that every accumulation
point of C' belongs to C' (see Proposition 1.11). To this end, let y € acc(A). Then
there exists a sequence (a, — by)neny such that a, € A and b, € B for all n € N
and lim,, 4 (a, — b,) = y. By the compactness of B and passing to a subsequence
if necessary we may assume that (by)nen converges to b € B (see Theorem 1.71(b)).
Therefore a,, — lim,, o0 (@, —by)+1lim,, 4 b, = y+0b. Since A is closed by Proposition
1.58(b), we have that y+b € A. Therefore y = (y+b)—be A—B = (. This concludes
the proof that C' is closed.

So there exists 7 > 0 such that Bx(0,r) and C' are disjoint convex sets. By the
previous part, there exists f € X* such that f = 0 such that

flzx—y) < f(rz), forallze A ye B,ze€ Bx(0,1).
It follows that (since inf.cp, (01) f(r2) = =7 || f]; why?)
flx—y) < —r|f||, forallze A yeB.

Therefore, letting € = 37 || f|| > 0, there exists a € R such that

sup(f(x) + ) < o < inf(£() ).
zeA ye

Hence the closed hyperplane [f = a] strictly separates A and B.

2.3 Adjoint operator

A linear operator between normed vector spaces induces another linear operator between
the dual spaces called the adjoint operator.

Definition 2.39 (Adjoint operator). Let X,Y be normed linear spaces over K and let
T e L(X,Y). We define the adjoint operator 7% : Y* — X* as

T*(f)=foT, forall feY*.
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Clearly T* is linear over K. We claim that 7™ is bounded. To see this note by Lemma
2.18, that

IO =N o Tl < AT - (2.11)

This implies 7* € L(Y™*, X*) and ||T%|] < ||T'||. The fact that || 7%|| = ||7’|| is a consequence
of Hahn-Banach theorem.

Proposition 2.40. For any T € L(X,Y), we have T* € L(Y, X)) and ||T*|| = ||T|.

Proof. By (2.11), it suffices to show ||T*| = ||T||. Let zo € X be such that ||zg] = 1
and T'(xg) # 0. Then there exists fo € Y* with || fo| = 1 and fo(T(x0)) = ||T(z0)|| (by
Corollary 2.30-(i)). Therefore,

T[] = sup{|I T*(N)I = [|f]| = 1} = [[foo T
= sup{[f(T'(x))| : |z = 1} = [fo(T (z0))| = [T (o) -
Since ||T|| = sup{|T(z)| : ||| = 1}, we obtain the inequality ||T*|| = ||T|. O
Here are a few properties of the adjoint operator that follow easily from the definitions.

Exercise 2.41. (a) Let X,Y, Z be normed linear spaces with S € L(X,Y), T € L(Y, Z),
then (T o S)* = §* o T* € £(Z*, X*).

(b) Let X,Y be normed linear spaces over K with 77,75 € L(X,Y) and A\, Ay € K, then
(/\1T1 + )\2T2)* = )\1T1* + )\2T2*.

(c¢) Let X,Y be normed linear spaces and T € L(X,Y"), then T** € L{X** Y**) satisfies
T o Jx =JyoTe L(X,Y**),

where Jx : X — X** Jy : Y — Y™ are the linear isometries described in Corollary
2.30-(ii).

(d) If T e L(X,Y) is such that T~ € L(Y, X), then (T*)"! = (T1)*.
Exercise 2.42. Let X,Y be normed linear spaces and 7' € £(X,Y). Then the following
are equivalent.

(i) T* is one-to-one.

(ii) The range of T" is dense in Y.

The next exercise shows how adjoint operator can be viewed as a version of matrix
transpose.

Exercise 2.43. Let X be a finite dimensional normed vector space of dimension n € N
over K and let {e; : 1 <i < n} be a basis for X. Let {e} : 1 <i < n} denote the base for
X* as defined in Exercise 2.25. Let Y be a finite dimensional normed vector space over
K with dimension m € N with basis {f; : 1 < j < m}. Let {f*: 1 <i < m} denote the
the base for Y* as defined in Exercise 2.25.
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(a) Show that the map Vyx : X — X* defined by

Vx <Z ai6i> = Zaie;‘, for all (ay,...,a,) € K"
i—1

i=1
is an invertible bounded linear map with bounded inverse.

(b) If X has a non-zero vector, show that there are no invertible bounded linear maps
Lx:X — X*and Ly : Y — Y* such that

Lx=T*oLyoT, forallTeL(X,Y).

(c) For any T e L(X,Y), let My € K™*™ denote the m x n matrix over K associated to
T with respect to bases {e; : 1 < j < n} and {f; : 1 <i < m}; that is if M} denotes
the element in the i-th row and j-th column of Mp, we have

T (Z ajej) = Z ( Mg;a]) fi, forall (ay,...,a,) € K™
1

j=1 i=1 \j=

Similarly, let M7= denote the n xm matrix over K associated with the adjoint operator
T* with respect to bases {f; : 1 < j < m} and {ef : 1 < i < n} ; that is if Mg;*
denotes the element in the i-th row and j-th column of M7+, we have

T <i ajf;‘> = i <Zn: Miig*aj> ef, forall (ay,...,an) € K™

j=1 i=1 \j=1

Show that My« is the transpose of Mr.

2.4 LP spaces

We describe an important example of Banach spaces. Throughout 2.4, we fix a measure
space (X, M, ). We will use various results concerning measure and integration from the
prerequisite (MATH 420) and we refer to the appendix in §5 for a brief review.

Definition 2.44 (Semifinite, o-finite and finite measures). We say that u is semifinite if
whenever E € M with u(E) = oo, there exists F € M with F'< FE and 0 < p(F) < oo.
We say that p is o-finite, if there exists a sequence (Ej)jeny of sets in M such that
X =Ujen £ and p(E;) < oo for all j € N.

We say that p is finite, if u(X) < co.

Exercise 2.45. (i) Show that every finite measure space is o-finite and every o-finite
measure space is semifinite.

(ii) Give examples of o-finite measure space that is not finite and semifinite measure
space that is not o-finite.
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Definition 2.46 (L? spaces). If f : X — C is a measurable function on X and p € (0, o0),

we define
1/p
||fr|p=(f |f|”du) |
X

LP(X, M) ={[f]: f: X — C, f is measurable and || f||, < oo},

and define

where [f] is the equivalence class of f corresponding to the relation that identifies func-

tions that are equal almost everywhere.
If v is the counting measure on (A, P(A)), then we abbreviate LP(A, P(A), u) as (P(A).

Although, elements of L” spaces are equivalence classes of functions, it is customary
to denote them as functions; for example, f € LP(X, M, u) instead of [f] € LP(X, M, ).

First let us observe that LP(X, M, u) forms a vector space as

|+ 9l" < 2max(|f],[g]))" < 2°(|fF" + |g]").

Next, we examine, whether (LP(X, M, ), ||-||,) is a normed linear space. The properties
(i) and (ii) in Definition 2.1 are easy to verify (property (i) also explains the need for
looking at equivalence class of functions) from the definition (do it!). For the triangle
inequality, we need to restrict ourselves to p € [1,00) as can be from the following example.

Example 2.47. Let p € (0,00), A = {0,1} and consider f,g € ¢*(A) such that f(0) =
g(1) = 1 and g(0) = f(1) = 0. Then ||f +gll, = 2P, | f]l, = llgll, = 1. So, in this case,
the triangle inequality is usatisfied if and only if p € [1, o).

The next few results are preparation to obtain the triangle inequality for the case
p=1.

Lemma 2.48 (Young’s inequality). If a = 0,b = 0, and p,q € (1,00) be such that
pl+qgt=1, then
P
ab < 2y —,
p q
with equality if and only if a? = b9.

Proof. The result is clear if either a = 0 or b = 0.

Set x = ab=%/? = ab'~%. So the desired claim can be rewritten as (dividing by b7 on both
sides)

xéx—p—kl, for all x > 0,
p q

with equality if and only if x = 1. This claim can be verified by setting f(x) = % + i -
and noting that satisfies f'(z) < 0 for all x € (0,1) and f'(x) > 0 for all x € (1,00].
Therefore f attains its minimum at x = 1, and hence f(x) = f(1) = 0 for all x €
(0, 0). O
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Our next result is Holder’s inequality which is extremely useful.

Theorem 2.49 (Holder’s inequality). Let (X, M, u) be a measure space and let p,q €
(1,00) satisfy p~' + ¢ ' =1. If f,g: X — C be measurable functions, then

1Fglly < WAL, llall, -

In particular, if f € LP(X,M,pu),g € LYX, M,u), then fg € L*(X, M,u) and the
equality || fgll, = | fIl, llgll, holds in the case that both sides are finite if and only if there
exists a, f € C not both zero such that o f|"(x) = Blg|?(x) p-almost every x € X.

Proof. It |||, = 0 or ||lg]l, = 0, then fg = 0 p-almost everywhere and hence the desired
inequality holds.

So, we may assume || f||, # 0 and [[g[|, # 0. If either || f||, = o or [|g[|, = oo, then the
inequality is trivial. So we consider the case || f[|,,, [|g]l, € (0,00). Let

F(z)=IfI;" f(x), G(x)=lgll;" g(x), forallzeX.

Then, by Lemma 2.48,

[F(x)]” | |G()]*
F)Gl) < =2+ =2

Integrating both sides and using the linearity of integral, we obtain

11
Jlfg\du<—+—=1-
P q

1
I1F11, 19l

Therefore,
1fally < 111, lgll, -

Let us consider the case when f e LP(X, M, u),g € LY(X, M, pn) such that ||fg|, =
£, lgll,- T 1Ifll, = 0, then we may choose 8 = 0 and a # 0 and conclude a|f|"(z) =
Blg|*(x) p-almost every x € X. The case || f||, = 0is similar as we can choose a = 0, 3 = 1.

IE[If1l,,lgll, € (0,00), then the equality case of Lemma 2.48 in the argument above,

we have equality if and only if |F(z)|” = |G(z)|*, p-almost everywhere or equivalently,

LI L @) = llgll, * lg(@)l,  for p-almost every x e X.

The triangle inequality for L” norm is known as Minkowski’s inequality.

Theorem 2.50 (Minkowski’s inequality). If 1 < p < oo and f,g € LP, then

1+ gll, < [1f1l, + 1lgll, -
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Proof. The result follows from integrating the inequality |f + g| < |f| + |g] if p = 1.
We consider p € (1,00) and let ¢ = p/(p — 1) € (1,90). Note that,

f+ gl =|f +gllf + 9P  <IFILF+ 9Pt +1gllf + 9P

Then by integrating the above estimate and using Holder inequality (Theorem 2.49), we
obtain (note that (p — 1)q = p)

1/q 1/q
[1r+aran<is, (f |f+g|<“>qdu) £l (f |f+g|(p”qdu)
X X X

1/q
= (71, + llgll) (L 4P cm) |

which implies the desired inequality (as 1 —q¢ ' =p™'). O

Now that we have verifies that LP-norm is indeed a norm, we next show the complete-
ness.

Theorem 2.51. Let (X, M, 1) is a measure space and p € [1,00). Then (LP(X, M, ), [|-[|,,)
1s a Banach space.

Proof. Due to Theorem 2.50, we have that (LP(X, M, pu), |-||,) is a normed vector space
(see the discussion before Example 2.47). By Theorem 2.11, it suffices to show that every
absolutely convergent series converges.

To this end, let (f,)nen be a sequence in LP(X, M, 1) such that S := 3" | || full, < oo.
Then G, = Y ;_, | fi| satisfies (by Theorem 2.50) |G|, = >;_; [ fxll, < S. By montone
convergence theorem G = lim,,_, G, = Y5, | fx| satisfies

f GPdy = lim f G lP dp < SP < oo
X n—o0 X

Therefore G < oo p-almost everywhere, which implies that Y} | fi(x) converges for u-
almost every z € X. Let F(x) = limsup,_,,, >, fx(z). Note that |F| < G and hence
F e LP(X, M, p). By the triangle inequality, |[F — >, fel” < (2G)? for all n € N. So by
almost everywhere convergence of |F' — > 7'_, fi| to zero and the dominated convergence
theorem, we have

lim [|[F = > fil| =0.
n—o0 e )
Therefore Y /' | fi converges to F in LF(X, M, p). O

The family of LP space can be extended to the case p = oo as we define below.
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Definition 2.52 (L® space). Let (X, M, u) be a measure space If f : X — Cis a
measurable function, then we define p-essential supremum (or essential supremum or
L*-norm) of f as

1/l = eSSgS}}lp!f(ﬂi)\ =inf{t = 0:pu({ze X :[f(x)] >1}) =0},

with the convention that inf ¢ = +c0. Equivalently, || ||, is the smallest ¢ > 0 such that
|f(z)] <t for p-almost every x € X.

L* = L*(X, M, p) is then defined as
L* ={[f]|f : X — C is measurable and || f|| , < oo},

with the usual convention that [f] denotes the equivalence class of functions that agree
almost everywhere with f.

Exercise 2.53. (a) Show that L®(X, M, i) equipped with the essential supremum norm
|-, is & normed vector space.

(b) If f € L®(X, M, pn),g9 € L'(X, M, p1), show that Holder inequality extends to the case
p = oo by proving
1Fglly < 1F 1l Nlglly -

Similar to the case p € [1,00), L™ is also a Banach space.

Theorem 2.54. L*(X, M, ) is a Banach space.

Proof. By Exercise 2.53-(a), it suffices to verify the completeness of the normed vector
space (L*(X, M, i), |||l,)- Let (fn)nen be a Cauchy sequence in L*. For any k € N there
exists Ny € N such that || f,, — full, < k! for all n,m > Nj. Hence there exists Ej, € M
with p(Ey) = 0 such that (why?)

|fn(2) — fu(2)| < k™', for all € X\E}, and for all m,n = Nj. (2.12)

We then let E = | J, .y Ek, so that E e M, u(E) =0, and for all z € X\E, (f,(2))nen is
a Cauchy sequence in C. Therefore f,(z) — f(z) for all z € X\E. By passing to limit
m — o0 in (2.12), we obtain

|f(z) — fo(z)| <k ' forall ze X\E, and all n > N,. (2.13)

Therefore f € L®(X, M, p) and ||f — full, < k7' for all n = Ny. So f is the limit of
(fn)neN n LOO. D

Our next subject is dual of L? spaces. Let p, q € [1,00] be such that p ' +¢ ' =1 (so
that p = 1 implies ¢ = ). Note that, we have Holder’s inequality, || fgll, < [|f]l, [lgll, for
any f e LP and g € L9. This suggest a natural construction of linear functionals in L” as
follows: for g € L9, we define ¢, : LP(X, M, 1) — C as

%m=me. (2.14)
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Clearly ¢, is linear (over C) and by Hélder inequality (see Theorem 2.49 and Exercise
2.53-(b)), we have

09(F)] < £l < llgllg 171, for all fe L.

Therefore ¢, € (LP)* with the operator norm |[|¢y|| satisfying [|¢4]| < [|g[l,- The upper
bound on the operator norm of ¢4 given by Hélder inequality is sharp as we verify in the
proposition below.

Proposition 2.55. (a) If pe (1,0] (so q € [1,0)), then ||¢4]| = ||gll,-

(b)

If pis semi-finite and p = 1 (so ¢ = o), then ||¢4|| = |9l -

Proof. (a) If g = 0, then ||¢4]| = 0. So we may assume |[[g|[, # 0. It suffices to show

]l = llgll,- To this end, consider the function

_ Jlgl"sen(g), if g e (1,00),
sgn(g), if g=1,

so that

_ 1/p 1 '
= 4 (Blol i) = (ol d)'™” = lglly” < o0, it g e (1,00),
: if g =1.

)

and 1
o) = LI lol" se(odgdi = gl it g (1,00),
g $x sen(g)g dp = gll, if g = 1.

Therefore

(6o ()] = llgllg = llgll, gll™ = llgl, 171l -

Again, we may assume ||g||, € (0,00). It is enough to show that for any € > 0, there
exists f € L' with || f||, = 1 such that |¢,(f)] = |lgll,, — €.

To this end, let € > 0. Define A = {x : |g(z)| = ||g]|,, — €}. By definition of essential
supremum, p(A) > 0. By the semifiniteness of the measure p, there exists B € M
such that B < A and u(B) € (0,00). Set

_ 9
= B gl
so that ||f||; = 1 and
1 1
WAﬂP=%UU=pE5LJﬂWUBREyLWﬂ@—OdMZWMM—f)

48



The following lemma shows that every function in LP can be approximated by simple
functions if p € [1, ).

Lemma 2.56. Let (X, M, u) be a measure space and let 1 < p < 0.

(a) If p € [1,00), then the set of simple functions g of the form g = " | a;xg;, where
neN,a; € C,E; e M and u(E;) < oo for alli=1,...,n is dense in LP.

(b) Simple functions are dense in L*.

(c) Let 1 <p < o0 (sop# o). Let (Ej)jen be a sequence of pairwise disjoint, measurable
sets such that E = | J;oy E; satisfies p(E) < 0. Then

XE — Z XE;
j=1

Proof. (a) Let f e LP. Then by approximation using simple functions (see Theorem 5.1),
there exists a sequence of measurable simple functions (f,,)nen such that 0 < |f,| < f
for all n € N and such that f,(x) — f(z) for all x € X. Note that, for all n € N

o = FIP < (Ul + IFD)P < 2°If17 € L.

So by dominated convergence theorem,

= 0.

lim
n—o0

p

i | 1= P d = | i 1fo— £ d =0,
X Xn—>OO

n—o0

Since f € LP is arbitrary, simple functions of the are dense in L”. Note that each
simple function f,, above can be written in the desired form since f,, € L.

(b) Let f € L®. Then there exists (see Theorem 5.1) a sequence of measurable simple
functions (f,,)nen such that 0 < |f,| < f for all n € N such that f,, converges uniformly
to f in the set {z € X : |f(z)] < | fll.}. Therefore f, — f in L*.

p o
p

j=n+1

(c) Note that

p

Q0
= ZXEj

j=n+1

XE — Z XE;
j=1

p

O

We saw in Proposition 2.55, that functions in L? can be used to construct operators
in the dual space (LP)*. We show that in many cases, every operator in the dual space is
of the form described in Proposition 2.55.

Theorem 2.57. Let pu a o-finite measure on a measurable space (X, M) and 1 < p < c0.
Let q € (1,00] be defined by gt + p~' = 1. Then if ¢ € (LP)*, then there exists g € L9
such that ¢(f) = ¢4(f) for all f € LP, where ¢y is as defined in (2.14). Furthermore,
gl = ol = llgll,- In other words, (LP)* is isometrically isomorphic to L.
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Proof. We first consider the case p(X) < 0. Let ¢ € (L?)*. For E € M, define

v(E) = o(xp)-

Note that xg € L since p is a finite measure.

Let us prove that v is a complex measure (see Defintion 5.5). By Lemma 2.56-(c) and
the continuity of ¢ : LP — C, we have the following: for any sequence (E;);en of pairwise
disjoint, measurable sets such that £ = U -y Ej, we have

Z = lim 2 o(XE;) = = lim ¢ <2 XE> d(xe) = V(E). (2.15)

In order to conclude that v is a complex measure, we need to verify that >, | [v(E;)| < 0.
To this end, let a; € C be such that |a;| = 1,a,v(E;) = |v(E;)| for all i € N. Therefore,

;' o) ‘J&&Zaz i —,}Ln%oﬂ aixs)
By the same argument as in the proof of Lemma 2.56, > | a;xg, converges in LP to
h:=>" aixp and 1AL, = w(E)Y?. Hence by the continuity of ¢, we have

ee]

D (B = o(h) < llg]l 1all, < 1]l n(E)” < co,

i=1

where ||¢|| € [0,0) is the operator norm of ¢. This along with (2.15) concludes the proof
that v is a complex measure.

Note that by the boundedness of ¢, we have

(B < ¢l Ixzl, = llgll n(E)"?,  for any E e M.

Therefore v « p. By the Radon-Nikodym theorem (see Theorem 5.6), there exists an
integrable function g such that

o(xe) =v(E) = J gdu = j xegdp, forall Ee M. (2.16)
E X

By the linearity of ¢ and (2.16), we have

= L fgdu, (2.17)

for all simple functions f.

Next, we show that g € L?. By approximation by simple functions (Theorem 5.1),
there exists a sequence of simple functions (g, )nen such that g,(z) — g(x) for all z € X
and |g,| 1 |g]. If g = 0 almost everywhere, there is nothing to show. So, by passing to a
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subsequence if necessary, we may assume that g, is not identically zero for all n € N. Let
us first consider the case ¢ € (1,00). Thus, for any n € N, the function

;= |gn|” "sen(g)
lgall?
satisfies
[ i = g [ g di =l [ e =1
and

1—
| gl die = Noull7 [ gl di =l
X X

By Fatou’s lemma, we have
loll, =t 1, = iminf | |£ugn]d
< liminff |fugl dpe (since |g,| < |g| for all n)

= liminff fagdp  (since |frng| = fn9)
X

n—a0
= liminf ¢(f,), (by (2.17))
n—0o0
< |l  (since || full, = 1 for all n)
This concludes the proof of that g € L.

Next, we consider the case ¢ = 0. We claim that ||g||,, < ||¢|| in this case as well.
Suppose to the contrary, there exists € > 0 such that

= {re X :|g(@)| = [0l + €},

satisfies ;1(A) > 0. Then
f = n(A) sen(g)xa
satisfies || f[|, = || ], = 1 and

(2 17)

| sadn = | gtz ) | (1ol + yd = 101+
which contradicts the inequality, |¢(f)| < [[¢[ [|f]l, = [[¢[|. Therefore, we have

lgll, < lloll,  for all g € (1,c0]. (2.18)

Since ¢ and ¢, agree on a dense set of LP(due to (2.17) and Lemma 2.56-(a)), ¢(f) =
¢q(f) for all f e LP due to the continuity of ¢ and ¢, (¢, is continuous due to Proposition
2.55).

Next, let us consider the case that u is o-finite. There exists an increasing sequence
of measurable sets (E,)nen such that p(E,) € (0,00) for alln e Nand X = J_, E,. For
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each n € N, LP(E,) can be viewed as a subset of LP(X) consisting of functions that vanish
p-almost everywhere on X\ F,. By the previous case of finite measure, we have that for
each n € N, there exists g, € LY(FE,,) such that

o(f) = L{ fondp, forall fe LP(E,). (2.19)

Therefore for any n < m, we have
gn = gm p-almost everywhere on F,,. (2.20)
By (2.20), where exists a measurable function ¢g : X — C such that for all n € N, we have
g = g, p-almost everywhere on F,,. (2.21)

By monotone convergence theorem and (2.18),

(2.6)
< [l¢ll,

lgll, = Jim flgnll, < tm (6],

where gb‘ Lo (En) denotes the restriction of ¢ to LP(E,). Moreover by the dominated con-

vergence theorem, for any f € LP, we have lim, o || fxE, — f]l, = 0 and hence by the
continuity of ¢, we have

21)

. . 2 .
o(f) = lim é(fxs,) = lim f Fgnxs, du % hmf Fove., du=f fgdn.

where the last equality above follows from dominated convergence theorem, since |fg| is
integrable due to Holder inequality.

The equality [|¢[| = [|g]|, also follows from Proposition 2.55. O

Exercise 2.58. Explain why (2.20) follows from (2.19) in the above proof. Likewise,
explain why ¢ in the statement of Theorem 2.57 is uniquely determined (up to u-almost
everywhere equivalence).

2.5 Baire category theorem and applications

Recall from Definition 1.6 that A < X is dense (respectively, nowhere dense) if A=X
(resp., (A)° = &).

Theorem 2.59 (Baire category theorem). Let (X, d) be a complete metric space.

(1) If (Up)nen is a sequence of open dense sets, then ()i, U; is dense in X.

(2) If (Eyn)nen is a sequence of nowhere dense sets, then | J-, E; # X.
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Proof. Tt suffices to show (1) and (2) is an easy consequence of (1). If (£, )nen satisfies the
hypotheses of (2), then U, = (E,)¢ is U, is open and dense, since U, = (E, )¢ = (E, )¢ =
X (due to Lemma 1.8-(5)). So (2) follows from (1).

Let W be a non-empty open subset of X. It suffices to show that W n (2, U; # &.
Since W is open and non-empty, pick zg € W,rg € (0,1) such that B(zg,79) < W. Since
B(zg,m0) n Uy is open and U is dense, there exists x; € B(zg,79) N Uy and 0 < ry < 27!
such that B(z1,71) < B(xg,ro) n U;. By induction, for all n € Z ., there exist x,, € X,0 <
r, < 27" such that

B(xn-i-h Tn-‘rl) = B(ZEn,Tn) M Un+1-
Therefore (z,) is a Cauchy sequence in X and therefore converges to x € X. Note that
x € B(x,,1,) € W n U, for all n € N and therefore z € W n (.2, U;. O

Exercise 2.60. Let (X, ||-]]) be a normed vector space over K. Recall that an algebraic
basis of X is a subset (e;);e; such that every z € X can be written uniquely as finite linear
combination of elements of (e;);er; that is,

xr = inei, with J < I, J finite, x; € K for all i € J.
1€J
The cardinality of a algebraic basis is called the dimension of the normed vector space.

(i) Prove using Zorn’s lemma that there exists an algebraic basis (e;);e; of X such that
leil| =1 for all ¢ € 1.

(ii) If X is infinite dimensional, show that there is a linear functional f : X — K that
is not continuous. (Hint: Use Proposition 2.13)

(iii) If X is an infinite dimensional Banach space, show that I is not countably infinite.
(Hint: Use Baire category theorem = Theorem 2.59).

The following remarkable result improves pointwise estimates to global (or uniform)
estimates.

Theorem 2.61 (Uniform boundedness principles or Banach—Steinhaus theorem). Let
X,Y be Banach spaces and let (T;);er be a family (not necessarily countable) such that
T, e L(X,Y) for allie I. Suppose that

sup |T;(z)|ly < oo, forallzeX.
i€l

Then

sup || T;|| < 0.
i€l

Proof. Let X, = {x € X : sup, || Ti(x)]ly < n} for all n € N. Note that X, is closed
(why?) and by our assumption, we have

0
X, =X,
=1

n
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By Baire category theorem (Theorem 2.59-(2)), we have X° # (J for some m € N.
Therefore, there exist zo € X,, and r > 0 such that for all z € X with [|z]|; < 1, we have
xo +rz € X, . Hence

|Ti(xo + r2)||y <m, foralliel and z € X with ||z, < 1.

Therefore
r | TG < m+ [|Ti(zo)|ly ,for all i € I.

and hence supe; [|T;]] < 2% < o0. O

The following two exercises are applications of the uniform boundedness principle.

Exercise 2.62. Let X,Y be Banach spaces and let (T},),en be a sequence of bounded
linear operators in £(X,Y’) such that for each z € X, the sequence (7,(x)),en converges
to a limit, say T'(x) € Y. Show that

() sup,eu |70 < .
(b) T e L(X,Y).
(©) 7] < liming, o, | Tl

Exercise 2.63. Let X be a Banach space over K and let B © X. Show that the following
are equivalent:

(a) B is bounded in X (that is, there exists R > 0 such that ||z|| < R for all z € B).
(b) For any T' € X*, the set {T'(x) : x € B} is bounded (in K).

For a normed space (X, |]|), we denote by B(x,r) (or Bx(z,r)), the open ball of
radius r centered at x; that is,

Bla,r) = Bx(w,r) = fye X : ly—al <r}.
For A, B c X and )\ € K, we use the notation

A+B={a+b:acAbe B}, MM={\a:ac A}
If A= {a}, then A+ B is also denoted as a + B or B + a.

Exercise 2.64. Let X be a normed vector space and let A, B < X.

(a) If either A or B is open, then A + B is open.

(b) If A is closed and B is compact, then A + B is closed.

Our next results are the open mapping principle and closed graph theorem.
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Theorem 2.65 (Open mapping principle). Let XY be Banach space and let T € L(X,Y)
be surjective. Then there exists ¢ > 0 such that

T(Bx(o, 1)) oD By(o, C).

Remark 2.66. The above theorem implies that image of open sets under 7" are open
sets (such a map is called open map). To see this, let U be open and let yg € T(U). Tt
suffices to show that yo € (T(U))°. Let xg € U be such that T'(zq) = yo. Since U is
open, there exists r > 0 such that Bx(zo,7) < U. Therefore T(U) > T(Bx(zo,7)) =
T(xo + Bx(0,7)) = T(xo) + rT(Bx(0,1)) D yo + rBy(0,¢) = By (yo, cr).

Proof of Theorem 2.65. Let T € L(X,Y) be surjective. We split the proof into two steps.
Step 1: There exists ¢ > 0 such that T(Bx(0, 1)) © By (0, 2¢).
First, we prove the above claim. Set Y, := nT(BX(O, 1)). Since T is surjective, we have
Ur_, Y, = Y. Therefore by Baire category theorem (Theorem 2.59-(2)), there exists
m € N such that Y2 # ¢J. So there exists yo € (T(BX(O, 1)))O and hence there exists
¢ > 0 such that

By (yo,4c) < T(Bx(0,1)).

By symmetry —yo € T(Bx(0,1)), and hence

By (0,4¢) = —yo + By (3o, 4¢) = T(Bx(0,1)) + T(Bx(0, 1)).

Since T'(Bx(0,1)) is convex, we have T(Bx(0,1)) + T(Bx(0,1)) = 2T(Bx(0,1)), and
hence
By (0,2¢) € T(Bx(0,1)). (2.22)

Step 2: If ¢ > 0 is as given in (2.22), then T(Bx(0,1)) > By (0,¢).
Let y € Y with ||y|ly, < c. We need to show that there exists z € X such that [|z|, <1
and T'(x) = y. By (2.22), we have

for any € > 0, there exists z € X with [[z[|y < 1 and [y — T(2)|y < (2.23)

Choose € = ¢/2 in (2.23), there exists z; € X with
1 c
[zally <5, and ly=T(20)ll < 3.
2 2
Repeating the same argument with y replaced by y — T'(z1) and with € = ¢/4, there exists
29 € X such that

1 c
leally < 7. and Iy =T(2) = T()ll < <.

By induction, we obtain a sequence (z,)neny in X such that

1
lzully < 57 and Hy—T(z1+22+...+zn)||<2£n, for all n € N.

It follows that x,, = Y., z; is a Cauchy sequence in X with z,, — = for some x € Bx(0,1)
with T'(x) = y. O
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Corollary 2.67. Let X, Y be Banach spaces and let T € L{(X,Y) be a bijection. Then T
is an isomorphism; that is, T~ € L(Y, X).

Proof. If T is bijective, continuity of T is equivalent to the property that T'(U) is open
in Y whenever U is open in X. This follows from the open mapping theorem (Theorem
2.65) as explained in Remark 2.66. O

Definition 2.68. Let 7': X — Y be a linear map between normed vector spaces X and
Y. We define the graph of T to be

D(T) ={(z,y) e X xY :y =T(z)},

which is a subspace of X x Y. We say that a linear map 7" : X — Y is a closed
linear map, if T'(T) is closed in X x Y, where X x Y is equipped with the product norm

1@, )l x oy = max(llz]lx , lylly)-

We always endow X x Y with the product norm |[[(z,y)| vy = max(||z] . |lylly)
which induces the product topology (see Exercise 2.9(a)). If T is continuous, then the
graph I'(T) is a closed subspace of X x Y endowed with the product norm (Can you see
why? If not, review Proposition 1.26). The converse is also true and this is called the
closed graph theorem.

Theorem 2.69. Let X and Y be Banach spaces and let T : X — Y be a closed linear
map. Then T is bounded.

Proof. Let my : I(T) — X, my : I'(T) — Y be the projections to X and Y re-
spectively; that is, m(z,Tx) = x,m(x,Tz) = Tz for all (x,Tz) € I'(T). Note that
m € LIO(T), X), m € L((T), V), since [lzlly < @ To)l oy [Telly < 1o To)l oy
for all (z,Tx) € I'(T"). Since I'(T) is a closed subset of a Banach space, it is a Banach
space (see Exercise 2.9(d)) 7 is a bijection, 77! : X — T'(T) is bounded by Corollary
2.67. Therefore by Lemma 2.18, T = myom; ' : X — Y is bounded. O]

2.6 Weak and weak* topologies

So far the only topology on a normed vector space X is the topology induced by the
norm. We introduce another important topology on X called the weak topology (recall
Definition 1.41).

Definition 2.70. Let (X, ||-||) be a normed vector space over K and let X* denote the
dual space. Then the weak topology T (X, X*) is the coarsest topology on X such that
the collections of functions {f : X — K|f € X*} are continuous; that is, 7 (X, X*) is the
weak topology on X generated by {f : f e X*}.

Remark 2.71. There are two properties of a topological space (X, T) that are desirable:

(i) Lots of continuous functions f: X — Y.
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(ii) Lots of compact sets.

However, these is a conflict between these two properties as finer topologies has fewer
compact sets and coarser topologies have fewer continuous functions®. The weak topology
can be viewed as an attempt to reconcile the two conflicting desires by prescribing the
coarsest topology with a such that a given family of functions is continuous.

By Proposition 2.13, the weak topology T (X, X*) is coarser than the topology induced
by the norm. As a result, the weak topology has more compact sets. Since compactness
plays an important role in existence of limits (for example, in minimization problems)
such topologies are useful.

Let X be a normed vector space and let X* denotes its dual space. So far, we have
seen two topologies on X*:

(i) the norm topology induced by the operator norm on X*.

(ii) the weak topology 7 (X*, X**) on X* as given in Definition 2.70.

Now we are going to define a third topology on X* called the weak* topology (read as
‘weak star’). Recall from Definition 2.31 and Corollary 2.30-(ii) that there is a natural
isometric linear map from X to X** where the map J : X — X** is defined by

(J(@)(f) = f(z), forall fe X* and all x € X.

Definition 2.72. Let (X, ||-||) be a normed vector space over K and let X* denote the
dual space. Then the weak* topology 7 (X*, X) is the coarsest topology on X* such that
the collections of functions {J(z) : X* — K|z € X} are continuous; that is, 7 (X*, X) is
the weak topology on X generated by {J(z): x € X}.

Note that if X is reflexive (that is, J(X) = X**), then the weak and weak* topologies
on X* coincide. In general, the weak™ topology on X* is coarser than weak topology on
X* which in turn is coarser than the topology induced by the operator norm on X*.

Proposition 2.73. Let X be a normed vector space over K and let T (X, X*) denote the
weak topology on X.

(i) The weak topology on X is Hausdorff.
(i1) Let xg € X. Then sets of the form
V(fi,. o fuy€) i={xv e X :|filz) = filzo)| <€ foralli=1,...,n}

obtained by varying € € (0,00),n € N and fi,..., f, € X* form a neighborhood base
of xg for the weak topology.

2For example, every function from a space equipped with discrete topology is continuous but the only
compact subsets are finite sets. On the other extreme, every subset of the trivial topology is compact
but the only continuous functions are constants.
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Proof. (i) Let x1,x9 € X be distinct. By Hahn-Banach theorem (Corollary 2.30), there
exists f € X* such that f(x;) # f(z2). Since K is Hausdorff, there exist dis-
joint open sets Uy, U, in K such that f(z;) € U; and f(x) € Usy. Hence f~1(U;)
and f~1(Us) are disjoint open neighborhoods of x; and x5 respectively in the weak
topology T (X, X*).

(ii) Clearly o€ V(f1,..., fa;€). Also V(f1,..., fa;€) is open in weak topology since

n

V(fi,- o fure) = [ 71 (U:), where U; = {a€ K :|a— fi(zo)| < e},

i=1
and each U; is open in K.

Now let U be any open set containing zy in the weak topology. Then by the base
of weak topology described after Definition 1.41, there exist fi, fa,..., fn € X* and
open sets Vi,...,V, in K such that f;(zo) € V; for each i = 1,...,n and

n

vy eU.

=1

Since each V; is open, there exists € > 0 such that {a € K : |a — f;(zo)| < €} = V; for
each i = 1,...,n. Hence V(fi,..., fu;€) € U which concludes the proof that sets of
the form V(f1,..., fn;€) form a base of weak topology by varying € € (0,00),n € N
and fy,..., f, e X*.

[]

Proposition 2.74. Let X be a normed vector space over K. Let (z,)nen be a sequence
m X.

(i) x, — x in the weak topology if and only if f(x,) — f(x) for all f e X*.

(ii) z, — x in the norm topology implies that x, — x in the weak topology.
(i11) If x, — x in the weak topology, then (||x,]| )nen is bounded and ||z|| < liminf,, o ||2,]].
Proof. (i) This is a special case of Exercise 1.60.

(ii) This follows from (i), Proposition 1.59, and the fact that every f € X* is continuous
in the norm topology of X.

(iii) Consider the sequence of evaluation maps E,, € X** defined in Corollary 2.30-(ii).
Since for any f € X*, we have

lim B, (f) = lim f(z,) = f(2),

n—0o0 n—o0

by the uniform boundedness principle (Theorem 2.61) and Corollary 2.30-(ii),

sup [| By, [| = sup ||z, | < co.

neN neN
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Since |f(x,)| < ||f|| [|xn]| for any f e X*, we have
|f(x)] = lim |f(z,)| < || f||iminf ||z,||, forall fe X*.
n—aoo n—oo

Therefore, the desired result follows from Corollary 2.30-(i).
[l

Similar results with almost the same proofs also hold for weak™ topology and is left
as an exercise.

Exercise 2.75. Formulate and prove versions of Propositions 2.73 and 2.74 for the weak™*
topology on the dual space X* of a normed vector space X.

Recall that the compactness of closed unit ball in the norm topology is a characteriza-
tion of finite dimensional normed vector spaces (see Theorem 2.22). On the other hand,
closed unit ball is compact in the weak™ topology even on infinite dimensional spaces. The
proof involves relating the weak™ topology with product topology and using Tychonoff’s
theorem.

Theorem 2.76 (Banach-Alaoglu theorem). Let X be a normed vector space over K and
let X* denote the dual space of X. Let Bx«(0,1) denote the closed unit ball in X*. Then
Bx«(0,1) is compact with respect to the subspace topology of the weak™ topology on X*.

Proof. Let X* denote the dual space of X equipped with the weak* topology 7 (X*, X).
Let Y = [[Lex K = K X denote the space of all functions from X to K equipped with
the standard product topology. Let 7, : Y — K,z € X, denote the cannonical projection
maps. Let @ : X* — Y denote the cannonical injective map such that ®(f) = (f(x))zex
for all f e X*. By Exercise 1.43, the map ® is continuous since 7, o ® : X* — K is the
map f — f(x) which in turn is continuous by the definition of weak™ topology.

Let us verify that the inverse map ®~! : ®(X*) — X* is also continuous if ®(X*) is
equipped with the subspace topology inherited from Y. Again by Exercise 1.43, the map
¢! d(X*) - X* is continuous since J(x) o @1 = ﬂx‘q)(x*) : O(X*) > K forall z € X,
which is continuous by the definition of subspace and product topologies. Therefore,
® : X* — &(X*) is a homeomorphism.

Let B (0,7) = {a € K : |a| < r} denote the closed ball of radius r centered at 0 in K.
Note that

®(Bx=(0,1)) <ﬂ{w €Y : m,(w) € Bg(0, ||$||)}> m< (| fweY:am(w)+bm,(w) = wmby(w)})
zeX z,yeX,a,be K

Note that ((),ex{w €Y : m.(w) € Bg(0, ||z])}) is compact, since it is the product of com-

pact sets [ [,ox Br(0, ||z]|) by Tychnoff’s theorem (see Theorem 1.80 and Exercise 1.47).

For each z,y € X and a,b € K, the function w — mauypy(w) — amy(w) — bry(w) is a
continuous function on Y and hence

(| fweY :am(w) + bmy(w) = Tapiby(w)}

z,yeX,a,be K
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is a closed subset of Y. Since the closed subset of a compact space is compact (by
Proposition 1.62), we have that ®(Bx=(0,1)) is a compact subset of Y and hence ®(X*).
Since ® : X* — ®(X*) is a homeomorphism, this implies the desired conclusion. ]

2.7 Metrizability of weak topology

Definition 2.77. We say that a topology 7 on a set X is metrizable, if there is a metric
d: X xX —[0,00) on X such that the topology induced by the metric coincides with 7.

By definition, the norm topology on a normed vector space is metrizable. The following
theorem clarifies when the weak topology is metrizable.

Theorem 2.78. Let X be a normed vector space over K. Then the following are equiv-
alent:

(a) The weak topology T (X, X*) on X is metrizable.

(b) X is a finite dimensional space.

The proof of Theorem 2.78 requires some preliminary results. First, we show that
finite dimensional normed vector spaces have metrizable weak topology by showing that
weak and norm topologies are the same.

Proposition 2.79. Let X be a finite dimensional normed vector space over K. Then
the weak topology T (X, X*) is same as the norm topology on X. In particular, the weak
topology is metrizable.

Proof. Let (e;)1<i<n be a basis of X such that ||e;|| =1 for alli=1,...,n. Let (f;)1<i<n
be the basis of X* as defined in Exercise 2.25, so that z = 37/, fj(z)e; for all z € X.

Since weak topology is coarser than the norm topology it suffices to show that every
open set in norm topology is open in the weak topology. So it suffices to show that for
any xg € X,r > 0, the open ball B(xg,r) = {z € X : ||x — z¢|| < r} is a neighborhood of
To in the weak topology. To this end, note that if

yeV(fi,...,fue) ={xe X :|fi(x) = filxo)| <€ foralli=1,... n},

then by the triangle inequality

ly — zoll = || (fiy) — fi(wo)) Z|f@ — filyo)| < me.
i=1
So
V(fi,..., fa;r/n) < B(xzo,71)
for any xg € X, r > 0, which concludes the proof by Proposition 2.73-(ii). ]
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If X is a normed vector space over C, it can also be viewed as a normed vector space
over R. Then it has two dual spaces from these two different viewpoints, say X and X¢.
So there are two weak topologies on X that arise 7 (X, X3) and 7 (X, X&) by viewing X
as a vector space over R and C respectively. We claim that these two weak topologies are
the same. To see this, recall relationship between Xz and X¢ in Proposition 2.24

Xg ={Re(f)|f € X¢}, X¢={F:X — C|F(z) = u(x)—iu(iz) for all z € X, where u € X%}.

Let f € X&. Then Re(f),Im(f) e Xg. This shows that T(X, Xg) o T(X, X{) as every
f € X¢ is continuous with respect to T(X, Xj) as both real and imaginary parts are
continuous. Conversely, if u € XJ, there exists f € X such that u = Re(f). So u is
continuous with respect to 7 (X, X&) and hence 7 (X, X%) < T(X, X&). This concludes
the proof that 7 (X, X%) = T(X, X§).

So for the purposes of proving Theorem 2.78, we may assume without any loss of
generality that X is a vector space over R for the remainder of §2.7.

Let us recall the definition of the notion of kernel and range of a linear operator.

Definition 2.80. Let 7' e £(X,Y’). Then the kernel (or nullspace) of 7' denoted by N (T')
is defined as

N(T)={reX:T(x)=0}
The range of T" denoted by R(T) is defined as
R(T)={T(x):xe X}

Note that N (T) and R(T') are subspaces of X and Y respectively and N (T) is closed
in X (check these elementary facts). The following algebraic lemma is a consequence of
Hahn-Banach separation theorem.

Lemma 2.81. Let X be a normed vector space over R and let ¢1,¢o,...,0, € X* be
linear functionals. Let ¢ : X — R be a linear functional such that

N (@) = N (@), (2.24)

i=1

Then there exists Ai,..., A\, € R such that
P(x) = Z Nigi(z), forallze X.
i=1

Proof. Define T : X — R™™!, where

T(x) = (¢p(x),p1(x),...,dn(x)), forall xe X,

where R"*! is a normed linear space equipped with the norm given in Exercise 2.20. Then
by (2.24), the point yo = (1,0, ...,0) does not belong to the range R(T") of T
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By Hahn-Banach separation theorem (Theorem 2.38-(2)), there exists G € (R™*1)*
and « € R such that
G(y) < a < G(T(x)), forall ze X.

By Exercise 2.25, there exists A\, A1,..., A\, € R such that G((20,21,-..,2n)) = A20 +

D Nz for all (29, 21, .. ., 2,) € R**1 Therefore
A<a<A(x)+ ) Ngi(z), forallzeX. (2.25)
=1

Substituting z = 0 in the above gives A < a < 0. If Ad(x) + D" | \ighi(x) # 0 for some
x € X, then replacing = with tx in (2.25) leads to a contradiction as either ¢ — oo or
t — —oo. Hence A # 0 and Ap(x) + D7, Migi(z) = 0 for all z € X. O

Proposition 2.82. Let X be a normed vector space over R such that the weak topology
1s metrizable, then X is finite dimensional.

Proof. As the proof is long, we break it into three steps:

1. X* admits a basis that is either finite or countably infinite.
2. X™* is finite dimensional.

3. X is finite dimensional.

Step 1: Let d : X x X — [0,00) be a metric on X such that the metric space (X, d)
induces the weak topology 7 (X, X*). Recall from Example 1.18-(ii) that

{By: ke N}, where By = {z:d(x,0) < k™'}

is a neighborhood base of 0 in the weak topology. By Proposition 2.73-(ii), for all k € N
there exists a finite set F, < X* and ¢ € (0, 00) such that

{re X :|f(x)] <e forall feF} < By. (2.26)

Let ' = UZOZI Fy.. Since each Fj is finite, F' is either finite or countably infinite. We
claim that span(F) = X*; that is, every g € X* is a finite linear combination of elements
of F. Let g € X* be arbitrary. Since {x € X : |g(x)| < 1} is a neighborhood of zero (by
Proposition 2.73-(ii)), and {By : k € N} is a neighborhood base, by (2.26), there exists
m € N such that

{re X :|f(x)| <€, forall fe F,} B, c{reX:|g(x) <1}

So if z € (Vyep, N(f), then = [t]|g(x)| = |g(tz)| < 1 for all t € R, which in turn implies
g(x) = 0. Therefore

() N(f) = Ng).

feFm
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By Lemma 2.81, g € span(F},) < span(F’) and hence
X* = span(F).

Since F' is either finite or countably infinite, by choosing a maximal (by inclusion) linearly
independent subset of F' using Zorn’s lemma, we obtain a basis that is either finite or
countably infinite.

Step 2: From step 1, we need to rule out the possibility that X* has a countably infinite
basis. This is an easy consequence of Exercise 2.60-(iii) and the fact that X* is a Banach
space (by Proposition 2.16). Therefore X* is finite dimensional space.

Step 3: By step 2 and Exercise 2.25-(iii), X** is finite dimensional. Since there is a
one-to-one linear map J : X — X** (by Corollary 2.30-(ii)), we conclude that X is finite
dimensional. O

We are now ready to prove Theorem 2.78.

Proof of Theorem 2.78. (b) = (a) follows from Proposition 2.79.
(a) = (b) follows from Proposition 2.82 and the discussion after Proposition 2.79 which
reduces the analysis to the case K = R. O

A slight modification of the proof of Theorem 2.78 also shows a similar result for weak*
topologies as stated in the exercise below.

Exercise 2.83. Let X be a normed vector space over K. Then the following are equiva-
lent:

(a) The weak* topology 7 (X*, X) on X* is metrizable.
(b) X is a finite dimensional space.

Hint: Imitate the proof of Theorem 2.78. It might help to solve Exercise 2.75 first.

3 Hilbert spaces

Hilbert spaces can be viewed as generalizations of Banach space where the norm is replaced
with an inner product. The notion of inner product can be viewed as a refined version of
norm.

Definition 3.1 (inner product). Let H be a vector space over C. An inner product on
H is a function (-, ) : H x H — C such that:

(i) For any x,y,z € H and a,b € C, we have
lax + by, z) = alx, z) + Iy, 2).

(ii) For any =,y € H,

(y, ) = (z,y).
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(iii) {(x,x) € [0,00) for all z € H and {z,z) = 0 if and only if x = 0.

A complex vector space ‘H equipped with an inner product is called a pre-Hilbert space.
If H is a pre-Hilbert space with inner product ¢, ), we define

|z|| := A/{x,x), forall x e H. (3.1)

Remark 3.2. Note that properties (i) and (ii) in Definition 3.1 implies that, for all
x,y,z€ H and a,b € C, we have

{x,ay + bz) = @lx,y) + Wz, 2).

The notation in (3.1) suggests that every inner product defines a norm. In order
to verify the triangle inequality for the ‘norm’ defined in (3.1), we need the Schwarz
inequality.

Theorem 3.3 (Schwarz inequality). Let H be a pre-Hilbert space with inner product (-, -).
Then for all x,y € H, we have

Kz, ol < =l Iyl
with equality if and only if x and y are linearly dependent.

Proof. 1f {x,y) = 0, then the result holds trivially.
So we may assume that {(z,y) # 0 (and hence ||z|| # 0,]|y|| # 0; why?) Let a =

sgn({y,x)), so that if z = ay, we have (z,2) = {ay,z) = alz,y) = sgn(z,y){z,y) =
|{x,y)|. For any t € R, we have

0 <{(w—tz,x—t2) = {2, )t — 2/ {a, )|t + {z, x).

Since the quadratic function t +— (z, 2)t* —2|{(z, y)|t+{z, x) is non-negative and it achieves
its minimum at ¢, = ||y||~* [(z, )| and hence

0 < (& —toz,x —toz) = |l2]|* — Iyl [<z, )"
Note that this implies the desired inequality, with equality if and only if (by Definition
3.1-(iii))
T =19z = toay
which happens if and only if z and y are linearly independent. O]
Proposition 3.4. The function x — ||z|| defined in (3.1) is a norm on H.
Proof. Note that ||z|| = 0 with equality if and only if = 0 (by Definition 3.1-(iii)). By

Definition 3.1-(i),(ii), we have ||[Az| = |\|||z]|| for all x € H, A € C. It remains to verify
the triangle inequality. To this end, note that

lz +ylI* = & +y, 2+ ) = |z + lylI* + 2 Re, ). (32)
Therefore by Theorem 3.3, for all x,y € H, we have
Iz + yl* = [l=]” + llylI* + 2 ReCz, y) < [|2]|* + [lyl|* + 2/<z, v)]
2 2 2
< ="+ lyll™ + 2zl [lyll = ([l + [yl
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Given the norm induced by the inner product one can recover the inner product using
the following formula (called the polarization identity).

Exercise 3.5. Let H be an inner product space equipped with inner product ¢, -) and
the norm given by (3.1). Then we have

3
{x,y) = i Z (zk Hx + iky||2> , forall z,y e H.
k=0

By Proposition 3.4, every pre-Hilbert space is a normed vector space, and hence is a
metric space (recall Exercise 2.2). The definition of Hilbert space is similar to that of
Banach space.

Definition 3.6 (Hilbert space). A pre-Hilbert spce what is complete with respect to the
norm ||z|| = 4/{x, z) is called a Hilbert space.

Example 3.7. Let (X, M, u) be a measure space. Let L*(X, M, u) be equipped with

the inner product (Exercise: check the properties of inner product)

(Fra) = L fadu.

Then the corresponding norm is the L2-norm in Definition 2.46 and hence the above inner
product is called the L2-inner product. By Theorem 2.51, this pre-Hilbert space a Hilbert
space.

Lemma 3.8 (Parallelogram law). For all x,y € H,
lz + ylI” + llz = wlI* = 2 (Il=1* + lly[I*)
Proof. This follows from (3.2) as
Iz +ylI* = ll2]* + lyll* + 2ReCz, ), Nz —yl* = [lz|* + [lyl|* — 2ReCz, ).
O

Remark 3.9. We can also define real Hilbert spaces for vector spaces of R. In this case,
the real inner product on a vector space Hg over R is a function {-,-) : Hg x Hg — R
such that:

(i) For any x,y,z € H and a,b € C, we have
lax + by, z) = alx, z) + Iy, 2).

(ii) For any =,y € H,

Y x) =z, y).
(iii) (x,z) € [0,00) for all z € H and {z,z) = 0 if and only if x = 0.

The proof that a real inner product defines a norm ||z|| = 1/{x, z) is exactly the same as
in the complex case. In fact, all results in §3 works for real vector spaces.
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3.1 Projection onto a closed convex set

Theorem 3.10 (Projection onto a closed convex set). Let K be a nonempty closed convex
set of a Hilbert space H. Then for every x € H, there exists a unique uw € K such that

&~ ull = min & — o] (3.3)

Moreover, the distance minimizing property (3.3) is equivalent to
uwe K, and Re({(z —u,v—u)) <0, forallvelkK. (3.4)

Proof. Existence: Let (v,)nen be a minimizing sequence for inf,¢f ||z — v||; that is, v, € K
for all n € N and
dy = ||z —v,|| = d:=inf ||z —v|.
veEK

We claim that (v,) is a Cauchy sequence. By parallelogram law (Lemma 3.8) applied to

= and #=, we have

(d7 + dy)

H Up, + Um

2 1 , 1
5| gl el = 5

Since “25'm ¢ K (by the convexity of K) and thus ||z — 2tz || > d. It follows that

1 1
7 llon = omll? < 5 (& +d2) — d? and i [0 — V]| = 0.
Therefore (v,) converges to some u € K (since K is closed) with d = ||z — ul|. This

completes the proof fo existence of u € K that satisfies (3.3).

FEquivalence: Before we show uniqueness, we show the equivalence between (3.3) and
(3.4). Assume that u € K satisfies (3.3) and let w € K. By the convexity of K we have

v=(1-tu+twe K, forallte][0,1],

and hence
[z —ull < lz — (1= u+tw)|| = [z —u—t(w—u).
Therefore by (3.2),

lz = ull® < |l = ull* = 2t Re (C& — w,v —w) + ¢ |w —ul]*.

As t | 0, we obtain (3.4).
Conversely, assume that u € K satsifies (3.4), then for any v € K, we have by (3.2)

(3.4)
lu —z|* — |l — 2 = 2Re(w — u,v —w) — v —ul* < 0,

which implies (3.3).
Uniqueness: Assume that uy,us € K satisfy (3.4). Therefore

Re (@ —uy,v —up)) <0, foralveK. (3.5)
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Re ({x — ug,v —uy)) <0, forallve K. (3.6)
By setting v = uy in (3.5) and v = u; in (3.6), and adding the inequalities, we obtain
0 = Re ((x — uy, uy — uy) + (x — ug, uy — u)) = Re(||ug — uz|®) = ||Juy — ua|® .
Therefore u; = us. O

Notation: For x € H and a closed convex subset K < H, by Pg(z) € K, we denote the
unique u = Pk (z) € K that satisfies (3.3) in Theorem 3.10. We call Pk(z) the projection
of z onto K.

For a Banach space, the existence and uniqueness described in Theorem 3.10 can fail
even for the case x = 0 (equivalent to elements of minimal norm) as outlined in the
exercise below.

Exercise 3.11. (a) (failure of existence) Consider the Banach space X = C(|0,1])
equipped with the supremum(or uniform) norm. Then show that the set

M:{fexzﬁf(x)dx—ﬁf(x)dx:1}

is a nonempty closed convex set of X with no element of minimal notm.

(b) (failure of uniqueness) Consider the Banach space Y = LY(R,B,m), where m is
the Lebesgue measure and B is the Borel-o-field. Show that the set K = {f €
X o {; f(z)dx = 1} is a non-empty closed convex subset of ¥ with infinitely many
elements of minimal norm.

The projection onto K maps cannot increase distances as shown below.
Proposition 3.12. Let K be a nonempty closed convex set of a Hilbert space H. Then
Pk (21) = Pre(x)|| < |lon — o, for all w1, 20 € H.

Proof. Let x1,x9 € H and uy = Pg(x1),us = Pg(xs) € K. Then by (3.4) in Theorem
3.10, we have

Re ({z1 —uy,v —uy)) <0, forallve K.
Re ({(xg — ug,v —ugy) <0, forallveK.

By setting v = uy in (3.5) and v = u; in (3.6), and adding the inequalities, we obtain

0 = Re ({xy — uy, ug — uy )y + {x3 — ug, uy — us))

— Re(||luy — us||?) — Re ({1 — 2, u1 — ug)) = |Jug — us||® — Re ((xy — 9, ug — us)) .
Therefore by Schwarz inequality (Theorem 3.3), we have
lur — us||* < Re ((oy = 2, ur — u2)) < [(w1 — @, w1 — up)| < [Jug — wa| [y — ]| -

This implies the desired estimate. O
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Corollary 3.13. Assume that M < H is a closed subspace of a Hilbert space H. Let
x € H. Then uw = Py(z) is characterized by

ue M, and {xr—u,vy=0, forallve M. (3.9)

Furthermore, Py : H — M s a bounded linear operator and is called the orthogonal
projection onto M.

Proof. Suppose u € M satisfies
i~ = min [z o]
Then by (3.4), we have
Re ({z —u,w —uy) <0, forall we M.
For any v € M,a € C, we have w = av + v € M and hence
Re ({(z —u,av)) <0, forallve M and a € C.

By choosing a € C such that Re ((x —u,av)) = Re(alx —u,v)) = [{x —v,v)| in the
above estimate, we obtain (3.9).
Conversely, if u € M satisfies (3.9), then it satisfies

{(x —u,w—uy=0, forallweM.

and hence implies (3.4). Therefore by Theorem 3.10, we have u = Py (z).
Note that for all a,b€ C, z,y € H and v € M, by (3.9), we have

v + by = (@Pu(@) +bPu(y)), v) = ale = Pu(@), ) + Ky = Puly) ) =0,

By the characterization in (3.9), we conclude that

Py(ax + by) = aPy(x) + bPy(y), forall x,y € H and a,be C.
Hence Py is linear (over C). Furthermore, by Proposition 3.12, we have || Py (2)| < ||z||
for all z € H. So Py is bounded. O
3.2 Dual of a Hilbert space

Next, we describe the dual space of a Hilbert space. For any y € H, the map ¢, : H — C
defined by

¢y(x) = {2,y) (3.10)
is clearly linear (over C) by Definition 3.1-(i). Note that, by Schwarz inequality,

|6y ()| = [z, )l < lyll ]
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Therefore ¢, € H* and the operator norm ||¢|| satisfies ||¢|| < ||y||. The fact that ||¢|| =
ly|| follows from ||y||* = |6, ()| < |6yl |lyll. The map y — ¢, is conjugate linear from H
to H*, as

¢a1y1+a2y2 = a_1¢y1 + a_2¢y2’ for all ay,G2 € C and Y1,Y2 € H.

Hence y — ¢, defines a conjugate linear isometry from H to H*. The surjectivity of this
map is called the Riesz—Fréchet representation theorem.

Theorem 3.14 (Riesz—Fréchet representation theorem). For any ¢ € H*, there exists a
unique y € H such that ¢(x) = (x,y) for all x € H.

Proof. Existence: If ¢ = 0, then we may choose y = 0. Otherwise, consider the kernel of
¢, that is, M = ¢~1({0}). Then M is a closed subspace (due to continuity and linearity
of ¢) and M # H. Choose 1 € H\M and let u; = Py(x1). Then by Corollary 3.13,
Ty = |lz1 —w|| ' (z1 — wp) satisfies

xo ¢ M, |zl =1, and <(v,x9)=0, forallve M. (3.11)

Since ¢(xz) # 0, for any x € H we have

o),
T o) M
and hence by (3.11), we have
—x—¢($)xx = (z,x —d)(x)mx = (z,x _ @) or all z €
0=« o(x2) 02 = @2 ¢(932)< 0 2) = T2 ¢(z2)’ for all e

Therefore, choosing y = ¢(xs)xs, we have

o(x) = ¢(wo){w, xe) = {w, Pp(m) 22y = (x,7y), for all x € H.

Uniqueness: If there exist v,y € H such that ¢(z) = (x,y1) = {x,ys) for all x € H, by
choosing & = y; — ya, we have ||y; — y»]|> = 0 and hence y; = 5. O

Note that the Riesz-Fréchet representation theorem defines a bijection € : H — H*
between a Hilbert space and its dual defined by

(€(y)(x) =<z, yy forallz,yeH.
It is not linear over C, but rather conjugate linear, that is,
(€(2)) (a1 + azy2) = a1 (€(x)) (1) + a2 (€(x)) (1), for all ar,az € C,z, 41,92 € H.

Note that, if T': H — H is a bounded linear operator on a Hilbert space, then the adjoint
T* : H* — H* is a bounded linear operator on its dual (recall Definition 2.39). By the
Riesz-Fréchet representation theorem, we can define can view the adjoint operator as an
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operator in L£(H,H) be conjugating with the map € : H — H*; that is, we define the
Hilbert space adjoint as the operator TT:= ¢~ 1o T* o € : H — H. So we have

(2, T'(y)) =z, (€ o T* 0 €)(y)) = (T*(€(y)(x) = (CW))(T(2)) = (T(2), ),

for all 2,y € H. It is easy to verify that T is linear and bounded. By Proposition 2.40
and Theorem 3.14, we have
17 =

That is, the Hilbert space adjoint T : H* — H* of T € L(H,H) is the unique linear
operator in L(H,H) characterized by

(T(z),y) = {x,T(y)), forall z,yeH. (3.12)

We say that a bounded operator T € L(H,H) is self-adjoint if T = TT.

3.3 Orthonormal basis

Definition 3.15. Let H be a Hilbert space. We say a subset {u, : « € A} < H is
orthonormal if (us,usy =1 for all & € A and

(Ug,ugy =0, for all o, B € A such that o # .

Proposition 3.16 (Bessel’s inequality). If {u, : « € A} is an orthonormal subset of H

and x € H, then
2 2
2 K uayl <l
a€A

In particular, {a € A : {(x,uy,) # 0} is countable.

Proof. Tt suffices to show that 3 . |(z, ua)|* < ||z||* for any finite subset ' < A. Note
that

2
2 2
0|l — Nt uwadua]| = P+ X o wadual — 3 2 Reca, o, wayue)
aeF aeF aeF
= [lzl* + X, Kz ua)l* =2 3 Kz ua)l = |* = ) Kz, ua)l™
a€eF a€eF a€eF
By Bessel’s inequality, {a € A : [{x,u,| > n~1} is finite for each n € N. O

An useful consequence of Schwarz inequality is the continuity of inner product in both
variables.

Lemma 3.17. If z, —» x and y, — vy, then {(x,, y,) — {x,y).
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Proof.

|<xnyn> - <x> y>’ < ‘<xn -, yn> + <l’, Yn — y>’
< [on = 2, yn)| + K2, yn = 9 < lon = 2l yall + 1] {lyn =yl
Since ||y,|| = |ly||, we obtain the result. O

We describe properties of a maximal (see Exercise 3.20) orthonormal set.

Theorem 3.18. If {u, : « € A} is an orthonormal subset of H, the following properties
are equivalent:

(a) (Completeness) If x € H satisfies {x,uqsy =0 for all « € A, then = 0.
(b) (Parseval’s identity) For each x € H, we have ||z||> =3 ., |z, ua)|.

(c) Foreachx e M, v =), (%, Un)Uq, where the sum has only countably many non-zero
terms and converges in the norm topology regardless of how the terms are ordered.

Proof. (b) implies (a) follows from the non-degeneracy of norm.

(a) = (c): Let x € H. Let ay, aq,... be an enumeration (finite or infinite sequence) of
all a’s such that {z,u,y # 0. Since the sum converges if it is finite, we assume that we
have an infinite sum. By Bessel’s inequality, we have > |<x, ua].>‘ converges, and hence

2 n
2
= Z |<x,uaj>‘ — 0, asm,n — .
j=m

n
Z (T, Uy Pl
j=m

By the completeness of H, the series >, (%, uq; )Uq; converges. If y =z — 3, {x, U, U,
then (y,u,) = 0 for all &« € A (by the continuity of inner product; see Lemma 3.17).
So by the completeness of the orthonormal set, we conclude that y = 0, or equivalently

T =T, Ua; Yla-
(c) = (b): With ¢;’s as above, the calculation in the proof of Bessel’s inequality implies

that
2

200 0.

n n
2
||x||2 — Z ‘<x,uaj‘ = ||lx — Z<x, uaj>uaj
j=1 j=1

]

Definition 3.19. If an orthonormal subset of a Hilbert space satisfies any of the equaiva-
lent conditions of Theorem 3.18, we say that it is a orthonormal basis.

Exercise 3.20. Let H be a Hilbert space.

(a) Consider the collection of all orthonormal subsets partially ordered by inclusion. Show
using Zorn’s lemma that there is a maximal orthonormal subset.
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(b) Show that if {u, € A} is a maximal orthonormal subset of #, then it is complete (in
the sense of Theorem 3.18-(a)).

(c¢) Conclude that every Hilbert space has an orthonormal basis.

The following is a notion is when two Hilbert spaces can be considered the ‘same’ (or
isomorphism).

Definition 3.21. Let #; and H, be Hilbert spaces with inner products (-, -); and (-, )9
respectively. We say that a map U : H; — Hs is unitary, if it is linear, invertible and
preserves inner products

{U(x),U(y)ys = {x,yy, forall x,ye H;.

Using a orthonormal basis every Hilbert space can be viewed as an L? space.

Proposition 3.22. Let {e, : o € A} be an orthonormal basis of a Hilbert space H. The
map U : H — (2(A) defined by (U(z))(a) = {(x, e,y is a unitary map.

Proof. Linearity of U follows from the linearity of inner product in the first argument.

Completeness of orthonormal basis implies that U is one-to-one. If f € ¢*(A), then it
is easy to check (similar to proof of (a) implies (c¢) Theorem 3.18), that )  _, f(c)es has
atmost countably many non-zero terms and converges in H in the norm topology such
that the limit does not depend on the order of terms. Furthermore U(}, .4 f(a)eq) = f.
This proves that U is surjective.

By Parseval’s theorem,
1U @) 2y = llz]l, forall zeH.

This along with the polarization identity (Exercise 3.5) implies that U preserves inner
product. O

4 Compact operators

We introduce the notion of compact operators. Throughout §4, we assume that (X, ||| )
and (Y, ||-|ly) are Banach spaces over the field K, where K is R or C. So by Proposition
2.16, the vector space of bounded linear maps £(X,Y) from X to Y equipped with the
operator norm is a Banach space. Compact operators are a special class of bounded linear
operators.

Definition 4.1. A bounded linear operator T' € L(X,Y) is said to be compact is image
of every bounded set under 7" has compact closure.

There are various equivalent definitions of compact operators.

Exercise 4.2. Show that the following are equivalent for an operator T' € L(X,Y).
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(a) The image of every bounded set under 7" has compact closure.
(b) The image of the unit ball (centered at origin) in X under 7" has compact closure.

(c) The image of the unit ball (centered at origin) is totally bounded (that is, for any
e > 0, the image of the unit ball is covered by finitely many balls of radii ¢).

(d) For any bounded sequence (x,)nen in X, the sequence (T'(x,))nen has a convergent
subsequence in Y.

Hint: recall Theorem 1.71.

Compact operators composed with bounded operators lead to compact operators as
explained in the exercise below.

Exercise 4.3. Let XY, Z be Banach spaces over K and let T' € L(X,Y),S € L(Y, Z).
Then SoT e K(X,Z) if either T € K(X,Y) or S € K(Y,Z). (Hint: Use Exercise 4.2)

The set of compact operators in £(X,Y) is denoted by (X, Y).

Proposition 4.4. The set of compact operators K(X,Y) forms a closed subspace of
L(X,Y).

Proof. The fact that IC(X,Y") is a subspace follows from the characterization in Exercise
4.2-(¢). For any aj,as € K,T1,T, € K(X,Y) and any bounded sequence (x,),eny in X,
by the compactness of 7 and T3, there is a common subsequence (z,, )ken such that
(T1(zp,,))ken and (To(zy, ) )ken converge. Therefore ((a17) + a2T%)(xp, ))ken converges and
hence a1T) + a1y € K(X,Y).

We again use the characterization in Exercise 4.2-(c) to show that K(X,Y) is closed.
Let (T,)nen be a sequence in IC(X,Y) such that it converges to T' € L£(X,Y); that is
lim, e |7 — To|| = 0. Let (2,,)nen be any bounded sequence in X and let B € (0, 90) be
such that ||z,|| < B for all n € N. By the compactness of T}, there exists a subsequence
(@, )jen such that (Ti(xn,,))jen converges. By the compactness of T3, this subsequence
in turn has a further subsequence subsequence (2, ,)jen such that (71 (2, ,)) jen converges.
Repeating this procedure, and choosing the diagonal subsequence

Yk = Tn,,, forallkeN,

we have that the sequence (T,,(yx))ren converges for each n € N. Hence

1T (yie) = Tl < 1T (k) = Toly) | + 1 Tn(yi) = Tuy)ll + [T ye) = To(wi)
1T = Tall Myl + 170 (yr) = Talwd) | + 1T = Tall {15l

<
<
< 2T = Tall B+ 1T (yr) = To(w)ll -

For any € > 0, there exists n € N such that 2 ||T"— T,,|| B < €/2 (since lim,,, . ||T — T0n|| =
0). Since (T (Ym)))men converges, there exists N € N such that || T, (yx) — Tn(u1)|| < €/2
for all k.l = N. O
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Recall the definition of kernel N(T') and range R(T) of a linear operator 7' from
Definition 2.80.

Example 4.5. Let T € L(X,Y) be a finite rank operator; that is, the range R(T') =
{T(x) : x € X} is finite dimensional. Then T € K(X,Y).

Proof. 1f (z,) is a bounded sequence in X, then (7(z,))nen is a bounded sequence in
the range R(T"). Since closed balls centered at origin is compact (see Exercise 2.20),
(T'(x1,))nen has a bounded subsequence due to Theorem 1.75.

As a result of Proposition 4.4 and Example 4.5, any limit of finite rank bounded
operators is compact.

Theorem 4.6 (Schauder’s theorem). Let X,Y be Banach spaces over K and let T €
K(X,Y) be a compact operator. Then T* € KC(Y*, X*).

Proof. By Exercise 4.2, it suffices to show that the image T*(By ) of the unit ball By =
{ge Y™ :|g|l <1} is totally bounded. To this end, let ¢ > 0. By Exercise 4.2, the image
T(Bx) of the unit ball Bx := {x € X : ||z|| < 1} is totally bounded. Hence there exists
T1,To,...,T, € Bx such that

min |T(z) — T(z;)| < % for all z € By. (4.1)

1<j<n

Define A: Y* — K" as

Ag) = (9(T(21)), .-, 9(T(wn))), forall geY™.

Here we equip K™ with the norm |[|(ay,...,a,)|| = X7 |ai for all (a1,...,a,) € K"
Clearly, A is linear. Note that A e L(Y*, K") as

1A = D 1o(T ()l < 2 Nl 1Tl < X gl T = n Tl gl for all g€ Y.
i=1 i=1 i=1

By Exercise 4.5, A is a compact operator. Therefore by Exercise 4.2, there exist
91, - -, Gm € By= such that

min ||A(g) — A(gr)|| < %, for all g € By. (4.2)

1<ksm

We claim that balls of radii € centered at 7% (g1 ), . . . , T*(gm ) cover T*(By« ) or equivalently,

min [|[7%(g) — T*(gx)|| <€, forall g€ Byx. (4.3)

1<k<m

In order to prove (4.3), let x € By, g € Byx be arbitrary. By (4.2), there exists k such

that 1 <k < m and ||A(g) — A(gr)|| < §. By (4.1), there exists j such that 1 < j <n

and [|T'(z) — T'(z;)|| < §. Combining these we obtain
T*(9) () = T*(gi) ()| = |9(T(x)) — gx(T'(x))]
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9(T'(x)) = g(T(2;))| + |9(T () = ge(T(@))| + |gw(T (5)) — g1 (T(x))]
lgIIT () = T ()l + 19(T (2;)) = gu(T (@D + [lgll T (x) = T ;)]

<
<
< 2T () + T(xy)| + [[Alg) = Algr) || < e

Since the above estimate holds for all z € By, g € By=, we have

min ||T*(g) — T*(gx)|| <€ for all g € By=.

1<km
This implies T*(By=) is totally bounded, or equivalently, T* € IC(Y*, X*). ]
Schauder’s theorem can be used to prove its converse.

Exercise 4.7. Let X,Y be Banach spaces over K and let T' € L(X,Y) be such that
T* € K(Y*, X*) is a compact operator. Then T € K(X,Y). (Hint: Schauder’s theorem
implies that T** € IC(X**, Y**)).

We would like to analyze the spectrum of a compact operator whose definition we
introduce below.

Definition 4.8 (Spectrum and its classification). Let X be a Banach space over K and
let T e L(X,X). Let I denote the identity map in £(X,X). The resolvent set of T,
denoted by p(T), is defined as

p(T) : {\e K : (T — \) is a bijection from X onto X}.
The spectrum of T, denoted by o(T'), is the complement of the resolvent set, that is,

o(T) = K\p(T).

A number A € K is said to be an eigenvalue of T if N(T — M) # {0}. The set of all
eigenvalues is called the point spectrum of T, denoted by o,(T). If A € o(T)\o,(T), then
T — M\ is injective but not surjective. In this case, we further subdivide the spectrum into
two cases depending on whether or not the range R(T" — AI) is dense. If X € o(T)\o,(T)
and R(T — AI) is dense in X, then we say that A belongs to the continuous spectrum
(denoted by o.(T)). If A € o(T)\o,(T) and R(T — AI) is not dense in X, then we say
that A belongs to the residual spectrum (denoted by o,.(T')). This classification expresses
the spectrum o(7") as a disjoint union o (1) = 0,(T) v 0.(T") U 0,.(T).

Remark 4.9. (a) Note that if A € p(T), then (T—AI)~! € L(X, X) due to open mapping
principle (Corollary 2.67).

(b) If X is finite dimensional, then ¢(7') = 0,(T"). To see this, note that if A ¢ o,(T),
then T'— AI is one-to-one and hence surjective (due to the rank-nullity theorem). So
A € p(T), or equivalently X\ ¢ o(7"). However, on infinite dimensional spaces it is
possible that 0,(T") < o(T') (see assignment for such an example).
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(¢) If T € K(X,X) and 0 € p(T), then X is finite dimensional. By (a), 77! € L(X, X)
and hence by Exercise 4.3, I = T oT™' € K(X, X). So by Theorem 2.22, X is finite
dimensional.

(d) Equivalently, if X is an infinite dimensional Banach space and T € K(X, X), then
0€o(T).

By Remark 4.9-(b), the spectrum can be considered as a generalization of the set of
eigenvalues that we know from linear algebra. The following exercise outlines an argument
that the spectrum of a bounded operator is a compact subset.

Exercise 4.10. Let X be a Banach space over K.

(i) If T e £L(X,X) and || — T|| < 1, then show that T is invertible and T~ ! € £(X, X).
(Hint: show that 77 = > (I —T)" and that the series converges is in the Banach
space L(X, X)).

(ii) If S, T € £L(X, X) is such that S is invertible with a bounded inverse S~ € £(X, X)
and ||S—=T]| < |57, then show that T is invertible with a bounded inverse.
(Hint: Note that (ii) is a generalization of (i)).

(i) If T e L(X,X) and X € K is such that |\| > ||T||, then A € p(T"). (Hint: Note that
T — A is a bijection if and only if I — A~'T is a bijection and use (i)).

(iv) If T e L(X, X), then show that the resolvent set p(T") is open in K. (Hint: Use (ii)
and Remark 4.9-(a))

(v) Conclude that the spectrum o(T') for any T' € L(X, X) is a compact subset of K.

4.1 Riesz theory of compact operators
Throughout §4.1, let X be a Banach space over K and let T € K(X, X).

Lemma 4.11. If (z,)nen is a bounded sequence in X and ((I — T)(xn))nen converges,
then (Z,)nen has a convergent subsequence.

Proof. Since T is compact, there is a subsequence (z,, )ren such that (T'(z,, ))ken con-
verges, to say y. Then if w = lim, (I — T)(z,), we have limg_,o 2, = limyg_o0 (1 —
T)(xp,) + T (xn,) =w+y. O

Definition 4.12. An operator S € L(Y, Z) between normed linear spaces Y, Z is said to
be bounded below if there exists ¢ € (0, 00) such that ||S(y)|, = c||y|ly for all y e Y.

Lemma 4.13. If I — T s one-to-one, then it is bounded below.
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Proof. Suppose to the contrary that I —7T is not bounded below. Then there is a sequence
(@n)nen such that ||z,|| = 1 for all n € N and lim,,« ||(I — T')(x,)|| = 0. Therefore, by
Lemma 4.11, (x,) has a subsequence that converges, to say = € X. By continuity of norm
(see Exercise 2.3) and I — T, we have ||z|| = 1 and (I —T')(z) = 0, which contradicts the
assumption that I — T is one-to-one. O]

Proposition 4.14. Let X be a Banach space over K and let T € K(X,X). Then N(I-T)

18 finite dimensional.

Proof. Let Y = N'(I —T). Note that T'|,, = I|,, so the closed unit ball in Y is compact
but the compactness of T'. Therefore Y is finite dimensional by Theorem 2.22. m

The following is an algebraic notion associated with a subspace of a vector space.

Definition 4.15 (Complement of a subspace). Let X be a vector space over K and let
Y be a subspace of X. Then a subspace M of X is said to be a complement of Y in X if
the following hold:

(i) Y A M = {0}
(ii) Y + M = X; that is, for all x € X, there exists y € Y, m € M such that x =y + m.

If (i) and (ii) hold, we denote this by Y @ M = X. Note that (i) implies that the
decomposition in z = y + m in (ii) is unique.

Every finite dimensional subspace has a closed complement. This is a consequence of
Hahn-Banach theorem.

Lemma 4.16. Let F' be a finite dimensional subspace of a normed vector space Y (over
K ). Then there is a closed subspace M <Y such thatY = F@® M.

Proof. Let eq, ..., e, be abasis of F. For each 1 <1 < n, the linear functional f; : FF - K
defined by
fi (Z ajej> =a;, forall (ay,...,a,)€ K"
j=1

is a bounded linear functional (by Exercise 2.25). So for each 1 < i < n, by the Hahn-
Banach extension theorem, there is a bounded extension F; : X — K such that f; = FZ‘ P
Define an operator Pr : Y — Y such that

Note that, Pr € L(Y,Y), Pp(z) = z for all x € F', R(Pr) = F and Pr o Pp = Pr (you
check this!).

Now let M = N(Pp). Since Pr is continuous M is closed and M n F = {0}. If
y € Y, then y = Pr(y) + (y — Pr(y)), where Pp(y) € F and y — Pr(y) € M (since
Pro(I—Pp)=0). O
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Proposition 4.17. Let X be a Banach space over K and let T € K(X,X). Then R(I—T)
is closed.

Proof. Since the kernel N'(I — T) is finite dimensional (by Proposition 4.14), it has a
closed complementary subspace M by Lemma 4.16 such that X = N(I —T)@® M. So
R(I-T)=R((I - T)‘M). Let (2,,)nen be a sequence in M such that (I —T")(x,,) converges,
to say w € X. We need to show that w € R(I —T'). By the argument in Lemma 4.13,

(I —=T)|,, is bounded below. So (2y)nen is a convergent sequence, and converges, to say
x € M. Therefore w = (I —T)(x) e R(I = T). O

Proposition 4.18. Let X be a Banach space over K and let T € K(X,X). Then the
following are equivalent:

(a) I —T is onto.
(b) I —T is one-to-one.

Proof. (a) = (b): Let Xy = {0} and for n € N, set X,, = N(({ —T)"), where (I —T)"
is the n-fold composition of I —T'. Clearly, {0} = Xy < X; < X5 < -. Note that each X,
is a closed subspace by Lemma 2.18.

Assume to the contrary that if 7 —T" is not one-to-one; that is, there exists z; € X7\ Xj.
Then since I — T is onto, there exists x5 € X such that (I — T)(x3) = x;. By induction,
we obtain z,, € X such that (I —T)(z,) = x,—; for all n = 2. Therefore, (I —T)"(z,) =
(I —=T)(z1) =0and (I —T)" ' (x,) =z, for all n > 2. So x, € X,\X,, ; for all n € N.

By Lemma 2.21, for each n € N, there exists y, € X,, with [jy,|| = 1 and ||y, — z[| = 5
for all z € X,, 1. For any n > m, we have

T(Yn) = TWYm) = Yn — Wm — L =T)(Ym) + L =T)(Yn)) = yn —x, Where v € X,, ;.

So [|T(yn) — T(ym)|| = 3 for any m # n, which contradicts the compactness of 7.

(b) = (a): Suppose I — T is one-to-one. Then by Lemma 4.13, I — T is bounded below.

So if M is a closed subspace of X, then sois (I —T)(M) :={(I —T)x : x € M} (why?).
Suppose to the contrary that I — T is not onto. Let Yy = X,Y; = (I — T)(Yp), Y2 =

(I =T)(Y1),.... Since (I —T) is one-to-one and not onto, we have that ¥;,.; is a proper

closed subspace of Y;, for all m. By Lemma 2.21, there exists z, € Y}, such that ||z,| =1

and ||z, — x| = 3 for all z € Y,,;; for all n € N. For any n > m, we have

T(zm) —T(zn) = 2m — (zn + (L =T)(zm) — (I =T)(2,)) = yn —x, where z € X, 1.

So || T(z,) — T(zm)|| = 5 for any m # n, which contradicts the compactness of 7T'. O

1
2

The following theorem describes important properties of the spectrum of a compact
operator.

Theorem 4.19. Let X be a Banach space over K and let T € K(X,X) be a compact
operator. Then we have the following.
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(1) o(T)\{0} < 0,(T); that is, all non-zero points in the spectrum are eigenvalues.
Furthermore, if A € o(T)\{0}, then dim(N (T — \I)) < oo; that is, each non-zero
etgenvalue has finite multiplicity.

(11) If (M\p)nen 18 a sequence of distinct points in o(T') such that lim, , A, = X, then
A = 0. In other words, the only possible cluster point in the spectrum is zero, or
equivalently, all non-zero points in the spectrum are isolated.

Proof. (i) Let A € o(T)\{0}. Then I — A 'T is not invertible. So I — AT is either not
one-to-one or not onto. By Proposition 4.18, we have that I —\™'7 is not one-to-one
in both cases. Therefore \ € 0,(T"). Note that by Proposition 4.14, we have

dim(N (T — X)) = dim(N (I — \7'T)) < oo.

(ii) By (a) and removing one point in the sequence if necessary, we assume that A, # 0

for all n € N so that A\, € 0,(T) for all n € N. So for each n € N, there exists
‘eigenvectors’ z,, € X\{0} such that T'(x,) = A\, z,.
We claim that {x; : i € N} is a linearly independent set. We prove this by induction
on n, by verifying that {z; : 1 < i < n} is linearly independent for each n € N.
Clearly, this is true for n = 1 as x; # 0. Suppose the induction hypothesis that
{z; : 1 < i < n} is linearly independent. Assume to the contrary that {z; : 1 < <
n + 1} is not linearly independent. Then there are scalars ay,...,a, € K such that
Tpt1 = 2y a;ix;. Hence

Z Ane10iT = Aps1Tpgl = T($n+1) = Z aiT(xi) = Z a; \i;.
i=1 i=1

=1

So a;(Any1 — Ai) = 0 for all 1 <4 < n, which in turn implies a; = 0 for all 1 <1i < n,
which contradicts z,,.1 # 0

Define X,, = span{x; : 1 < i < n} for all n € N and Xy = {0}. By the linear
independence of {z; : i € N} and Exercise 2.20-(e), X, is a proper, closed subspace
of X,41 for all n € N. So by Riesz’s lemma (Lemma 2.21), for each n € N, there
exists y, € X, such that ||y, || = 1 and |y, — 2| = 3 for all z € X, 1. By writing
any vector X, in terms of the basis {z; : 1 <i < n}, we note that

(T'—M\I)(z) e X,,—q, forall ze X, and neN.
Therefore for any n > m, we have
TN ) = TN Ym) = (T = XD (N ) = (T = A )Ny Yom) + Y = Yo = Y — 2,

where z € X,, 1. So for any n > m, we have

1T yn) = TG ) || = (4.4)

DN | —
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If A\, = Aand X\ # 0, then (4.4) would contradict the compactness of T" as (A, 4, Jnen
is a bounded sequence such that (T'(A'y,))nen does not have a convergent subse-
quence. Hence A = 0.

]

Exercise 4.20. Let 1 < p < oo and let X = (?(N). Let (\,)nen be a bounded sequence
of complex numbers and T' € L(X, X) is defined by

T((I’l, o, .. )) = ()\1]31, /\21’2, .. )
Prove that T' € IC(X, X) if and only if lim,,_,,, A, = 0.

Exercise 4.21. Let X,Y be Banach spaces and let 7€ K(X,Y’). Assume that the range
R(T') is a closed subspace of Y.

(a) Show that T is a finite rank operator (cf. Example 4.5). Hint: Use the open mapping
principle.

(b) If in addition the nullspace N'(T) is finite-dimensional, then X is a finite dimensional
space.

4.2 Spectral decomposition of self-adjoint compact operators

Definition 4.22. Let H be a Hilbert space and let T' € L(H,H). We say that T is
self-adjoint if T =T.

The following exercise outlines some useful relations between the spectrum of an op-
erator and its adjoint.

Exercise 4.23. Let T € L(X, X) where X is a Banach space. Show the following.

1. If X\ is in the residual spectrum of 7', then show that A is in the point spectrum of
T* e L(X*, X*); that is 0,.(T) < 0,(T*).

2. If X\ is in the point spectrum of T*, then show that X is either in the point spectrum
or the residual spectrum of 7. In other words, 0,(T*) < 0,(T) v o,.(T).

(c) Let T € L(H,H) be operator on a Hilbert space H. Let T* € L(H* H*) and
Tt € L(H,H) denote the adjoint and the Hilbert space adjoint respectively. Then
show the following

ap(T7) = 0p(T7), 0e(T7) = 0e(T7),  0,(T7) = on(TT).
Here for A= C, weset A= {a:ae A}.

The following theorem lists some basic properties of the spectrum of a self-adjoint
operator.
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Theorem 4.24. Let T € L(H,H) be a self-adjoint operator on a Hilbert space H.

(a) {T'(u),uy€R for all ue H.

(b) If M := sup uew, {T(u),uy and m := inf 4ey, {T'(u),u), then we have

flull=1 fJull=1

{m, M} c o(T) = [m, M], |[T]| = max(|m], |M]).

(c) If o(T) = {0}, then T = 0.

Proof. (a) For any u € H, since T = T we have

(T (), uy = (u, T(w)) = u, TH(w)) "2 (T (), ).
Therefore {T'(u),uy € R for all u e H.

Step 1: o(T) < [m, M]. Let A € C. Then by (a), we have

Setting ¢ = max(|Im(\)|, Re(A) — M, m — Re(A)), by the above equality and Schwarz
inequality, we have

1T =A@ flull = K(T = ADyu, ] = elful*.

Note that ¢ > 0if A ¢ [m, M] and hence T'— I is bounded below for all A € C\[m, M].
This implies that T'— AI is injective and has a closed range. Therefore A € C\[m, M]
implies that A € p(T") U 0,.(T'), or equivalently,

C\[m, M] < p(T) v o,.(T).

We claim that C\|m,M] < p(T). Suppose to the contrary that A\ € o,.(T) n
(C\[m, M]), then by Exercise 4.23 we have A € o0,(T*) which in turn implies
X e o,(T") = o,(T). Since A\ € C\[m, M], we have X\ € 0,(T) n (C\[m, M]) <
op(T) N (p(T) v 0,(T)) = I, a contradiction. Therefore C\[m, M] < p(T) or equiv-
alently,
o(T) < [m, M].

Step 2: m, M < o(T). We define a function a : H x H — C such that
a(u,v) := {(Mu —T(u),v).

It is easy to obtain the following (inner product-like) properties:

e a(u,u) € [0,00) for all u € H.
a(Arug + Aaug, v) = Aa(ur,v) + Aaa(ug, v) for all Aj, Ay € C and uy, us € H.
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e For all u,v e H, a(u,v) = a(v,u). To see this note, that

a(u,v) = Mlu,v)y —{T(u),vy = M{v,uy — (v, T(u))
= M{v,u) — (v, T (u)) = Mlv,u) —(T(v),u) = a(v, u).

These properties imply the Scharwz inequality,
la(u,v)] < v/alu, uya(v, v), (4.5)

as the quadratic function f(t) = a(u + tv,u + tv) for all ¢ € R does not have two
distinct real roots. Since M = sup yen, (T'(u), u), there exists a sequence (U )pen in

[lul|=1
H such that

|lunl] =1 forallneNand, lim{Mu,—T(u,),u,)=0. (4.6)

n—aoo

By Riesz-Fréchet representation theorem (Theorem 3.14) and Hahn-Banach extension
theorem (Corollary 2.30-(i)), for all w € H, we have

lw[| = sup [{w,v)|. (4.7)
VEH,
floll=1
By Schwarz inequality, for any v € H with [|v|| = 1, we have

la(v, v)| = KMv =T(v),v)| < [|Mv =T@)| lv]| < [MT =T|| < M+|T|. (48)

Hence for all n € N,

. (4.5) (4.8)
[Mup — T(u) || E) sup a(un, )| < A/alun, un) sup a(v,v) < (M+|T)/a(tn, w).
vEH, veEH,
[lv]=1 llv]=1
Hence by (4.6), we conclude,
lim [|[Mu, —T(u,)|| =0, with [ju,| =1 for all n e N. (4.9)

n—o0

This implies that M T — T does not have a bounded inverse (since if (MI —T) ! €
L(H,H), we have ||u|| < [[(MI —T)7||||Mu — T(u)|| for all u € H which contradicts
(4.9)). Therefore M € o(T).

The proof that m € o(T') is similar by considering the function b(u, v) = (T'(u)—mu, v)
(or by replacing T" with —T').

Step 3: ||T|| = max(|m|, |M)|. The desired lower bound on ||T'|| follows easily from
Schwarz inequality as

max(|ml,[M[) = sup [(T'(v),v)| < sup [|T(v)|[lv]| = sup [[T(v)|| = [T
VEH vEH veEH

flvfl=1 flvll=1 [[of=1
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For each u,v € H, there exists a € C with |a| = 1 so that |[{T'(u),v)| = {T'(u), av)
(for example, o = H if (T'(u), av) # 0 and 1 otherwise). This along with (4.7)

implies that
1T ()] = sup Re({T'(u), v))
|Iv|| 1

and hence
IT|= sup Re((T(u),v)) (4.10)

u,VEH,
lull=llv]I=1

Since T' = T using properties of inner product (why?), we obtain

Re((T(0),0)) =  ((T(w).0) + (0. T(w)) = 2 (T, ) + 0. T (w)
— 5 (T, )+ T ), w)
= L (T4 ) w40y~ (T(u—v)u =), forall uve A
Using the definition of M and m, for all u,v € H with ||u]| = ||v]| = 1, we have
Re((T(u), v)) < i (M + v, 1+ 05— mu — v, 1 — v))
e R
< imaX(|m| M) (Cu+ 0,0+ 0+ Cu— v,u— )

= max(|m/, \Ml)§ (all® + llo]1%) = max(lml, |M]).

Hence (4.10) implies the desired upper bound

17| < max(|m], |M]).

(c) Since {0} = o(T) > {m, M}, we have M = m = 0. Since ||T|| = max(|m|, |M]) =

we conclude 7' = 0.

O

We can now combine the spectral theorems for compact operators (Theorem 4.19)

and for self-adjoint operators (Theorem 4.24) to obtain a spectral theorem for self-adjoint
compact operators. This can be viewed as a generalization of the result in linear algebra
that any Hermitian matrix can be diagonalized.

Theorem 4.25. Let H be a Hilbert space and let T € K(H,H) be a self-adjoint compact
operator. Then there exists an orthonormal basis {e; : i € I} of H such that for each i € I,
e; 1s an eigenvector of T'.
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Proof. For A € 0,(T'), let Ex = N (T —\I) denote the corresponding eigenspace. We claim
that if A\, u € 0,(T") are distinct (4 # A), then E\ and E, are mutually orthogonal; that
is,

{u,v) =0, foralue E\,veE,. (4.11)

To prove this, let A\, u be two distinct eigenvalues. By Theorem 4.24-(b), we have
A, € R. Hence for all u € Ey,v e E,, we have

Mu,v) = (T(u), vy = <u, T'(v)) = (u, T(v)) = iu, v) = pu, v).
This implies (A — p){u, vy = 0 and hence (u, vy = 0 which prove (4.11)
Since for each A € 0,(T'), E, is a closed subspace of a Hilbert space (being the kernel

of a bounded operator), F) is a Hilbert space and hence admits an orthonormal basis B)
of E. By (4.11), we have that
B= |]J B

Aeop(T)
is an orthonormal set in H such that each vector in B is an eigenvector. We claim that
B is an orthonormal basis of H. We verify the completeness of B. To this end set

M ={veH :{v,ey=0for all e e B}.

Note that M is a closed subspace of H (why?) and is a Hilbert space. We claim that
T(M) < M. To see this note that for any v € M, e € By, A € 0,(T"), we have

(T(v),e) = v, TH(e)) = (v, T(e)) = Mv,e) = 0.
This implies that the restriction T'|, : M — M can be viewed as a compact, self-adjoint
operator on the Hilbert space M. We claim that

o(T,,) = {0}. (4.12)

Suppose to the contrary, if A € o(T'|,,)\{0}, then by Theorem 4.24-(i) we have A € o,(T)
and there exists v e M n E, with v # 0. This implies the existence of v # 0 with v € E)
and (v,ey = 0 for all e € By which contradicts the completeness of orthonormal set B.
This completes the proof of (4.12). Now by Theorem 4.24-(c), we have T'(v) = 0 for all
v e M. We claim that M = {0}. Suppose not. Then 0 € 0,(T") and there exists v € Egn M
with v # 0. As above we obtain a contradiction to the completeness of orthonormal set

By. Therefore M = {0}, or equivalently, B is a complete orthonormal set (orthonormal
basis). O

Remark 4.26. Every compact, self-adjoint operator 1" on a Hilbert space can be viewed
as a limit of finite rank operators.

To see this, we use Theorem 4.19 and Exercise 4.10-(iii), to conclude the set of eigen-
values 0,(7") is countable (finite or infinite). This is because the set {\ € 0,(T) : || >
n~t} c {Ae C:nt < |\ < |T]} is finite (otherwise, we obtain a contradiction to
Theorem 4.19-(ii) as {\ € C: n~! < |\ < ||T]|} is compact).

Let {A\, :neN,1 <n < N} where N € Nu oo denote an enumeration of o(7)\{0} =
op(T)\{0}. By Theorem 4.25, T is a limit of T}, = >} A\, Pg, , where Pg, is the
projection map (see Corollary 3.13) to the (closed) eigenspace Ey, = N (T —\,I) (why?).
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4.3 The adjoint operator revisited

We will show that several properties of an operator is shared by its adjoint operator.
We already encountered one such result as we showed that compactness of a operator is
equivalent to its adjoint (Theorem 4.6 and Exercise 4.7).

Theorem 4.27. Let X,Y be Banach spaces and let T € L(X,Y). Then the following are
equivalent.

(a) T is a bijection.
(b) T* e L(Y*, X*) is a bijection.

Proof. (a) = (b): Let S = T7':Y — X. Then by Corollary 2.67, S € £L(Y, X) with
SoT =1Ix and T oS = Iy. By Exercise 2.41-(a), we have

S*oT*=(ToS) =1y =Iyx, T 0S*=(SoT)" =1I% = Ix=.

Therefore T is a bijection.
(b) = (a): Conversely, if T* is a bijection, then by Theorem 2.65 (open mapping
principle) there exists ¢ > 0 such that

T (By* (0, 1)) o>T* (Bx* (0, C))
Therefore for any x € X, by Corollary 2.30-(i) we have

IT@) = sup [f(T(z))|= sup |g(x)| = sup |g(x)]=cllz], forallzeX.
feBy#(0,1) geT*(By % (0,1)) 9€Bxx(0,)

This implies that T is injective as T'(z) = 0 implies ¢ ||z|| < ||7(z)|| = 0 which in turm
implies z = 0.

It remains to show that 7" is onto. Next, we show that R(T) is closed. To see this,
let y € R(T), then there exists a sequence (z,)neny in X such that lim, . T(z,) = y.
Since ||z, — | < ¢ H|T(x,) — T(z,)|| for all n,m € N, we conclude that (z,)ney is a
Cauchy sequence in X and hence converges to x = lim,, , x,. By the continuity of T,
we have y = lim,, , T(x,) = T(lim, .o z,) = T(x) € R(T). Therefore R(T) is closed;
that is R(T) = R(T). Since T* is injective, by Exercise 2.42, R(T) = Y and hence
R(T) =R(T) =Y. O
Corollary 4.28. Let X be a Banach space and let T € L(X,X). Then o(T) = o(T™).

Proof. Note that (T'— M x)* = T* — M x« (by Exercise 2.41-(b)). Therefore by Theorem
4.27, A€ p(T) if and only if A € p(T*). O

Definition 4.29. Let X be a normed vector space and let X* denote the dual space. For
a subspace M of X, we set

Mt :={feX*: f(x)=0 Vze M}.
For a subspace N of X*, we define
N':={reX: f(x)=0 VfeN}.
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Exercise 4.30. Let X be a normed vector space and let X* denote the dual space. Let
M and N be subspaces X and X* respectively. Show the following:

(a) M+ and N* are closed subspaces of X* and X respectively.
(b) M = (M*)*.
(c) (NHE o N.

Lemma 4.31. Let X and Y be Banach spaces over K. Let T € L(X,Y") be such that T*
1s injective and has a closed range. Then T is onto.

Proof. We may assume that K = R without loss of generality by considering X and Y are
vector spaces over R. If K = C, then the injectivity of 7™ and the closed range property
for the real case follows from Proposition 2.24.

Note that since T* € L(Y™*, X*) is injective and closed range, T* viewed as a bijection
from the Banach space Y* to the Banach space T*(Y*). By open mapping principle
(Corollary 2.67), there exists ¢ > 0 such that

NT*(H] = cllfll, forall feY™. (4.13)

We claim that
T(Bx(0,1)) o By(0,¢), (4.14)

where By(x,r) (respectively, By (x,r)) denotes an open ball with center x and radius r
in X (respectively, V). We prove (4.14) by contradiction. To this end, assume to the
contrary that y € By (0,c)\T(Bx(0, 1)) Since T'(Bx(0, 1)) is closed, convex set (being a
closure of a convex set; see HW 4, Question 1) and f ¢ T(Bx(0,1)) by Hahn-Banach
separation theorem (Theorem 2.38-(2)) there exists « € R and f € Y* such that

[(T*(fN@)] = [f(T(x)] < a < fy), forall ze Bx(0,1). (4.15)
By (4.15) and y € By (0, ¢), we have

= H 2 = s (@@ e @)

Iyl 2eBx (0,1)

By (4.13) and (4.16), we obtain the desired contradiction. This proves (4.14).

The same argument in the proof of Step 2 of Theorem 2.65 (open mapping principle)
implies that
T(Bx(0,1)) > By(0,¢/2).

Hence S is surjective. O

Exercise 4.32 (Quotient space). Let (X, ||-||) be a normed vector space and let M be a
proper, closed subspace of X. We define an equivalence relation ~ on X as x ~ y if and
only if z —y € M. We denote the equivalence class containing x € X by t+ M = {z 4y :
y € M} and the collection of equivalence classes {x + M : x € M} by X/M.
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D.
6.

Check that ~ defines an equivalence relation on X and that X /M is a vector space
equipped with the scalar multiplication and vector addition defined by

alr+M)=(ax)+ M, (x+M)+y+M)=(x+y)+M

for all « € K and z,y € X. Verify that the scalar multiplication and vector addition
operations defined above are well-defined in the sense that they do not depend on
the choice of representatives from the equivalence class.

Show that the quotient norm on X /M defined by

i+ M| 1= inf [l + ]

is a norm on the vector space X /M.

Let 7 : X — X /M denote the map defined by
m(x) =x+ M, forall ze M.

Show that 7 is a bounded linear map whose operator norm is one. (Hint: Use
Riesz’s lemma).

Let Bx = {x € X : ||z < 1} and Bxyy = {o + M € X/M : |z + M| < 1}
denote the open unit balls centered at zero in X and X /M respectively. Show that
W(Bx) = BX/M

Show that a subset U < X/M is open in X/M if and only if 7~ (U) is open in X.

Show that if X is complete, then so is X /M equipped with the quotient norm.

Theorem 4.33 (Closed range theorem). Let X and Y be Banach spaces and let T' €
L(X,Y). Then R(T) is closed (in'Y') if and only if R(T*) is closed (in X*).

Proof. —> Let R(T) be closed. Then the map T : X/N(T) — R(T) defined by
T(x + N(T)) = T(x) is (well-defined) a bounded (since by Exercise 4.32-(4), we have

7]

= ||T||), linear bijection between Banach spaces (see Exercise 4.32-(6) and recall

that R(T) being a closed subspace of a Banach space is a Banach space). Therefore by
Corollary 2.67, T is invertible and T-! € L(R(T), X/N(T)). Let = € L(X,X/N(T))
denote the quotient map as defined in Exercise 4.32-(3) and let « € L(R(T),Y) denote
the inclusion map, so that we have

By Exercise 2.41-(a), we have
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By Hahn-Banach extension theorem (Corollary 2.28), R(:*) = R(T)*. Since T is in-
vertible (that is, T! € L(R(T), X/N(T))), by Exercise 2.41-(a), we have R(T* o 1*) =
(X/N(T))*. Therefore

R(T*) = R(x* o T* 0 1*) = R(x*).

We claim that R(n*) = N(T)*. Note that if f € R(r*), then f = g om for some
g€ (X/N(T))* and hence N(f) o N(w) = N(T). Hence f e N(T)*.

Conversely, if f € N(T)*, then g(x + N(T)) = f(x) defines a well-defined, bounded
linear functional such that g € (X/N(T'))* that satisfies ||g|| = || || (by Exercise 4.32-(4)).
So f=gom=m7*(g) € R(r*). This proves

R(T*) = R(7*) = N(T)*.

Hence R(T*) is closed by Exercise 4.30-(a).

«— : Conversely, let R(T*) be closed. Let Z = R(T) and let S € £(X,Z) denote
the map S(x) = T(z) for all z € X. By Hahn-Banach extension theorem (Corollary
2.28), R(S*) = R(T*). Clearly, S* € L(Z* Y*) is injective, since if f € Z* satisfies
S*(f) = 0, then f(T(x)) = f(S(z)) = 0 for all x € X and hence N(f) > R(T) which
implies N'(f) o m = Z or equivalently f = 0 (see also Exercise 2.42). Since S* is
injective with closed range (as the range is R(7™)), S is onto by Lemma 4.31. Hence

R(T) = R(S) = R(T). O

5 Appendix: Integration and measure

This appendix is meant to be a reminder of some basic results concerning integration
which were covered in the prerequisite (MATH 420). Let (X, M) be a measurable space.
If E € M, then the indicator function of E is the function yg : X — R is given by

(2) 1 ifzek,
m:
B 0 ifzéE.

A simple function f : X — C is a measurable function with finite range; or equivalently,
there exists n € N, z1,...,2, € C,Ey,..., E, € M such that f(z) =" | zixg,(z) for all
x € X. The following result concerning approximation of measurable functions by simple
functions.

Theorem 5.1 (Approximation by simple functions). Let (X, M) be a measurable space
and let f : X — C be a measurable function. Then there exists a sequence of simple
functions (¢n)nen such that 0 < |¢p1] < |do| < ... < |f] and im0 ¢ (x) = f(2) for all
x € X. Furthermore, the convergence is uniform on any set on which f is bounded.

There are several results that concerning limits of functions and integrals as we recall
below.
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Theorem 5.2 (Monotone convergence theorem). Let (X, M, 1) be a measure space. If
(fu)nen is a sequence of non-negative, measurable functions such that 0 < f,(x) < fni1(2)
forallze X and ne N. Then f = lim, o fr, = sSup,ey fn @5 measurable and satisfies

de,u: limJ fndp.
X n—o% Jx

Theorem 5.3 (Fatou’s lemma). Let (X, M, ) be a measure space. If (fn)nen is a se-
quence of non-negative, measurable functions, then liminf,,_,o, f, is a measurable function
and satisfies

j liminf f, du < lim inff fndu.
X n—oo0 X

n—o0

We recall the dominated convergence theorem. We say that a measurable function
f: X — C on a measure space (X, M, ) is integrable, if §, | f| du < oo.

Theorem 5.4. Let (X, M, ) be a measure space. If (fn)nen be a sequence of integrable
(complez-valued) measurable functions and such that

(a) there exists f : X — C measurable such that f, — f p-almost everywhere;

(b) there exists a non-negative, integrable and measurable function g such that |f,| < ¢
p-almost everywhere for every n € N.

Then f is integrable and
J fdp = lim J fndp.
X n—o0 X

Definition 5.5 (Complex measure). A complex measure on a measurable space (X, M)
is a map v : M — C such that

(a) (&) =0,

(b) if (Ep)nen is a sequence of pairwise disjoint sets in M, then

(U] - Sus

n=1

where the series above converges absolutely.

We recall the Lebesgue-Radon-Nikodym theorem for complex measures. This is a
simple consequence of the corresponding result for signed measures as real and imaginary
parts of a complex measure are signed measures.

Theorem 5.6 (Lebesgue-Radon-Nikodym theorem). Let v be a complex measure and p
be a positive, o-finite measure on a measurable space (X, M). Then there exist a complex
measure A and an integrable function f : X — C such that X L p and dv = d\ + f dpu.
Furthermore, the decomposition above is unique; that is, if there exist a complex measure
X and an integrable function ' : X — C such that N L p and dv = d\N + f"du, then
A= X and f = f" p-almost everywhere.
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