Exercises

April 22, 2025

Please note that I do not take credit for all of the Tikz in this document, particularly the knot
diagrams. Much of it is taken or templated from online forums such as MathStackEzchange

1 Categories and Pre-reqs

exercise - Show the forgetful functor F' : Vecty — Set is a functor.

proof - The identity linear transformation is the identity when regarded as a set mapping,
ifT:U — V,p:V — S as vector spaces, then F(p)o F(T) is a well defined set mapping, which
maps U — S as sets.

exercise - Hom(—, G) is functorial

proof - Note that if f : H — K, then Hom(—,G)(f) = f* where f* : Hom(K,G) —
Hom(H,G) via f*(k) = ko f. We first check associativity, let f : H - K, g : K — N, and
z € Hom(N, G), then (fg)*(z) = zo0 fg= f*(2) og=g*f*z.

We can also check that identity is preserved, since if f : Hom(H,G) — Hom(K,G) and
g : Hom(N,G) — Hom(H, G), then for h € Hom(H, G) and n € Hom(N, G)

flyh = f(noly)= f(h) and Iygn = g(n)o 1 =g(n) O

2 Chain Complexes

?2?
exercise - Show that h = (h;), h; : C; — Cj ., then h; 1 od; +dj | o h; is a chain map.
proof - We need to check that d} o f; = fi—1 o d;, in other words we need to show

djo (hi—10d; +dj yohi) = (hi—godi—1+djoh;_1)od;
Since we are in a module, we can distribute d; on the left hand side, rewriting the condition as
djohi—1od; +djod;, oh;=hi_90d;—10d; +djohi_10d;
So it will suffice to show that
djod; yoh;="hi_sodi_10d;

But this is trivial since ”d? = 07
exercise - A homotopy of chains is an equivalence relation
proof - We will prove the following items: reflexivity, symmetry, transitivity



427 Exercises Tighe McAsey

e To see that f ~ f, take each to be the zero map, h; = 0, Vi. In this case the diagram with
maps given by h is immediate.

e Suppose that f ~ g, then we have some h, such that g; — f; = h;_1 0d; +d;_; o h; for each
i. Since h; are morphisms of modules, so are —h;, so in particular we have —h := (—h;);,
so that

fi—gi=—(9i = fi) = —(hi—y o di + diq 0 hi) = —hi1odi + —djq 0y
= —hj_10d; + d§+1 o—h;

The last line follows since d;_ ; is linear.

e Suppose that f ~ g ~ r, and let h, k be respective witnesses of these homotopies. Then
we have

ri—gi = ki-10di +diq 0k
gi — fi=hi—10d; +dj oh;
This furnishes
ri— fi=kiciodi+di ok + hiyodi+dipy 0y = (kim1 + him1) od; + diyy o (hi + ki)
So we have the homotopy r ~ f via h+k, we are done since we already proved symmetry.
exercise - Show that the following two chain complexes are homotopic:
0—— 20z -2 262 —00Z/2) — 0

0 7Z —% 7 Z/(2) —— 0

proof - Let each f; be the projection of the second coordinate, and each g; the inclusion
into the second coordinate. In thise case we have

1C/—fg:O

and hence h = (0); witnesses the homotopy. The slightly harder case is the other direction.
Define hy = hg = h—1 = 0, and hy : (m,n) — m. By definition of f, g, we have 1¢; — gifi :
(m,n) — (m,0), so we just need to check that our given h satisfies this.

(dshg 4+ hid2)(m,n) = 0+ hi(m,2n) = (m,0)
(dghl + hodl)(m, n) = dg(m, 0) +0= (m, 0)
(diho + h—_1do)(0,n) =0+ 0 = (0,0)
This verifies the homotopy.
Theorem - (" The Fundamental Theorem of Homology For Chain Complexes”) If chain
complexes C, C’ are homotopic, then they have the same Homology Modules.
proof - Recall that
© Im(dit)
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Now let the homotopy be given by f : C — C’,g : C' — C, there is a natural induced map of
fi on H' given by restricting f; to Im (d;;1), then taking the unique map from the quotient
by the kernel of d;, which exists and is unique by the first isomorphism theorem. Calling
this induced map f;., we need to check that f;, maps into H;. First it is immediate that
filkerd; : kerd; — ker d}, since d} f; = f;_1d;, where the right hand side is zero when restricted to
ker(d;), well definition on cosets follows from ”d? = 0”. So only need check that (hd + dh). = 0,
diy1h € Imd;y1 = 0 so it only remains to show that hd; = 0 on kerd;, this is trivial since
h(0) = 0 and for any z € kerd; hd;(z) = h(0). O

3 Homology and Cell Complexes

exercise - Let G be a graph, then ker d; = {Cycles in G}

proof - We have the map d; : ®;Ze; — @;Zvy, then ), kie; € kerdy <= >, ki(H(e;) —
T(e;)) = 0, where H(e) denotes the target of an edge, and T'(e) denotes the source of an edge.
Then Zz k‘Z(H(BZ) — T(el)) = Zj fjvj =0 < 8]' =0, V] Where Ej = Z{ei‘vlj:H(ei)} kil —
> {eilo;=T(e:)} k; so that £; = 0 for all j exactly when every vertex has an equal number of in
and out edges. O

exercise - Show that for the graph G, with V(G) = {z,y}, E(G) = {a = (z,y),b = (z,y),c =
(z,y)} we have kerd; = (a — b,b — ¢)

proof - Here we have dy : a,b,c — y — x, then a — b,b — ¢ € kerd;. We have d; :
nia+ng2b+nge — (n1+ny+ng)(x—y), so that kerd; = {na+mb+kl | n+m++£ = 0}, so fixing
na+mb+kl = na+mb+—(n+m)c € ker dy, we have na+mb+kl = n(a—b)+(m+n)(b—c) €
(a—b,b—c) O

ezercise - Consider the following Graph:

U1
Us
V2
U4

o (1)

Where the edges are oriented with the larger vertex index at the head and smaller at the
tail. Compute generators for the cycles, and show that C.(G) ~ C.(G’) as chain complexes,
where G’ is G with (v, vs) replaced with (vs,v1). Finally, show that Hy(G) = H1(G')

proof - We can write d; as a matrix,

-1 0 0 0 0 -1 -1 0 0 0 0 -1
1 -1 -1 0 O 0o -1 -1 0 0 -1
0 1 0 -1 0 0o 0 -1 -1 0 -1
o o0 1 1 -1 o 0 o0 0 -1 -1
0 0 0 0 1 0o 0 0 o0 0 O

Row Reduction
PN

_ o O O

So the kernel has rank 2. From this matrix we can compute generators for the kernel, (and thus
the cycles)
kerd; = (e2 — eq,e1 + €5 — €g)

To show that C.(G), and Cy(G’) are chain homotopic, define

! / / !
frvi—=v,ei—e, g:vi— e e
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By construction these are chain maps, since firstly dy = 0,d;, = 0, and e; = ¢} for each
e; # (v1,vs), and the values of d; agree with d} on each of the equal e; = €. For e = (v, vs5), ¢’ =
(vs,v1), we have fi(e) = —€’, g1(e') = —e, for e # (v1,v5), € # (v5,v1) commutativity is obvious
since d(e) = d'(€’) in this case. For e = (v, v5) we have fyod(e) = fo(z—y) =ax—y=—(y—z) =
—dy(e') = d|(fi(e)), the argument is the exact same for commutativity of the square replacing
g for f and €’ for e. Then fog =1, so we can just choose our homotopy to be the zero map.

To see that the homology is the same, there are 2 possible solutions both are easy. The first
is that they are isomorphic as chain complexes, the second is that d; is rewritten by multiplying
a row by —1, preserving the row reduced form and hence the generators of the kernel. O

exercise - Let I', T be arbitrary graphs such that I' ~ T”, then C,(T") ~ C.(T")

proof - In (i) we show that homotopy of graphs is independent of orientation, and in (ii),
we show that it is equivalent up to quotienting by an edge between to vertices, this is sufficient
since it allows us to show that (since the graphs are homotopic they have the same Euler
characteristic)

C.D)~C( \/ SYH=Cu()

1<k<x(T)
(i) Assume that I'\ eg = I\ ¢f, such that e = —eg, we copy the proof in the previous
question.
ey — —ej ey — —€o
f:Cu(T) = Ok (1) e — e, i>1¢g:C(T) — C(I) e — e i>1
v V) v = v

f9="1c, ), 9f = 1o, @), so they are homotopies so long as they are chain maps. This is trivial
except for the "square” where edges map to vertices. Commutativity on generators is trivial
apart from eg, and e, in this case f odi(eg) = f(v1 —vo) = v] —v) = —(v(, — v}) = dj(—ef) =
d} o f(ep). The proof is the same for g.

(ii) Suppose we are quotienting the edge ey = (vg,v1),v9 # v1. Here in order to focus on
the most relevant parts of the chain complex we do some book keeping;:

Ci(T)o =72 Sy CTh=ZyeZie S
C*(F/)Q = Sé C*(F/)l = 26 @ Si

Here there are natural identifications of all edges and vertices in S; and S.. There is really only
one way to define f if we want to keep the natural mapping f : S; — S,

f1: (aoeo,areq, ..., amen) — (a1€1, a2z, ..., amem)
fO : (CLO'U(), a1V, ... 7anvn) — ((ao + al)vilv (1/21)72, cee 7anm)
It is clear that f is a chain map from construction. Now we define g : C,(I') — C,(T") as follows,
go : (171, ..., an0y) — (0,a1v1, . .., apvy)

Then taking the natural map S, — Ss, composition with d gives ¢; Z;L:o k:;:vj, define
g1:€ — kéeo + e;. Then we have l{:? = ké + k:i

d1g1 (67) = dl(kjéeo + €i) = ké(vl — Uo) —+ Z k;-vj
=0
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godi (&) =go | D _Kiw5 | =go | (kb + kD)1 + > Kiwg | = kjvj + k(v — vo)
j=1 j=2 j=0

This implies that g is indeed a chain map. It is immediate that fg = 1¢, (1), we need to provide
a homotopy to show that gf ~ 1¢, (). Explicitly we have

l—g1f1 = (ao - Zaik(i)) €o
1

1 — gofo = ag(vo — v1)

the map h : vyp — —ep obviously satisfies d1hj(ag,...,a,) = ap(vg — v1). We only need to
check that hid; = (ao > aiké) ep, but the first coordinate of di(ageo + > i ase;) is —ag +
S aik, by definition of k), and since eg = (vg,v1). It follows that

hiodi(ageg + Y aie;) = —(—ag+ Y _aikj)eg=1—gifi O
=1 =1

ezercise - Using the cell structures for S? from e? U e, e Ue? Uel Ue® Build C,(S?) and
compute its Homology.
proof - The first cell structure gives the sequence

0 > Z > 0 Z > 0

0 ¢#0,2
In this case the homology modules are trivially H;(C,(S?)) = {1 Z 7 07 5
1=0,
The second cell structure gives the sequence

dy

0 — Ze2 & Ze? — 2 Ze} Zed —— 0

Where Zed ® Ze3 = Z (e} + €1) D Z(ef — €3 ), and da : € — €, e — —e{, so that

Z<e%+e%>€BZ<e%—e%> ~ 7

RO == g a)

And d; : e} — €3 — e, so that d; = 0 which gives us Ho(Cy(S?)) = Z, and H1(C.(S?)) = Z/7Z =
0, with H; = 0 for 4 > 2. The same result as above.
exercise - Show that ”augmentation” still gives a chain complex, i.e. eod; =0
proof - 1t will suffice to check on generators of C1, let e,}g € (1, then
edl(e/lg) =e(ed — e%) =e(e) - e(e%) =1-1=0
exercise - ST N\ St ~ G2

proof - ST A ST = where T? = D?/ ~, then

T2
Sty St
T2 N D2/ ~ D2

1 1_ — ~ g2
SIS =gryst = apr ~ap? P

exercise - SX ~ > X
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proof - Here (X, {*}) is a (pointed but ignore the point for now) CW-complex, we can give
X x I a CW structure, note that we have de” = 9(e" ! x I) = (et x ) Ue™ ! x I (we can
do this using point set topology and the fact that the sets are closed), then the CW-structure
n (X x I)" can be taken to be (X x I)® = X? x I, then taking ¢? to be the gluing map of
o into X™:
(X xD)"=(XxD)" ' Jenxor (] en'xI
L2 on iy

This gives a CW structure on X x I with X x 0I as a substructure, there is a canonical CW
structure on the quotient given by replacing ¢? with 7|x» o ¢”. Furthermore since * € X°,
we have {x} x I € (X x I)!, which can be identified with its image in the quotient. This is a
contractible subcomplex, so by the CW extension theorem

X x1TI X xI
X = = =X
S X x0I Xx0IU{«}xI Z

exercise - X A ST ~ 3" X

proof - It is important here that the same point € X is used in either quotient. Consider
the map f: I — St €™ then we get the following,

1xf

X x1I y X x St
; -
XxI Ixf X x5!
Xx{1UX x{—1}U{z} xI Xx{1}U{z}xS1t

The bottom left here is the (reduced) suspension Y X, and the bottom right is X A S!. Here
the induced map is clearly bijective, since the quotients here are equivalent to quotienting by the
image of the quotients, along with quotienting on the left side f~1(1) x {1} ~ f~}(=1)x {1} ~
x, where f wasn’t injective. Continuity of the inverse follows, since we have )?(XXaII o XXS
we can factor our map through this homeomorphism before taking quotients.

exercise - Use ﬁi to show that D™ cannot be a retract of D™

proof - We have that D"/0D™ = S™ furthermore D" ~ {z} for all n, implying that
H;(D"™) = Hy({z}) = 0, for any i,n € Z>q. Suppose for contradiction that there were a retract
h: D™ — 0D", then denoting ¢ : 9D™ < D™ we would have that h ot ~ 1gpn, by functoriality
we get the following commutative diagram (also note that D™ = S™~1):

and

Xx1>

H,_1(0D") — H,_1(0D")

l /

H,_1(D")

Where this diagram is equivalent to
Z -7

%

This is clearly a contradiction since there are no surjective morphisms 0 — Z. O
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exercise - Let f: S™ — S™ show if f is not surjective then deg f =0

proof - Suppose that f is not surjective, then we can pick some x € S™\ f(S™), by the
stereographic projection S™ \ {z} = R™ ~ {x}, so we have the following commutative diagram,
where the downward map is taken by restricting the codomain of f to S™\ {2z}, and the upper
diagonal is the inclusion.

equivalently,

so fx must be the zero map.

exercise - Let f as in the previous exercise, show that deg f = deg)_, f (remark first show
that the suspension ) is functorial)

proof - given f: X — Y, we can define ), f as the induced map in the following diagram

XxI -5 yvxr

sl

yx =l sy

Continuity simply follows from continuity of f, and the definition of quotient topology taking
opens to opens on the upper half of the square, then commutativity and the universal property
of the quotient on the lower square. To get >, fg=>_, f>_, g simply factor fog x 1 through

the following diagram

XxI - yer 2 zxr

| | |2
nx -=hyy = vy
>.. 1 =1y is obvious. This suffices to show functoriality.

For the proof of the main result, note that by an identical construction, the canonical C,
is functorial, f : X — Y, then Cif : C1, — Ci,. It suffices to show the following result for
SX, since it has the same Homology as > X by homotopy equivalence, so factoring f through
this equivalence won’t affect the degree. We have naturality (identifying S™ <> S™ x {0}f «+
Cof |S"x{0})

St —— CS™
lf lc*f

St — CS”
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And hence, we get a chain map

Hypi1(CS™) —— Hyyy(CS™,S") —— Hy(S") —— H,(CS™)

l(c*f)* l(S*f)* if* i(C*f)*

H,1(CS") —— Hp41(CS™,S") —— H,(S™) —— H,(CS™)
Which we can rewrite as

0 —— Hn1(S(5")) —— Hn(5") —

0
J(C*f)* l(s* )« lf* l(c*f)*
0

0 —— Hp+1(S(S™)) —— H,(S™) ——

Commutativity suffices to show that the degrees of the maps must be equal.

O

Remark 1. Use of the 0 maps on either end of the sequence is a bit of a cheat here so we
get for free that H,41(S(S")) = Z, and we need to ensure the map H,1(S(S")) — H,(S")
is nonzero since otherwise we cannot conclude about (>, f)«(1) = (S«f)«(1) from the above

diagram.

Remark 2. To make sense of degree here we should really show that Y S™ ~ §(S") ~ §n+1,
there is an explicit homeomorphism by simply rescaling by the factor in I in S™ x I, then taking

the quotient.
exercise - Compute the Homology of X, where X is the triangulation of the Torus.

proof - Let the upper triangle be eQU, the lower triangle be e%, the upper/lower boundary
be el , the left /right boundary be eé, and the diagonal be e}y, there is only one zero-cell, we may

call it €Y. Then:
Tapu = Mgy = 1 = —Typu
Tapr = gL = —1 = =m0,
71'09004:77'0905:770907:1_1:0
In this case we have the cell structure

0 — Z(}) 9 Z(e}) —= Z(ek) DZ(e}) D Z(el) —> Z(e) — 0

Where kerdy = eZU + e%, di = 0 = dy, rewriting C1(X) to have Im Cy(X) as one of its three

generators, we get the usual Homology modules for the Torus
exercise - Show from the Homology axioms that H, (X" 1) = H,(X)
proof - We have from Axiom 1, the following sequence is exact
Hp (X X™) s Hy (X)) —— Hip(X™H) —— Hp(X™H/X™)
We have the following from construction of a CW complex:
eat U, X" 1
XL xn = ar~pa(z), 2€0en ! pa(z)eXn |, €q

~ n+1
Xn - |_|a angrl - \/S

«
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So for k # m + 1, m we have

by exactness this gives an isomorphism H,,(X"t1) = H, (X"+?) >~ ...~ H,(X)

exercise - Rewrite Homoology axioms (1-3) in the context of the category Pairs

proof - First note that functoriality gives homotopy invarience, homotopy equivalent maps
frg: (X, A) — (Y,B), f ~ g (here we mean the restrictions induce homotopy equivalences on
the smaller spaces) induce the same maps of homology modules f, = g, : H,(X, A) — H,(X, B)

1. The following sequence is long exact:

"'Hn-‘rl(X? A) — Hn(Av{*}) — Hn<X7{*}) — HH(X7 A) —_—

2. For any n, H, (\V/,(Xa, An)) = B, Hu(Xa, Aa), here we are quotienting an element in
A, B resp. when we take (X, A) V (Y, B)

Z n=0

0 n>0

3. H,(S% {x}) = {
exercise - Let X be a cell complex with subcomplex A, furthermore let K C A be any set
such that K C A°, show that

X\ K
A\ K

~ X/A

proof - We get the following commutative diagram, since ¢ : X \ K < X is such that
L‘A\K A \ K— A

X\K —“ 5 X

lﬂl JWQ
e — X/A
The induced map is clearly bijective, since ¢ is bijective on A¢. Continuity of 7 follows from
continuity of ¢. To see that 77! is continuous, let U be open in X, if {a} ¢ U (here {a} C A\ K),
then 77 H(U) = 77 H(U) N K", so o(a7 H(U) N K®) = 7, 1(2(U)) which the former is open in the
subspace topology iff it is open in X. Now if {a} C U, then 7, '¢(U) = vy *(U) U A°, where
mrl_l(U) = V N K¢ where V is open in X, rewriting this we get WQ_IZ(U) = V U A° which is
open in X, so 7(U) is open in the quotient topology. O
exercise - Compute H;(RP"™)
proof - We compute this using cellular homology and degree. First a lemma,
Lemma. The antipodal map f : S™ — S™, o + —z is such that deg f = (—1)""!
Proof of lemma: Consider the CW structure e}, Ue? Ue™ t U e’ on S™, H(S™) = 0 unless
k = n, so we just consider k = n. It follows that the map r : e}, > €7 on H,(S™) = Z (e}, — €})
takes 1 — —1, so r has degree —1. Now taking one 7; for each coordinate plane in R"*!, we
have f = [['H! 7 ~ 7"*! (rotations are homotopies), hence deg f = degr"t! = (degr)"+! =
(_1)n+1_ O
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Continuing with the proof of the theorem, we give RPP"™ the usual cell structure, i.e. since

RP" &2 S/~ b _ D
~gpn  ~gn-1

we find that taking ¢, as the identity map D" — S"~!
RP" = e" Uy, RP" 1 =" Uy, " 1 Uy, |+ Uy, €
This gives a chain complex:

0 y 7. y 7 y 7. ce Z 0

We want to use degree to compute di. In this case, we only have one n — 1-cell and we are
attaching only one n-cell, so the we can determine d,, from d,(e") = (deg f)e"~!. Where f is
just the composition

N an—l
" RP"2

Oe™ /
N,

RPH_ 1

Fix a point y € %, then f~1(y) = {x, —z}, taking neighborhoods as in the definition of local

degree, we may take V = f(U;), and Uy homeomorphic to V' via f by excision on either U; or
Us. Then there is a homeomorphism f|y, f |&11 : Uy — Us. This map extends to the antipodal
map "t : 9e™ — 9e” which has degree o(n + 1), it follows that (since degg™' = degyg, Vg
invertible) we have deg f|_, = (=1)""!deg f|,. If deg f|. = —1, then this is actually arbitrary,
since we could have chosen opposite generators for H,(S™), so we can assume that deg f|, = 1.
This computes d,,

dn(en) =deg f = degf’z —i—degf\—m =1 —i—O’(TL—i— 1)

This gives us the chain complex

2,727 27— 50— 0
Now we can directly compute
7 k=n=1 mod 2
H,(RP") ={Z/(2) n>k=1 mod 2
0 else

exercise - d> = 0 in simplicial Homology.



427 Exercises Tighe McAsey

proof - Let 0, : A"(X) — X, as in the definition of simplicial Homology. Then

n n
_ % _ 7
On-10n00 = Op—1 § (—1) Ua|[vo,vl,...,ﬁi,...,vn} = E :(_1) an*10a|[UO,Ula---ﬁi,---yvn]
= =0
n
_ § : § : i+j E § z+ j—1)
- (_1) UOt’[Uo,...,ﬁj,...,ﬁi,...,vn + Uoz’[vo,...,ﬁi,,..,ﬁj,...,vn}
=0 0<j<i<n 1=0 0<Z<j<7’l
§ : § : 'L+] § : § : z+ 1
- UO"[U07 Uj ey Uiy ->Un] + - O-Oé‘[Uo,.‘.,v},...,v},...,’Un]
=0 0<j<i<n 7=00<i<j<n

Now we may swap the indices ¢ and j in the second sum, which gives us the result that

n n
8nflano'oz:z: Z (_1)l+j0-a|[vo,‘..,v“j,...,v”i,...,vn} - Z Z (_1)1_‘—]0&‘[vo,...,ﬁj,...,ﬁi,...,vn]

i=0 0<j<i<n i=0 0<j<i<n

So the two summations cancel leaving us with 79?0, = 07 O

4 Cohomology

exercise - (d*)? =
proof - Let f € C""!' = Hom(Cy41,G), then let x € Cpi1 be arbitrary, it follows that
dy 1dyf = fodyodyyt,sothat dy, (dy, f= f(0) = O
exercise - (Note the upper sequence is exact) Show the following universal property:

0 A B C 0

N s
w3
Z

proof - C é B/A, so by the first isomorphism theorem, Since the map in question sends
A — 0 there exists a unique map j : B/A — Z, such that the diagram commutes with B/A
in place of C'. It follows that jf : C — Z makes the diagram commute, and if any other map
¢ were to make the diagram commute, then :f~! = j implies that ¢ = j so that uniqueness is
satisfied as well. O
exercise - In the proof of the universal coefficient theorem, we define a map

£ HY(C*) — Hom(H,(Cy), G)

To do so, we take a representative of [¢] € H"(C*), so that ¢ : C* — G, and d*¢ = 0. By
choice of ¢, it follows that the sequence is exact, so we can apply the results of the previous
exercise [4]

0 By Zn/Bn — 0

\ ld)lZn -7 //
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We may define f([¢]) to be the unique map making the diagram commute. This is well defined
since maps in the equivalence class only differ on boundaries which are mapped to 0. Show that
f is a homomorphism.

proof - We need to show that f([¢]) + f([¢]) = f([¢ + ¢]), it will suffice to show that
f([#]) + f([¢]) satisfies the universal property for (¢ + )|z, = ¢|z, + ¢|z,, so let z € Z,, and
denote the quotient map as ¢, then

(f([o]) + F([D)(a(x) = f(@D(a(=)) + f([¥)(a(x)) = dlz.(x) + ¢[z,(z) O

exercise - Assume that the following sequence is exact:

0 A—‘tsp-*,F

~
o

Show that the following are equivalent:
1. B2AQF
2. There is a section s : F' — B, such that gos=1p
3. There is a section s’ : B — A, such that s’or =14

Proof - (1) = (2),(3) is obvious. Now assume (2), then s(F) C B is a submodule, let
x € s(F)Nu(A), then x = s(y) for y € F, it follows that 0 = ¢(x) = ¢s(y) = y and hence
s(y) = 0. Now let z € B, then ¢(x — sq(x)) = q(x) — q(x) = 0, hence x — sq(z) € kerq = Im ¢,
hence = = sq(x) + 1(y) € s(F) + ¢(A). Now assume (3), we may define p : B — A& F via
¢ : b= (s(b),q(b)), to see that the map is surjective, let (a, f) € A @ F, then choose some
x € ¢ L(f), and consider

p(ula—s'(z)) +z) = (sula—s'(2) +5(2), qula—5'(2)) + q(2)) = (a = 5'(x) + 5'(2), f) = (a, f)

To check injectivity, suppose that ¢(z) = 0, then ¢(x) = 0 implying that € 1(A), so that
x =1(y), and 0 = §'(x) = s't(y) = y so that = = +(0) = 0. O
ezercise - Suppose that F' is free, and the following sequence is exact:

0 A—‘tsp-*,F » 0

Then the sequence splits.

proof - We may write F' = @ Re;, then for each i € I, choose some b; € ¢~ !(e;), it follows
that by the universal property of a free module we can define a map by taking e; — b; and
extending linearly. This defines a section hence the sequence is split (it satisfies condition 2 of
the previous exercise [4]). d

exercise - In the proof of the Universal coefficient theorem, we want to show that f is
surjective. to do so it suffices to construct a section s : Hom(H,(Cy),G) — H"(C*), such that
fs = 1. Since B,_ is free, and the following sequence is short exact, there is some p : C,, — Z,,
such that p|z, = 1z, by the equivalence of definitions of split exact.

0 Zn Ch
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To define s, we let @ € Hom(H,(Cy),G), then we may take @ := ag, so that the following
commutes

Ch

|

Zn — H,(C,)
G /

By commutativity, of the previous diagram (zero map) the following diagram commutes and
the sequence is exact

S|

Ch
p

0 B, Zn —— H,(C,) —— 0
Xla/
G

We may define s(a) = [@op] € H"(C*), furthermore commutativity of the above diagram means
that for @ = @opl|z, we have that « satisfies the universal property, so that fs(a) = f([ap]) = a.
Show that s is a homomorphism

proof - Let o, 8 € Hom(H,(Cy), G), then

s(a+B)=a+pBp=(a+pB)gp=aqp+ Bep =ap+ fp=s(a)+s(3) O

exercise - Show that if a sequence is split exact, then Hom(—, G) acts as a (right) exact
functor on the sequence.

proof - Hom(—, Q) is always left exact, so it suffices to show right exactness, i.e. given the
split exact sequence

0 A—-1.B c 0
Check that Hom(B, G) — Hom(A, G) is surjective in

Hom(A, G) S Hom(B,G) «—— Hom(C,G) «+—— 0
By split exactness, there is some s : B — A, such that sf = 1. It follows that as € Hom(B, G),
such that f*(as) = asf = al = «, this suffices to show surjectivity and hence exactness. O
exercise - We have the split exact sequence of chain complexes

0 Z, C. B..1——0
since the sequence is split, it dualizes to an exact sequence of cochain complexes,

0 —— B*?! C* Z 0

By the snake lemma we get a long exact sequence

anl g anl s Hn(c*) zn 9 B™...
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What is 07

proof - By tracing through snake lemma we find that 0 =¢;_;. 0

exercise - Let H and H' be modules with free resolutions F, and F,, and o : H — H’ be
a homomorphism. Define a chain map as follows: Let ey € Fpy, then define «g : eg — by, where
by € féfl(afo(eo)), more generally, take oy, : e, — b, € f N (a,_1fo(en)), it is immediate by
definition that this is a chain map. Now let 3; be another chain map, given by taking possibly
different choices of ¢, € f/~1(an_1f0(en)) (here we abuse notation that a = a_1).

proof - Since a = a_1 = f_1 we should simply choose h_y = 0, for the case of hy, we
exploit the fact that Fy is free, so if &« — 8 = d1hg on the generating set, then they are equal on
the entire module. So let e be a generator of one of the summands of Fy, then we may simply
choose ho(e) € f; H{ao(e) — Bo(e)} which is a map since Fy is free. Now we may construct hy,
based off of h,_1, once again let e be one of the canonical generators of the free module F),,
then choose hy(e) € f,/;rll{an(e) — Bn(e) — hn—1fn(e)}, once again this is well defined since F,
is free, and it satisfies the property of a chain homotopy by construction. O

exercise - Classify all extensions of Z/(2) by Z/(2).

proof - To do so we compute Ext(Z/(2),Z/(2)) := HY(F*;Z/(2)), where F* is a free
resolution for Z/(2). We can take the free resolution

0 y 7 —25 7, » 2/(2) —— 0

Dualizing we get
04— Z/(2) 45— Z/(2) «— Z/(2) «+— 0

The fi g KerZ/(2)=0 ~ : D
e first cohomology group is —7-5—— = Z/(2), so there are two extensions. The extensions
are Z/(2) ® Z/(2) and Z/(4). It is immediate that these are both extensions, and are non-
isomorphic. A second way to see these re the only extensions, is that any extension must have
order 4, and these are the only two groups of order 4. ]

exercise - When taking a group extension of G by M, i.e. some group E, such that the
following is exact

0 Mqu>G > 0

we may take a set function s : G — FE, where ¢gs = 1¢g, but s is not necessarily a group
homomorphism. There is a function ¢ : G x G — E which measures the defect of s from being
a homomorphism,

c:(g1,92) — 8(91)5(92)5(9192)_1

Show that s(1) = ¢(1,1)
proof - Trivial

c(1,1) = s(1)s(1)s(1) L =s(1) O

exercise - In the previous question, we constructed a function ¢ to measure the deviation
of a section from a group law, such a c is determined uniquely by the group extension E. We
would like to show that E uniquely determines some [¢] € H?(G; M), this will suffice to show
there is an injection

{E | E is an extension of G by M} — H*(G; M)
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It is immediate that ¢(G x G) € ker g, so that we may identify ¢ with j7'c: G x G — M. We
still havent specified what H2(G; M) is, consider the chain complex given by C™(G; M) as the
set of set valued functions G" — M

0 —— COG; M0 —% CY (G M) —2s C2(G; M) —2s -

Where we define

n

df (90,915 9n) = F(g1,92, - 90)H (=" (g0, 915+ gn1)+D_(=1)"F (905 - - Gi2, Gim1Gi» Girp1s - - -

k=1

in the case of di : C' — C?, we get df(g1,92) = f(91) + f(92) — f(g9192), hence kerd is the
collection of group homomorphisms G — M. It is the case that d?> = 0, so this defines a chain
complex. Since ¢ is uniquely determined by s, it will suffice to show that given another choice
s’ : G — E we have that ¢ differs from c only by a coboundary. Show that [c] = [], equivalently
for some f: G — M we have that ¢ = ¢+ df

proof - Since all of our sections map into ker ¢ = Im j, we continue to refer to our maps as
G — M by implicity composing with j~!. Now we may define f = s/ — s, so that s’ = f + s, it
follows that

(91,92) = (f(g1) +5(g1)) + (f(g2) + s(92)) — (f(9192) + s(g192)) = (g1, 92) + df (91, 92)

So that [c] = [¢] € H?(G, M) depends only on isomorphism class of E.
erercise - In the previous exercises we completed verifications to show that

Extensions < H?(G; M)
We want to show that this is a correspondence, i.e. we have an injection
H?*(G; M) — Extensions

let ¢ be a cocycle, we want to show that ¢ defines a group operation on the set M x G. Given
a cocycle ¢ define a group operation on M x G.

proof - We define the group law as (z,y)(z,w) = (v + 2+ ¢(y, w), yw), (associativity is easy
and painful to prove) the identity is (—c(1,1), 1), as proof

(’I?’L, ZL‘)(—C(l, 1)) 1) = (m - C(lv 1) + C($7 1)7 ZE)
and since c is a cocycle, we have
0=dc(z,1,1) =¢(1,1) — ¢(z,1) — c(z1,1) + c(z,11) = ¢(1,1) — ¢(z, 1)

So that the given identity is indeed the identity. The inverse is (—c(x, ) — ¢(1,1) — m,z71),
which is verified below;
(m7 a:)(—c(a:, :LJ) - C(lv 1) - m, ;L'_l) = (m -—m- C(.’L‘, x_l) - C(lv 1) + C(ﬂj, $_1)> xx_l)
= (—0(171)a1) 0

7gn>
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5 Knots and Cobordisms

Remark. In this course on Algebraic Topology the focus has been on studying chain complexes.
Homology and Cohomology have been presented as useful invariants to study classes of chain
complexes (particularly in their aplications to topological spaces). Going forward we will focus
on a stronger notion of equivalence, chain homotopy. Knots are a natural situation to study
this equivalence since knots are objects each representing zero homology classes.

exercise - Suppose we have knot diagrams D ~ D’ then their Jone’s polynomials (D) and
(D'} agree up to units in Z[q, ¢~!]. Recall how the Jones polynomial is formed using local moves:

0y =1
(DUQ)=(g+¢ ") (D)

(X=X =100

proof - We want to show that the Jone’s polynomial is Reidemeister invarient. The case of
the Reidemesiter 0 move is obvious, consider the other 3 Reidemeister moves,

o
T =)=

S AN Y
(I11) \ — //\ \// — )
s )\ N
We use the definition to compute as follows,
X

(M) (D) =(DUQ)—q(D) = (¢+q¢ 1) (D) —q(D) = q ' (D), which is equal to D up to the
unit multiple ¢. The other R1 loop is equal to ¢ (D)

(IT) Here we apply the rules to a single crossing, then invoke the ¢? version of the first Reide-
meister move, i.e.

<D1 6D2> ~ (D)X Ds) = =% (D1 = Do) = (D )(D2) +¢* (D1 = D3) = ¢ (D1)(D2)

See pdf.

(ITI) This one is quite painful to write out, I am unwilling to subject myself to more than scrap
paper for the purposes of these exercises. ]

exercise - Recall the definition of a graded vectorspace, i.e. W = &, W), and p : W,, = n,
we define

grdim W := Z q" dim W,
neL
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Show that the natural definition of W ® V' as a graded vectorspace is such that
grdim(W @ V) = (grdim W) (grdim V')

proof - This exercise requires very little math, but is instead looking for an appropriate
definition. Since tensor commutes with direct sum, we find that

<@Wn> ® (@VO g@ <Wn®@vm> %@Wn@wm

So it makes sense to define (W @ V), = ¢! @D, j—n Wi ® Vj, where ¢ is the composition of
the two natural isomorphisms. Since dim(7' ® S) = (dim 7")(dim S) it is immediate that this is
equivalent to the product of the formal power series as suggested in the problem statement. [

exercise - Recall in class we used the state sum formula/hypercube to compute the cochain

complex C (@), the choices made in this construction where such that the Euler characteristic

of the complex was made to be (D). When recording the hypercube we record the resulting fully
simplified knot states with a "height” corresponding to the number of left /right simplifications
(this corresponds to the factor of ¢ in |the first exercise of this section|). This is compatible with
the

State Sum Formula For The Jone’s Polynomial: let S be the set of "states”, i.e.
vertices of the hypercube, recall the height of a state s (write h(s) or i(s)) is equivalent to the
number of left-right crossings taken to get to that state, equivalently the left-right grading of
the hypercube when written out. Also, #s here is a slight abuse of notation as in it refers to
the number of connected components # Ho(s).

(D) => (=" (g™ + )**

SES

In order to construct a stronger invarient, we introduced an oriented Jone’s polynomial,

—

V(D) = (=1)"¢"+ 7"~ (D)

where ny and n_ respectively refer to the number of positive and negatively oriented crossings
in the knot diagram according to the familiar right hand rule.

We have discussed the hypercube as well as its height grading thus far, however to construct
a cochain complex we need a module or vectorspace. In the hypercube each of our knots is
reduced to some | |0, where in the jones polynomial we associate () to q¢ + ¢!, as such we
define (O) = (v4) @ (v_), with p({vy)) := %1, it follows that grdim @7V = (I O). We
define a shift operator for £ € Z, (W{€}),, :== W,_y, or equivalently grdim W{¢} = ¢‘grdim W,
we apply the shift operator {i} to the vectorspaces corresponding to the states at height i of the
hypercube. [e.g. Applying this to our example of (D, we get V@V at height 0, V{1} & V{1}
at height 1, and (V ® V){2} at height 2.].

We are ready to define
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(where S is the set of states). We similarly define
CKh(D) =C(D)[-n_]{ny —2n_}
For each height i, we define W = Ci( ), which is the vectorspace generated by the components

of C(D) at height i, similarly W; = C;(D) is the p~1(j), by taking the euler characterisic we
obtain

Z(—l)igrdim W= Z(—l)i qu dim Wh Zq Z )* dim Wh

1EL 1EZL JEZ JEL 1€EZ

This recovers the jones polynomial, via x, : C(D) — Z[g, ¢~!] via taking ¢’ xC;, where the Euler
characteristic is taken with respect to the height .

Let D := </\/> (with orientation), compute CKh(D).

proof - We first note that n_ = 1,n4 = 0, so that

CKW(D) =C(D)[-1{~2} = (V& (Ve V)I{1)[-1{-2} = V[-1[{-2} & (Ve V){-1} O

exercise - Consider the monoid m = (Z>p,+,0), we define the (monoidal) cobordism cat-
egory (cob) to have objects in correspondence n <— | [{ S, 0 +— 0, + <— |]. Then
Mor(X,Y) are surfaces with boundarie X /Y. A TQFT is a monoidal functor from cob to
Vecty (or modp). We define the following functor (note that m is a ”pair of pants with leg holes
one the left”, i.e. 2+ 1, and A is a "pair of pants with leg holes on the right”, i.e. 1+ 2)

F:ﬂSlaéV
1 1

Vy QU = vy

V- @ Uy v
m ~ A~
Vy @U_ — v_

Vy = V4 QU +v- Q@ vyg
Vo= v QU
v @uv_+—0

F has unit (0 — 1),1 + v; and co-unit (1 = 0),v4 + 0,v_ +— 1. Ewvaluate F(T?) as a map

Q— Q.

proof -
F(T?)=F((1—0)omoAo (0 1))
F(T?)(1) = F(1+ 0) 0 F(m) o F(A)(v4)
=F(1—0)oF(m)(vy @v_ +v_ Quy)
=F(1—0)(2v-) =2
Hence F(T?) =-2:Q — Q. O

exercise - Let D as in the previous question, compute the Khovanov cohomology of kh(D).
proof - From the cube of resolutions we get (where a,b are used for labelling)

ve{1}
~2

/
VeV &b Ve V{2}
K %

Vi{1}
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Then, we decompose our cohomology with respect to the grading.

0 1 2
4 <’U+ X ’U+>
2 (vy @ vy) (v, 08) | (vy ®v_,v_ ®uy)
0| (vy®@v_,v_®@uvy) | (v2,0°) (v—-®v_)
-2 (v ®wv_)

the vertical grading is j, and horizontal is ¢, then d; : C; — C’;H, and use the basis v§ =

o= [

-1 1
A= [11] 4= 1
11
dg—[l J dy=[-1 1]
d_s

and all other maps are zero. Now we can compute cohomologies (indexing before H to avoid
confusion):

exercise - Note that H(D) is defined by taking the homology with respect to the i-grading
on C(D). Then, we define kh(D) = H(D)[n_]{n, — 2n_} Show that Xp(C(D)) = x,(H(D))
and x,(Ckh(D)) = xp(kh(D))

proof - The second result follows directly from the first, since both ¢ and j gradings are
shifted by the same amount. Now to compute the main exercise, it will suffice to show equiv-
alence for each j, so fix j € Z, then if d; = 0 for each i the result is trivial since in that case
sz = C]i-, then if rankdé is k € Z~¢ we have that by the rank nullity theorem dim sz = dim C’; —k
and dim H]’:H = dim C*™! — k, these terms cancel in the graded Euler characteristic. O

exercise - Compute the Khovanov homology for the trefoil over Z.

Proof - Here I will use the Knot Space diagram taken from Bar Natan’s paper
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Ovee
(./\\f.) 110

2" &
d*oo : dll*
ot 1 I o o N
000 do«o 010 % O 101 d1a QO 111
: Qi :
& $
d()u* dtll
G g o
. 001 dox1 Q o011 |
lﬂizo(fl)ﬁdg % e
! 0 ;0 ! 1 ;1 ?2 ;2 ! 3
[] [@] [@] [@]
= [@] Ion-fny —2n-} C(Q).

(with (n4,n-) = (3,0))
Applying our TQFT functor to this knot diagram gives the following:
ve{1} —25 v o ve{2)
VeV —m, vh{1} Vevtel 2% veve s

N

Ve{l} —2 Vo Ve{2)

1A

We first compute the Khovanov chain complex,

0 1 2 3
9 (v Uy ®vy)
7 ((vy ®@vy)?, (vy ® U+b)ba (vy @)% [ (TR
5] weew)  [(@pohaeg) | (G lbeenlbel)  [OrmEEe)
3 (v ®@v,uo_@uy) | (02,00, 0%) | {(v-®v )% (v-@v )P, (v_®v )% (v-®v_®v_)
1 (v_®@v_)
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11 -1 1
=111 dd=1|-1 0 1
11 0 -1 1]
d3=1[1 -1 1]
-1 1 0]
I S
0 __ 1 _ |
d5 = 1 db=1_1 0 1
- 0 -1 1
0 -1 1
01 0 -1 0 1
=110 0 -1 10
10 -1 0 10
[0 —1 1
=11 0 1
1 -1 0
Now we compute the homologies:
'HY D)=z
3 170 ~ 3rrl <(17171)> 3172 (17 ) 3173
H(D)=7z, 3HYD)= 21— H?*(D H3(D) =
1,1,1,1,00
(1,1,1)) <“’17°“ >
SHY(D)=0, °H'(D)= -l =0, SHD 00010/ o 7 53y —
((1,1,1)) < (1,1,1,1,0,0), >
(1,1,00—1—1
7172 7173 Z3
H?*(D)=0, "H3D)= ~7/(2
(D) (D) T 00 /(2)
010
0 0 2

YH3(D) =7

Here to compute "H3(D) I simply took the smith normal form of d2 = ey + esn + 2e33, in
tabular form this gives us the Khovanov Homology kh(D):

o[1] 2 |3
9 Z
7 Z/(2)
5 Z
3| Z
1]z |

O

exercise - We define a chain complex C to be acyclic, when it is an exact sequence. Show
that if C" C C is an acyclic subcomplex, then C has the same homology as C/C’.
proof - We use from Hatcher (equiv snake lemma) that if

¢ — C — Cc/C
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is a short exact sequence of chain complexes, then we get the short exact sequence on homology
-+ H,1(C/C") —— H,(C") —— H,(C) —— H,(C/C") —— Hp—1(C")---

Since this sequence is exact and H;(C’) = 0 for each i, we conclude that H,(C) = H,(C/C")
for each 4. This is also sufficient to show H,(C) = H,(C’) when C/C" is acyclic. O
Construction of the LES - We have the following maps

0 > O, L O, 5 C,)C —— 0

lo s J«

L Cpi1 — Cpy1/Clyy — 0

0 1
Where the rows are exact, define

0 :H,(C/C") = Hyui1(C")
2] = [ dg ™ ()]

where we make an arbitrary choice of elements after taking ¢—! and +~!.

We first check this is well defined, firstly since ¢ is injective, the choice for +™* is unique.
Next assume that we took a different choice 3’ for y € ¢~ !(z), then y — ¢/’ is in ker g, hence
in Im ¢,,, by injectivity of + and commutativity we find that : =1 (d(y — /) = d(v " (y — ¥/)) is
a coboundary, so the difference is zero on homology. Finally if & were chosen differently in its
homology class, then we can take ' = = + d2/, then 2’ = z + dj(y') = = + j(d(v')), so taking
preimages under j and then d we get d(y + d(y')), d*> = 0 kills the extraneous 3’ term leaving
the map to be well defined. Finally we need that this is indeed a map, that much is easy since
each of d, j, ¢ are linear so that so is 0. All that remains to check is that the following is an
exact sequence:

1

H,(C) —%X— H,(C/C") —2= H,1(C") —2— H, 1(C) X~ H,(C/C")

qi = 0, implying g.«t« = 0, conversely if ¢.([z]) = 0, then ¢(z) = d(y), surjectivity of ¢ gives
d(y) = q(2), hence gq(z — 2') = 0, but 2’ is a boundary by commutativity implying that
q(x) = 0, so that [z] € Im .. Once again, g, = 0 is immediate by definition of 9, conversely
if 9([z]) = 0, ¢+ 'd(¢7'(x)) = d(y) (once again choosing arbitrary representatives), so that
dq~(z) = wd(y) = du(y), so that ¢~'(x) and «(y) differ by only a coboundary, it follows that
[] = [¢qt(y)]. Finally, it is immediate that ¢.0 is a boundary by definition of 9, conversely
we have that if t.([x]) = 0, then «(x) = d(z'), hence z = ~!d(a2’), then take y, such that
2’ € ¢7!(y), which means that € Im d up to a coboundary in choice of ¢~ !(y), linearity kills
this coboundary so that [z] € Im J as desired and the sequence is long exact. O
exercise - Show that in cob/¢(B) the relation T is determined by S and 4Tu when B # ().
proof - Proof by picture:



427 Exercises Tighe McAsey

A{//W
(N (‘f/\"’um‘*) V) uSLx\Q,L 7

.(,,\J\S Loger0
>

7. g @5 I.so“h:\[ﬁv):

00‘0 Or}\ I\

This sﬁ?‘.mg Yo s\how Jl‘Lw.L Se”‘"\LS 0“’7 f%%//%?”i«”ﬁ
+o ‘l‘wn\oe_, -HN'LL n orP[" NV} N

UJ\/\\\J\/\ L’\o\S (s ,()o C,mrl 5\/\{_,(/“\\‘
cb(BY fer bFEI
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\
>}J\C'@/ &A3 S0 ‘X\u. e /ca\oori(@./\/\, v
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exercise - Find f in the following diagram after delooping:

proof - f =0, see picture

= Yol o ¢

e Bl =

I




427 Exercises Tighe McAsey

exercise - Show the following chain complexes in Cx(MatC) are homotopic, given that
@ : by — by is an isomorphism.

and

[0} [SD 0}
Bl by |0 e=ve710| by [0 v
D E

proof - The following maps induce a homotopy of chain complexes, here we are using the
relations given by d? = 0 to ensure that these are chain maps.

fc=g9c=1c

1ol 1 —p7ls
fD—[O 1 ]7 gD—[O 1

o] 10 [ 10
E = ot 1] 9gE = —ypt 1
fr=9r=1F

exercise - Check 4Tu, T and S are grading homogenous, this in particular applies that since
Cob(B) is graded we also have Cob/¢(B) is graded.

proof - T not changing grading is tautological, the zero map is grading agnostic so S is also
tautologically ungraded. Finally, for 4Tu each summand has grading equal to the original by
the symmetry of 4Tu so this is also straightforward. O

exercise - Recall that in Cob/¢(B) that p(f) = deg f := x(f) — #. Show that deg fog =
deg f + degg.

proof - Denote L(f) to be the ”left” boundary of f, i.e. the boundary shared with g, then

ou(f) =S " I

=l

X(F2.9) = X(f oy ) 9) = X(F) + x(9) ~ x(D2(1)) = des(f) + dea(®) — #B + x(] 5| | 1)
= des(f) + deg(o) ~

Replacing x(f o g) by the degree completes the proof by cancelling out the #B/2 term. O
exercise - Suppose that ¢ : C; — C/, show that the following are isomorphic chain complexes

d;

dit1

4 wdiy1 y dip™!
C= --Cin y O Ci g
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proof - Here we define chain maps f; : C — C, g:C — C so that fg=1.

lo, j#i le, j#i
2 J=1 2 J=1
It is immediate that f, g are chain maps and that they compose to the identity. ]

exercise - Compute a diagram for a 3 crossing knot in Cx(Mat(Cob/¢(2))). Compute an
equivalent diagram in Cx (k[H])

proof - Computed by hand - took a few pages and is not very nice to read so proof is not
included. O

exercise - Show that when #B is odd, that Cob(B) is the empty category

proof - An object in Cob(B) is of the form K = ||, S| |, I, so that #B = #0K
2#C + 0#A, so there is no such K when #B is odd. O

exercise - Check the new relations in Cob/#(3, %)
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proof -

exercise - Recall that in Cob/¢(B) we have that deg f = x(f) — #. Show that in Cob/¢(4)
we have p(H'f) = x(f) — 2i — 2#dots — #—B

proof - We can do induction on the number of dots. First if there are zero dots, H reduces
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the Euler characteristic by 2, so we are done since H'f = H(1o H'='f) = --. (H(1))" o f which
has euler characteristic x(f) — 2i.

Now if we assume the formula holds for n — 1-dots, adding the n-th dot will give us -1 o f
where each summand in -1 o f has euler characteristic x( f) — 2, so we are done. O

exercise - Let C be the k-linear category given by the following quiver: ¢ > H, then
Mor(C) = End ¢, show that Mor(C) = k[H].

proof -
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We define the map F : k[H] — MorC, F : Y (a;H' — > g a;H', since C is k-linear the
right hand side is a well defined morphism. It is immediate that the composition of morphisms
agrees with the product in k[H], and F' preserving sums of morphisms is trivial by k-linearity.
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Injectivity is also an immediate consequence of the structure of C being formal combinations so
it will suffice to show surjectivity. To see surjectivity we need to show any summand in C is of
the form cH™, ¢ € k, so let M be a summand in Cob/£(2), then M is of the form H™ UY | g:(5;)
where each g¢;(j;) is a closed surface of genus j;, if any one of the j; = 0 then M = 0 and we are
done, so assume not. Notice that 47w with a surface of genus j and H" is [applying (*) once
and (xx) recursively] H" L g(j) = H"™ U g(j — 1) + 2H"772 so that we can repeat this with
H" ™ U g(j — 1), eventually j will be reduced to 1, so it can be eliminated with the T relation.
This gives us

HUY g:(Gi) =) (aka Ly gz‘(jz')>

applying this simplification recursively gives an expression of the form > a H*. O

exercise - Let C be as in the previous exercise. Show that that we can identify C'x(Mat(C))
with Comk[ H)

proof - Consider a morphism in Cx(Mat(C)), then this is an m x n matrix with entries
in End(—), so we can identify all the entries of the matrix under the isomorphism to k[H].
Because this is an isomorphism, this ensures that the chain map condition is still met. Any
morphism of chain complexes is still a matrix with entries in End(—), so can be identified
with the same matrix with entries having image under the isomorphism, since the isomorphism
preserves products and the matrix product rule is the same this preserves the composition
laws. O

exercise - Compute a representative in End((=) & (||)) of the knot diagram for the reide-
meister 2 move.

proof -
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exercise - Consider the k-algebra B specified by the following quiver, with relations

SaDa = DbSa = 0, and SbDb = DaSb =0
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Sa

R
Do a b DDy
N~
S
Show that End((=) @ (||)) is finitely generated over K[H]|, and that End((=) & (||)) = B

proof - Here identify S, with the saddle going from = to ||, and S the saddle in the
opposite direction. D is the dot relation wrt. The given orientation. To see that this is a
ring isomorphism, first note that both are k-linear categories so we only need to check that the
relations hold.

To see the relations, note that resolving the dot on D,/ in its composition with a saddle
gives a saddle with a handle minus a saddle with a handle up to isotopy, so it is equal to zero
and we are done.

Finally, surjectivity follows in the same way as for k[H| «— End(—) where we can resolve
closed surfaces to handles on S, and D, s, finally to see injectivity note that the only mor-
phisms remaining are H iDé\;b, or H'(S,Sp)" or H(SyS,)", none of which are killed by relations
since we are taking formal k[H] linear combinations. Thus this defines an isomorphism, a very
nice way to cap off the course as now a full subcategory of Cob/¢(4) can be identified with the
simple ring given by this quiver. O
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6 Additional Problems

Ben Williams HW2 Problem 2. Let p be a prime number, determine all group extensions
of Z/(p") by Z/(p*).

proof - For k € {1,...,min{a,b}} we can consider the extension E = Z/(p***=*) @ Z/(p"),
we can map this onto p® via (1,0) — 1, (0,1) + p*~*, then the kernel is generated by (p*~*, —1)
hence has order p® and is cyclic. This suffices to show that E is an extension as desired. It
remains to prove that these classify all extensions.

To do so, we can compute Ext(Z/(p®),Z/(p")). Consider the free resolution

a

0 /Ay Z/(p*) —— 0

We dualize this free resolution to get

0 +—— Hom(Z,Z/(p")) o Hom(Z,Z/ (p")) ¢—— Hom(Z/(p*),Z/(p")) +—— 0
Which is equal to
0 —Z/(p") i Z/(p") «— G +— 0

So that Ext(Z/(p%),Z/(p*)) = (Z/(p))/Imp® = Z/(p™»(=b)) this classifies all isomorphism

classes of extensions, to classify the extensions, suppose that ¢ : Z/(p%) = Z/(p), replacing
the injection j of A into F with jp, we have the following diagram

0 —— Z/(p") —¥> E Z/(p") — 0
N
0 —— Z/(p%) E Z/(p") —— 0

Hence F = FE’ as groups if they differ by an isomorphism of Z/(p®). In particular we need
to quotient the action of AutZ/(p®) from Ext(Z/(p®),Z/(p)). It follows that two elements
z,y € Ext(Z/(p*),Z/(p")) are similar iff z = ky for (k, p®) = 1, so in particular for k, &’ coprime
to p, we have that kp™ ~ k'p™ <= n = m, so that

Ext(Z/(p%), Z/(p"))

-1 min{a,b}
At Z/(p) {Lp,...,p }

so that min{a, b} is an upper bound for the number of extensions. Since we have already shown
that this many non-isomorphic extensions exist we know there are no more and thus we have
classified all extensions. O
Ben Williams HW2 Problem 3. Let d € Z and n € Z~o describe a sujrective map
S™ — S™ of degree d.
proof (not explicit) - Since deg f = deg X, f, it will suffice to provide a map S' — S! for
each degree. For d = 0, consider the map f that factors through

Sl B Tast g1

S0 2 0/m 6 € [0, 7]
2—-0/n 6€m2m)
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It follows that applying the homology functor, f, : Z — Z factors through
Z—0—7Z

and hence must be zero. In the other cases deg f is consistent with winding number so we can
simply take f : x — z%.

proof (explicit) - In the case d = 0, we use the same technique of letting f be the projection
of the sphere onto D™ (this is equivalent to taking (x1,x9,...,2,) — (z1,22,...,Zn—1)), then

quotienting by the boundary of D™. It follows that f once again factors through
S — D" — S"
and hence f, factors through
7Z—0—>17

As for the case of d # 0, it will suffice by composition being multiplicative to provide a function
of degree {—1,0,1,2,...}. If we consider S™ to have the cell complex of the upper and lower
hemisphere, then H™(S™) = (el — €%), taking f to be the map swapping the hemispheres is suf-
ficient. For d > 1 take x + 2%, we can use the local degree formula at y = 1, f~1{1} = {(5 g;é,
taking disjoint neighbordhoods (i € Uy, such that f(Uy) C V D {1}, we have by excision that
for some r, such that B,(¢¥) C Uy, for all k, H™(B,(¢%), B-(C5)\{¢h}) = H™(Uy, U \ {¢k}), and
similarly H"(B,a(1), B,a(1)\ {1}) = H™(V,V \ {1}), with this replacement of Uy, V we get that
fl ¢k is an homeomorphism hence having degree +1, and furthermore f |C_k11 fl ¢k is the identity
d

map, so that these maps have the same sign. It follows that 2% has degree equal to the sum of
the degrees at Cfi“ which are each 1. O

Ben Williams HW2 Problem 4. Extend a polynomial function f: C — C to a map on
the riemann sphere (the one point compactification), show that deg f is the same as the degree
of f as a polynomial.

proof - The map z — z" on the Riemann sphere has degree n, for the same reason it has
degree n on S? in the previous question. We may rewirite f as a polynomial to be Hfi 1(@—ay)™,
taking f~1(0) = {a;}}, by the sum of local degree formula it suffices to show that

flay = C\ {as} = €\ {0}

has degree n;. By choosing a small enough neighborhood of «;, since polynomial functions have
isolated zeros we can homotope fl,, to 2", due to excision this does not change the homology
and which is proven in the previous exercise to have degree n.

Example. Build a CW complex with a given homology

construction - Let G1,...,G N be abelian groups, we will construct X, such that ]:In(X) =
G,. By the structure theorem we have that G, = @j VA Z/(pfi), by the wedge sum property
it will suffice to compute X, with ﬁi(Xg) = Gy iff i = £ and 0 otherwise, then take X =\/, X,.
Now fix £ and call G := Gy, once again we may construct a space X g with H (X g ) equal to one
summand G7 in G, and the rest of the homology groups zero. We showed in a previous exercise
that there is a map f : S™ — S™ of degree d for any n > 1 and d € Z. If GJ = Z, then simply
take X7, = S™, otherwise if G = Z/(m), take X3, to be "1 U; S™, so that X, has cell complex

0 7 —" 7 0 0---
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Taking the homology we get

0 else
0
exercise - Compute H,(CP")
proof - We have
S2n+1 D2n
Ve~ AU ~gpn € U
~oe2n
and hence CP" has a cell complex with cells {e2*}7_,. It follows that
Z 2n >k =0mod?2
Hy(CP") = C}(CP") = "= o
0 else
O

Hatcher prop. 0.17. We say (X, A) has the homotopy extension property, when for any
fo: X = Y, the homotopy f; : A — Y of fy|4 can be extended to a homotopy f; : X — Y.
Suppose that (X, A) satisfies the HEP and A ~ {x}, show that ¢ : X — X/A is a homotopy
equivalence.

proof - Let fy be the one map, and f; be a homotopy extending the contraction of A, with
q : X — X/A being the quotient map, quotienting the subspace A. It follows that we get

x ' . x

ol

x/A -1y x/A

Now since f1(A) is equal to a point, we can define a map g : X/A — X as the upper diagonal
of the above square with gq = fi, it follows that g,q are the desired homotopy equivalences,

since g¢ = f1 = fo = 1x and q9(T) = qgq(z) = ¢fi(x) = fL ~ fo = 1a. O
Example from Hatcher. If U C R"™ and V C R™ are open, then U = V implies that
n=nm.

proof - let B"(x) be an open ball in U, then if f is a witness to the homeomorphism we have
f(B™\{z}) is an open set in V', by excision we may consider an open ball containing y = f(x) in
V on homology. It follows that since f is a homeomorphism it is an isomorphism on homology,
hence H,(B™ \ {z}) = H,(B™ \ {y}), but after removing the point both of these spaces are
homotopy equivalent to S™, S™ respectively by a rectract. This means that H,(S™) = H,(S™)
if n % m, then the right hand side is zero and the left hand side Z, which is a contradiction,

hence n = m. O
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