
Exercises

April 22, 2025

Please note that I do not take credit for all of the Tikz in this document, particularly the knot
diagrams. Much of it is taken or templated from online forums such as MathStackExchange

1 Categories and Pre-reqs

exercise - Show the forgetful functor F : Vectk → Set is a functor.
proof - The identity linear transformation is the identity when regarded as a set mapping,

if T : U → V, φ : V → S as vector spaces, then F (φ)◦F (T ) is a well defined set mapping, which
maps U → S as sets.

exercise - Hom(−, G) is functorial
proof - Note that if f : H → K, then Hom(−, G)(f) = f∗ where f∗ : Hom(K,G) →

Hom(H,G) via f∗(k) = k ◦ f . We first check associativity, let f : H → K, g : K → N , and
z ∈ Hom(N,G), then (fg)∗(z) = z ◦ fg = f∗(z) ◦ g = g∗f∗z.

We can also check that identity is preserved, since if f : Hom(H,G) → Hom(K,G) and
g : Hom(N,G)→ Hom(H,G), then for h ∈ Hom(H,G) and n ∈ Hom(N,G)

f1∗Hh = f(n ◦ 1H) = f(h) and 1∗Hgn = g(n) ◦ 1 = g(n)

2 Chain Complexes

??
exercise - Show that h = (hi), hi : Ci → C ′

i+1, then hi−1 ◦ di + d′i+1 ◦ hi is a chain map.
proof - We need to check that d′i ◦ fi = fi−1 ◦ di, in other words we need to show

d′i ◦ (hi−1 ◦ di + d′i+1 ◦ hi) = (hi−2 ◦ di−1 + d′i ◦ hi−1) ◦ di

Since we are in a module, we can distribute d′i on the left hand side, rewriting the condition as

d′i ◦ hi−1 ◦ di + d′i ◦ d′i+1 ◦ hi = hi−2 ◦ di−1 ◦ di + d′i ◦ hi−1 ◦ di

So it will suffice to show that

d′i ◦ d′i+1 ◦ hi = hi−2 ◦ di−1 ◦ di

But this is trivial since ”d2 = 0”
exercise - A homotopy of chains is an equivalence relation
proof - We will prove the following items: reflexivity, symmetry, transitivity

1
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• To see that f ∼ f , take each to be the zero map, hi = 0, ∀i. In this case the diagram with
maps given by h is immediate.

• Suppose that f ∼ g, then we have some h, such that gi− fi = hi−1 ◦di+d′i+1 ◦hi for each
i. Since hi are morphisms of modules, so are −hi, so in particular we have −h := (−hi)i,
so that

fi − gi = −(gi − fi) = −(hi−1 ◦ di + d′i+1 ◦ hi) = −hi−1 ◦ di +−d′i+1 ◦ hi
= −hi−1 ◦ di + d′i+1 ◦ −hi

The last line follows since d′i+1 is linear.

• Suppose that f ∼ g ∼ r, and let h,k be respective witnesses of these homotopies. Then
we have

ri − gi = ki−1 ◦ di + d′i+1 ◦ ki
gi − fi = hi−1 ◦ di + d′i+1 ◦ hi

This furnishes

ri − fi = ki−1 ◦ di + d′i+1 ◦ ki + hi−1 ◦ di + d′i+1 ◦ hi = (ki−1 + hi−1) ◦ di + d′i+1 ◦ (hi + ki)

So we have the homotopy r ∼ f via h+k, we are done since we already proved symmetry.

exercise - Show that the following two chain complexes are homotopic:

0 Z⊕ Z Z⊕ Z 0⊕ Z/(2) 0

0 Z Z Z/(2) 0

(·,2·)

2·

proof - Let each fi be the projection of the second coordinate, and each gi the inclusion
into the second coordinate. In thise case we have

1C′ − fg = 0

and hence h = (0)i witnesses the homotopy. The slightly harder case is the other direction.
Define h2 = h0 = h−1 = 0, and h1 : (m,n) 7→ m. By definition of f ,g, we have 1C,i − gifi :
(m,n) 7→ (m, 0), so we just need to check that our given h satisfies this.

(d3h2 + h1d2)(m,n) = 0 + h1(m, 2n) = (m, 0)

(d2h1 + h0d1)(m,n) = d2(m, 0) + 0 = (m, 0)

(d1h0 + h−1d0)(0, n) = 0 + 0 = (0, 0)

This verifies the homotopy.
Theorem - (”The Fundamental Theorem of Homology For Chain Complexes”) If chain

complexes C,C ′ are homotopic, then they have the same Homology Modules.
proof - Recall that

H i :=
ker(di)

Im (di+1)
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Now let the homotopy be given by f : C → C ′,g : C ′ → C, there is a natural induced map of
fi on H i, given by restricting fi to Im (di+1), then taking the unique map from the quotient
by the kernel of di, which exists and is unique by the first isomorphism theorem. Calling
this induced map fi,∗, we need to check that fi,∗ maps into H ′

i. First it is immediate that
fi|ker di : ker di → ker d′i, since d

′
ifi = fi−1di, where the right hand side is zero when restricted to

ker(di), well definition on cosets follows from ”d2 = 0”. So only need check that (hd+dh)∗ = 0,
di+1h ∈ Im di+1 = 0 so it only remains to show that hdi = 0 on ker di, this is trivial since
h(0) = 0 and for any z ∈ ker di hdi(z) = h(0).

3 Homology and Cell Complexes

exercise - Let G be a graph, then ker d1 = {Cycles in G}
proof - We have the map d1 : ⊕iZei → ⊕iZvi, then

∑
i kiei ∈ ker d1 ⇐⇒

∑
i ki(H(ei) −

T (ei)) = 0, where H(e) denotes the target of an edge, and T (e) denotes the source of an edge.
Then

∑
i ki(H(ei) − T (ei)) =

∑
j ℓjvj = 0 ⇐⇒ ℓj = 0, ∀j. Where ℓj =

∑
{ei|vj=H(ei)} ki −∑

{ei|vj=T (ei)} ki so that ℓj = 0 for all j exactly when every vertex has an equal number of in
and out edges.

exercise - Show that for the graph G, with V (G) = {x, y}, E(G) = {a = (x, y), b = (x, y), c =
(x, y)} we have ker d1 = ⟨a− b, b− c⟩

proof - Here we have d1 : a, b, c 7→ y − x, then a − b, b − c ∈ ker d1. We have d1 :
n1a+n2b+n3c 7→ (n1+n2+n3)(x−y), so that ker d1 = {na+mb+kℓ | n+m+ℓ = 0}, so fixing
na+mb+kℓ = na+mb+−(n+m)c ∈ ker d1, we have na+mb+kℓ = n(a−b)+(m+n)(b−c) ∈
(a− b, b− c)

exercise - Consider the following Graph:

v1

v2

v3

v4

v5

(1)

Where the edges are oriented with the larger vertex index at the head and smaller at the
tail. Compute generators for the cycles, and show that C∗(G) ≃ C∗(G

′) as chain complexes,
where G′ is G with (v1, v5) replaced with (v5, v1). Finally, show that H1(G) ∼= H1(G

′)
proof - We can write d1 as a matrix,

−1 0 0 0 0 −1
1 −1 −1 0 0 0
0 1 0 −1 0 0
0 0 1 1 −1 0
0 0 0 0 1 1

 Row Reduction
⇝


−1 0 0 0 0 −1
0 −1 −1 0 0 −1
0 0 −1 −1 0 −1
0 0 0 0 −1 −1
0 0 0 0 0 0


So the kernel has rank 2. From this matrix we can compute generators for the kernel, (and thus
the cycles)

ker d1 = (e2 − e4, e1 + e5 − e6)
To show that C∗(G), and C∗(G

′) are chain homotopic, define

f : vi 7→ v′i, ei 7→ e′i, g : v′i 7→ vi, e
′
i 7→ ei
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. By construction these are chain maps, since firstly d0 = 0, d′0 = 0, and ei = e′i for each
ei ̸= (v1, v5), and the values of d1 agree with d

′
1 on each of the equal ei = e′i. For e = (v1, v5), e

′ =
(v5, v1), we have f1(e) = −e′, g1(e′) = −e, for e ̸= (v1, v5), e

′ ̸= (v5, v1) commutativity is obvious
since d(e) = d′(e′) in this case. For e = (v1, v5) we have f0◦d(e) = f0(x−y) = x−y = −(y−x) =
−d′1(e′) = d′1(f1(e)), the argument is the exact same for commutativity of the square replacing
g for f and e′ for e. Then f ◦ g = 1, so we can just choose our homotopy to be the zero map.

To see that the homology is the same, there are 2 possible solutions both are easy. The first
is that they are isomorphic as chain complexes, the second is that d1 is rewritten by multiplying
a row by −1, preserving the row reduced form and hence the generators of the kernel.

exercise - Let Γ,Γ′ be arbitrary graphs such that Γ ≃ Γ′, then C∗(Γ) ≃ C∗(Γ
′)

proof - In (i) we show that homotopy of graphs is independent of orientation, and in (ii),
we show that it is equivalent up to quotienting by an edge between to vertices, this is sufficient
since it allows us to show that (since the graphs are homotopic they have the same Euler
characteristic)

C∗(Γ) ≃ C∗(
∨

1≤k≤χ(Γ)

S1) ≃ C∗(Γ
′)

(i) Assume that Γ \ e0 = Γ′ \ e′0, such that e′0 = −e0, we copy the proof in the previous
question.

f :C∗(Γ)→ C∗(Γ
′)


e0 7→ −e′0
ei 7→ e′i i ≥ 1

vi 7→ v′i

g :C∗(Γ
′)→ C∗(Γ)


e′0 7→ −e0
e′i 7→ ei i ≥ 1

v′i 7→ vi

fg = 1C∗(Γ), gf = 1C∗(Γ′), so they are homotopies so long as they are chain maps. This is trivial
except for the ”square” where edges map to vertices. Commutativity on generators is trivial
apart from e0, and e

′
0, in this case f ◦ d1(e0) = f(v1 − v0) = v′1 − v′0 = −(v′0 − v′1) = d′1(−e′0) =

d′1 ◦ f(e0). The proof is the same for g.
(ii) Suppose we are quotienting the edge e0 = (v0, v1), v0 ̸= v1. Here in order to focus on

the most relevant parts of the chain complex we do some book keeping:

C∗(Γ)2 = Z2
0 ⊕ S2 C∗(Γ)1 = Z1

0 ⊕ Z1
1 ⊕ S1

C∗(Γ
′)2 = S′

2 C∗(Γ
′)1 = Z′

0 ⊕ S′
1

Here there are natural identifications of all edges and vertices in Si and S
′
i. There is really only

one way to define f if we want to keep the natural mapping f : Si → S′
i,

f1 : (a0e0, a1e1, . . . , amem) 7→ (a1e1, a2e2, . . . , amem)

f0 : (a0v0, a1v1, . . . , anvn) 7→ ((a0 + a1)v1, a2v2, . . . , anvn)

It is clear that f is a chain map from construction. Now we define g : C∗(Γ
′)→ C∗(Γ) as follows,

g0 : (a1v1, . . . , anvn) 7→ (0, a1v1, . . . , anvn)

Then taking the natural map S′
2 → S2, composition with d gives ei 7→

∑n
j=0 k

i
jvj , define

g1 : ei 7→ ki0e0 + ei. Then we have ki1 = ki0 + ki1

d1g1(ei) = d1(k
i
0e0 + ei) = ki0(v1 − v0) +

n∑
j=0

kijvj
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g0d1(ei) = g0

 n∑
j=1

kijvj

 = g0

(ki0 + ki1)v1 +

n∑
j=2

kijvj

 =

n∑
j=0

kijvj + ki0(v1 − v0)

This implies that g is indeed a chain map. It is immediate that fg = 1C∗(Γ′), we need to provide
a homotopy to show that gf ≃ 1C∗(Γ). Explicitly we have

1− g1f1 =

(
a0 −

m∑
1

aik
i
0

)
e0

1− g0f0 = a0(v0 − v1)

the map h : v0 7→ −e0 obviously satisfies d1h1(a0, . . . , an) = a0(v0 − v1). We only need to
check that h1d1 =

(
a0 −

∑m
1 aik

i
0

)
e0, but the first coordinate of d1(a0e0 +

∑m
i=1 aiei) is −a0 +∑m

i=1 aik
i
0, by definition of ki0, and since e0 = (v0, v1). It follows that

h1 ◦ d1(a0e0 +
m∑
i=1

aiei) = −(−a0 +
m∑
i=1

aik
i
0)e0 = 1− g1f1

exercise - Using the cell structures for S2 from e2 ∪ e0, e2 ∪ e2 ∪ e1 ∪ e0 Build C∗(S
2) and

compute its Homology.
proof - The first cell structure gives the sequence

0 Z 0 Z 0

In this case the homology modules are trivially Hi(C∗(S
2)) =

{
0 i ̸= 0, 2

1 i = 0, 2
The second cell structure gives the sequence

0 Ze20 ⊕ Ze21 Ze10 Ze00 0
d2 d1

Where Ze20 ⊕ Ze21 = Z
〈
e20 + e21

〉
⊕ Z

〈
e20 − e21

〉
, and d2 : e

2
0 7→ e10, e

2
1 7→ −e10, so that

H2(C∗(S
2)) =

Z
〈
e20 + e21

〉
⊕ Z

〈
e20 − e21

〉
Z
〈
e20 + e21

〉 ∼= Z

And d1 : e
1
0 7→ e00−e00, so that d1 ≡ 0 which gives us H0(C∗(S

2)) = Z, and H1(C∗(S
2)) = Z/Z ∼=

0, with Hi = 0 for i > 2. The same result as above.
exercise - Show that ”augmentation” still gives a chain complex, i.e. ϵ ◦ d1 = 0
proof - It will suffice to check on generators of C1, let e

1
β ∈ C1, then

ϵd1(e
1
β) = ϵ(e0α − e0β) = ϵ(e0α)− ϵ(e0β) = 1− 1 = 0

exercise - S1 ∧ S1 ≃ S2

proof - S1 ∧ S1 ∼= T 2

S1∨S1 , where T
2 ∼= D2/ ∼, then

S1 ∧ S1 =
T 2

S1 ∨ S1
∼=
D2/ ∼
∂D2

=
D2

∂D2
∼= S2

exercise - SX ≃
∑
X
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proof - Here (X, {∗}) is a (pointed but ignore the point for now) CW-complex, we can give
X × I a CW structure, note that we have ∂en = ∂(en−1× I) = (∂en−1× I)∪ en−1× ∂I (we can
do this using point set topology and the fact that the sets are closed), then the CW-structure
on (X × I)n can be taken to be (X × I)0 = X0 × ∂I, then taking φn

α to be the gluing map of
enα into Xn:

(X × I)n = (X × I)n−1
⋃
φn
α

enα × ∂I
⋃

φn−1
α ×I

en−1
α × I

This gives a CW structure on X × I with X × ∂I as a substructure, there is a canonical CW
structure on the quotient given by replacing φn

α with π|Xn ◦ φn
α. Furthermore since ∗ ∈ X0,

we have {∗} × I ∈ (X × I)1, which can be identified with its image in the quotient. This is a
contractible subcomplex, so by the CW extension theorem

SX =
X × I
X × ∂I

∼=
X × I

X × ∂I ∪ {∗} × I
=
∑

X

exercise - X ∧ S1 ≃
∑
X

proof - It is important here that the same point x ∈ X is used in either quotient. Consider
the map f : I → S1, t 7→ eiπt, then we get the following,

X × I X × S1

X×I
X×{1}∪X×{−1}∪{x}×I

X×S1

X×{1}∪{x}×S1

π

1×f

π′

1×f

The bottom left here is the (reduced) suspension
∑
X, and the bottom right is X∧S1. Here

the induced map is clearly bijective, since the quotients here are equivalent to quotienting by the
image of the quotients, along with quotienting on the left side f−1(1)×{1} ∼ f−1(−1)×{−1} ∼
x, where f wasn’t injective. Continuity of the inverse follows, since we have X×I

X×∂I
∼= X×S1

X×1 , and
we can factor our map through this homeomorphism before taking quotients.

exercise - Use H̃i to show that ∂Dn cannot be a retract of Dn

proof - We have that Dn/∂Dn ∼= Sn, furthermore Dn ≃ {x} for all n, implying that
H̃i(D

n) ∼= H̃i({x}) = 0, for any i, n ∈ Z≥0. Suppose for contradiction that there were a retract
h : Dn → ∂Dn, then denoting ι : ∂Dn ↪→ Dn we would have that h ◦ ι ≃ 1∂Dn , by functoriality
we get the following commutative diagram (also note that ∂Dn = Sn−1):

H̃n−1(∂D
n) H̃n−1(∂D

n)

H̃n−1(D
n)

1

ι∗
h∗

Where this diagram is equivalent to

Z Z

0

1

This is clearly a contradiction since there are no surjective morphisms 0→ Z.
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exercise - Let f : Sn → Sn, show if f is not surjective then deg f = 0
proof - Suppose that f is not surjective, then we can pick some x ∈ Sn \ f(Sn), by the

stereographic projection Sn \ {x} ∼= Rn ≃ {∗}, so we have the following commutative diagram,
where the downward map is taken by restricting the codomain of f to Sn \ {x}, and the upper
diagonal is the inclusion.

H̃n(S
n) H̃n(S

n)

H̃n({∗})

f∗

equivalently,

Z Z

0

f∗

so f∗ must be the zero map.
exercise - Let f as in the previous exercise, show that deg f = deg

∑
∗ f (remark first show

that the suspension
∑

is functorial)
proof - given f : X → Y , we can define

∑
∗ f as the induced map in the following diagram

X × I Y × I

∑
X

∑
Y

πX

f×1

πY∑
∗ f

Continuity simply follows from continuity of f , and the definition of quotient topology taking
opens to opens on the upper half of the square, then commutativity and the universal property
of the quotient on the lower square. To get

∑
∗ fg =

∑
∗ f
∑

∗ g simply factor f ◦ g× 1 through
the following diagram

X × I Y × I Z × I

∑
X

∑
Y

∑
Z

πX

f×1

πY

g×1

πZ∑
∗ f

∑
∗ g

∑
∗ 1 = 1∑

∗
is obvious. This suffices to show functoriality.

For the proof of the main result, note that by an identical construction, the canonical C∗
is functorial, f : X → Y , then C∗f : C1X → C1Y . It suffices to show the following result for
SX, since it has the same Homology as

∑
X by homotopy equivalence, so factoring f through

this equivalence won’t affect the degree. We have naturality (identifying Sn ↔ Sn × {0}f ↔
C∗f |Sn×{0})

Sn CSn

Sn CSn

f C∗f
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And hence, we get a chain map

Hn+1(CS
n) Hn+1(CS

n, Sn) Hn(S
n) Hn(CS

n)

Hn+1(CS
n) Hn+1(CS

n, Sn) Hn(S
n) Hn(CS

n)

(C∗f)∗ (S∗f)∗ f∗ (C∗f)∗

Which we can rewrite as

0 Hn+1(S(S
n)) Hn(S

n) 0

0 Hn+1(S(S
n)) Hn(S

n) 0

(C∗f)∗ (S∗f)∗ f∗ (C∗f)∗

Commutativity suffices to show that the degrees of the maps must be equal.
Remark 1. Use of the 0 maps on either end of the sequence is a bit of a cheat here so we

get for free that Hn+1(S(S
n)) ∼= Z, and we need to ensure the map Hn+1(S(S

n)) → Hn(S
n)

is nonzero since otherwise we cannot conclude about (
∑

∗ f)∗(1) = (S∗f)∗(1) from the above
diagram.

Remark 2. To make sense of degree here we should really show that
∑
Sn ≃ S(Sn) ≃ Sn+1,

there is an explicit homeomorphism by simply rescaling by the factor in I in Sn×I, then taking
the quotient.

exercise - Compute the Homology of X, where X is the triangulation of the Torus.
proof - Let the upper triangle be e2U , the lower triangle be e2L, the upper/lower boundary

be e1α, the left/right boundary be e1β, and the diagonal be e1γ , there is only one zero-cell, we may

call it e0. Then:

παφU = πβφU = 1 = −πγφU

παφL = πβφL = −1 = −πγφL

π0φα = π0φβ = π0φγ = 1− 1 = 0

In this case we have the cell structure

0 Z
〈
e2U
〉
⊕ Z

〈
e2L
〉

Z
〈
e1α
〉
⊕ Z

〈
e1β

〉
⊕ Z

〈
e1γ
〉

Z
〈
e0
〉

0
d2 d1

Where ker d2 = e2U + e2L, d1 = 0 = d0, rewriting C1(X) to have ImC2(X) as one of its three
generators, we get the usual Homology modules for the Torus

H2(X) ∼= Z, H1(X) ∼= Z⊕ Z, H0(X) ∼= Z

exercise - Show from the Homology axioms that H̃n(X
n+1) = H̃n(X)

proof - We have from Axiom 1, the following sequence is exact

H̃k+1(X
m+1/Xm) H̃k(X

m) H̃k(X
m+1) H̃k(X

m+1/Xm)

We have the following from construction of a CW complex:

Xn+1/Xn =

en+1
α

⊔
α Xn

x∼φα(x), x∈∂en+1
α , φα(x)∈Xn

Xn
=

⊔
α e

n+1
α⊔

α ∂e
n+1
α

∼=
∨
α

Sn+1
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So for k ̸= m+ 1,m we have

0 H̃k(X
m) H̃k(X

m+1) 0

by exactness this gives an isomorphism H̃n(X
n+1) ∼= H̃n(X

n+2) ∼= · · · ∼= H̃n(X)
exercise - Rewrite Homoology axioms (1-3) in the context of the category Pairs
proof - First note that functoriality gives homotopy invarience, homotopy equivalent maps

f, g : (X,A) → (Y,B), f ≃ g (here we mean the restrictions induce homotopy equivalences on
the smaller spaces) induce the same maps of homology modules f∗ = g∗ : Hn(X,A)→ Hn(X,B)

1. The following sequence is long exact:

· · ·Hn+1(X,A) Hn(A, {∗}) Hn(X, {∗}) Hn(X,A) · · ·

2. For any n, Hn (
∨

α(Xα, Aα)) =
⊕

αHn(Xα, Aα), here we are quotienting an element in
A,B resp. when we take (X,A) ∨ (Y,B)

3. Hn(S
0, {∗}) =

{
Z n = 0

0 n > 0

exercise - Let X be a cell complex with subcomplex A, furthermore let K ⊂ A be any set
such that K ⊂ A◦, show that

X \K
A \K

≃ X/A

proof - We get the following commutative diagram, since ι : X \ K ↪→ X is such that
ι|A\K : A \K ↪→ A

X \K X

X\K
A\K X/A

ι

π1 π2

ι

The induced map is clearly bijective, since ι is bijective on Ac. Continuity of ι follows from
continuity of ι. To see that ι−1 is continuous, let U be open in X, if {a} ̸∈ U (here {a} ⊂ A\K),
then π−1

1 (U) = π−1
1 (U) ∩Kc

, so ι(π−1
1 (U) ∩Kc

) = π−1
2 (ι(U)) which the former is open in the

subspace topology iff it is open in X. Now if {a} ⊂ U , then π−1
2 ι(U) = ιπ−1

1 (U) ∪ A◦, where
ιπ−1

1 (U) = V ∩ Kc, where V is open in X, rewriting this we get π−1
2 ι(U) = V ∪ A◦ which is

open in X, so ι(U) is open in the quotient topology.
exercise - Compute H̃i(RPn)
proof - We compute this using cellular homology and degree. First a lemma,
Lemma. The antipodal map f : Sn → Sn, x 7→ −x is such that deg f = (−1)n+1

Proof of lemma: Consider the CW structure enU ∪ enL ∪ en−1 ∪ e0 on Sn, H̃k(S
n) = 0 unless

k = n, so we just consider k = n. It follows that the map r : enU ↔ enL on H̃n(S
n) = Z ⟨enU − enL⟩

takes 1 7→ −1, so r has degree −1. Now taking one ri for each coordinate plane in Rn+1, we
have f =

∏n+1
i=1 ri ≃ rn+1 (rotations are homotopies), hence deg f = deg rn+1 = (deg r)n+1 =

(−1)n+1.
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Continuing with the proof of the theorem, we give RPn the usual cell structure, i.e. since

RPn ∼= Sn/∼ ∼=
Dn

∼∂Dn
=

Dn

∼Sn−1

we find that taking φn as the identity map ∂Dn → Sn−1

RPn = en ∪φn RPn−1 = en ∪φn e
n−1 ∪φn−1 · · · ∪φ0 e

0

This gives a chain complex:

Cn+1(RPn) Cn(RPn) Cn−1(RPn) Cn−2(RPn) · · · C0(RPn) 0

0 Z Z Z · · · Z 0

We want to use degree to compute dk. In this case, we only have one n − 1-cell and we are
attaching only one n-cell, so the we can determine dn from dn(e

n) = (deg f)en−1. Where f is
just the composition

∂en RPn−1

RPn−2

RPn−1

f

φ π

Fix a point y ∈ RPn−1

RPn−2 , then f
−1(y) = {x,−x}, taking neighborhoods as in the definition of local

degree, we may take V = f(U1), and U2 homeomorphic to V via f by excision on either U1 or
U2. Then there is a homeomorphism f |U2f |−1

U1
: U1 → U2. This map extends to the antipodal

map rn+1 : ∂en → ∂en which has degree σ(n + 1), it follows that (since deg g−1 = deg g, ∀g
invertible) we have deg f |−x = (−1)n+1 deg f |x. If deg f |x = −1, then this is actually arbitrary,
since we could have chosen opposite generators for Hn(S

n), so we can assume that deg f |x = 1.
This computes dn

dn(e
n) = deg f = deg f |x + deg f |−x = 1 + σ(n+ 1)

This gives us the chain complex

· · · Z Z Z 0 0
×2 0 ×2

Now we can directly compute

H̃k(RPn) =


Z k = n ≡ 1 mod 2

Z/(2) n ≥ k ≡ 1 mod 2

0 else

exercise - d2 = 0 in simplicial Homology.
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proof - Let σα : ∆n(X)→ X, as in the definition of simplicial Homology. Then

∂n−1∂nσα = ∂n−1

n∑
i=0

(−1)iσα|[v0,v1,...,v̂i,...,vn] =
n∑

i=0

(−1)i∂n−1σα|[v0,v1,...,v̂i,...,vn]

=
n∑

i=0

∑
0≤j<i≤n

(−1)i+jσα|[v0,...,v̂j ,...,v̂i,...,vn] +
n∑

i=0

∑
0≤i<j≤n

(−1)i+(j−1)σα|[v0,...,v̂i,...,v̂j ,...,vn]

=

n∑
i=0

∑
0≤j<i≤n

(−1)i+jσα|[v0,...,v̂j ,...,v̂i,...,vn] +

n∑
j=0

∑
0≤i<j≤n

(−1)i+j−1σα|[v0,...,v̂i,...,v̂j ,...,vn]

Now we may swap the indices i and j in the second sum, which gives us the result that

∂n−1∂nσα =

n∑
i=0

∑
0≤j<i≤n

(−1)i+jσα|[v0,...,v̂j ,...,v̂i,...,vn] −
n∑

i=0

∑
0≤j<i≤n

(−1)i+jσα|[v0,...,v̂j ,...,v̂i,...,vn]

So the two summations cancel leaving us with ”∂2σα = 0”

4 Cohomology

exercise - (d∗)2 = 0
proof - Let f ∈ Cn+1 = Hom(Cn+1, G), then let x ∈ Cn+1 be arbitrary, it follows that

d∗n+1d
∗
nf = f ◦ dn ◦ dn+1, so that d∗n+1d

∗
nf = f(0) = 0.

exercise - (Note the upper sequence is exact) Show the following universal property:

0 A B C 0

Z

0

∃!

proof - C
f∼= B/A, so by the first isomorphism theorem, Since the map in question sends

A → 0 there exists a unique map j : B/A → Z, such that the diagram commutes with B/A
in place of C. It follows that jf : C → Z makes the diagram commute, and if any other map
ι were to make the diagram commute, then ιf−1 = j implies that ι = j so that uniqueness is
satisfied as well.

exercise - In the proof of the universal coefficient theorem, we define a map

f : Hn(C∗)→ Hom(Hn(C∗), G)

To do so, we take a representative of [ϕ] ∈ Hn(C∗), so that ϕ : C∗ → G, and d∗ϕ = 0. By
choice of ϕ, it follows that the sequence is exact, so we can apply the results of the previous
exercise [4]

0 Bn Zn Zn/Bn 0

Z

0 ϕ|Zn
∃!



427 Exercises Tighe McAsey

We may define f([ϕ]) to be the unique map making the diagram commute. This is well defined
since maps in the equivalence class only differ on boundaries which are mapped to 0. Show that
f is a homomorphism.

proof - We need to show that f([ϕ]) + f([ψ]) = f([ϕ + ψ]), it will suffice to show that
f([ϕ]) + f([ψ]) satisfies the universal property for (ϕ+ ψ)|Zn = ϕ|Zn + ψ|Zn , so let x ∈ Zn and
denote the quotient map as q, then

(f([ϕ]) + f([ψ]))(q(x)) = f([ϕ])(q(x)) + f([ψ])(q(x)) = ϕ|Zn(x) + ψ|Zn(x)

exercise - Assume that the following sequence is exact:

0 A B F 0ι q

Show that the following are equivalent:

1. B ∼= A⊕ F

2. There is a section s : F → B, such that q ◦ s = 1F

3. There is a section s′ : B → A, such that s′ ◦ ι = 1A

Proof - (1) =⇒ (2), (3) is obvious. Now assume (2), then s(F ) ⊂ B is a submodule, let
x ∈ s(F ) ∩ ι(A), then x = s(y) for y ∈ F , it follows that 0 = q(x) = qs(y) = y and hence
s(y) = 0. Now let x ∈ B, then q(x− sq(x)) = q(x)− q(x) = 0, hence x− sq(x) ∈ ker q = Im ι,
hence x = sq(x) + ι(y) ∈ s(F ) + ι(A). Now assume (3), we may define φ : B → A ⊕ F via
φ : b 7→ (s′(b), q(b)), to see that the map is surjective, let (a, f) ∈ A ⊕ F , then choose some
x ∈ q−1(f), and consider

φ(ι(a− s′(x))+ x) = (s′ι(a− s′(x))+ s′(x), qι(a− s′(x))+ q(x)) = (a− s′(x)+ s′(x), f) = (a, f)

To check injectivity, suppose that φ(x) = 0, then q(x) = 0 implying that x ∈ ι(A), so that
x = ι(y), and 0 = s′(x) = s′ι(y) = y so that x = ι(0) = 0.

exercise - Suppose that F is free, and the following sequence is exact:

0 A B F 0ι q

Then the sequence splits.
proof - We may write F = ⊕IRei, then for each i ∈ I, choose some bi ∈ q−1(ei), it follows

that by the universal property of a free module we can define a map by taking ei 7→ bi and
extending linearly. This defines a section hence the sequence is split (it satisfies condition 2 of
the previous exercise [4]).

exercise - In the proof of the Universal coefficient theorem, we want to show that f is
surjective. to do so it suffices to construct a section s : Hom(Hn(C∗), G)→ Hn(C∗), such that
fs = 1. Since Bn−1 is free, and the following sequence is short exact, there is some p : Cn → Zn,
such that p|Zn = 1Zn by the equivalence of definitions of split exact.

0 Zn Cn Bn 0
dn
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To define s, we let α ∈ Hom(Hn(C∗), G), then we may take α := αq, so that the following
commutes

Cn

Zn Hn(C∗)

G

p

α

q

α

By commutativity, of the previous diagram (zero map) the following diagram commutes and
the sequence is exact

Cn

0 Bn Zn Hn(C∗) 0

G

p

0
α

q

α

We may define s(α) = [α◦p] ∈ Hn(C∗), furthermore commutativity of the above diagram means
that for α = α◦p|Zn we have that α satisfies the universal property, so that fs(α) = f([αp]) = α.
Show that s is a homomorphism

proof - Let α, β ∈ Hom(Hn(C∗), G), then

s(α+ β) = α+ βp = (α+ β)qp = αqp+ βqp = αp+ βp = s(α) + s(β)

exercise - Show that if a sequence is split exact, then Hom(−, G) acts as a (right) exact
functor on the sequence.

proof - Hom(−, G) is always left exact, so it suffices to show right exactness, i.e. given the
split exact sequence

0 A B C 0
f

Check that Hom(B,G)→ Hom(A,G) is surjective in

Hom(A,G) Hom(B,G) Hom(C,G) 0
f∗

By split exactness, there is some s : B → A, such that sf = 1. It follows that αs ∈ Hom(B,G),
such that f∗(αs) = αsf = α1 = α, this suffices to show surjectivity and hence exactness.

exercise - We have the split exact sequence of chain complexes

0 Z∗ C∗ B∗−1 0

since the sequence is split, it dualizes to an exact sequence of cochain complexes,

0 B∗−1 C∗ Z∗ 0

By the snake lemma we get a long exact sequence

· · · Zn−1 Bn−1 Hn(C∗) Zn Bn · · ·∂ ∂
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What is ∂?
proof - By tracing through snake lemma we find that ∂ = ι∗n−1.
exercise - Let H and H ′ be modules with free resolutions F∗ and F ′

∗, and α : H → H ′ be
a homomorphism. Define a chain map as follows: Let e0 ∈ F0, then define α0 : e0 7→ b0, where
b0 ∈ f ′−1

0 (αf0(e0)), more generally, take αn : en 7→ bn ∈ f ′−1
n (αn−1f0(en)), it is immediate by

definition that this is a chain map. Now let βi be another chain map, given by taking possibly
different choices of cn ∈ f ′−1

n (αn−1f0(en)) (here we abuse notation that α = α−1).
proof - Since α = α−1 = β−1 we should simply choose h−1 = 0, for the case of h0, we

exploit the fact that F0 is free, so if α− β = d1h0 on the generating set, then they are equal on
the entire module. So let e be a generator of one of the summands of F0, then we may simply
choose h0(e) ∈ f ′−1

1 {α0(e)− β0(e)} which is a map since F0 is free. Now we may construct hn
based off of hn−1, once again let e be one of the canonical generators of the free module Fn,
then choose hn(e) ∈ f ′−1

n+1{αn(e)− βn(e)− hn−1fn(e)}, once again this is well defined since Fn

is free, and it satisfies the property of a chain homotopy by construction.
exercise - Classify all extensions of Z/(2) by Z/(2).
proof - To do so we compute Ext(Z/(2),Z/(2)) := H1(F ∗;Z/(2)), where F ∗ is a free

resolution for Z/(2). We can take the free resolution

0 Z Z Z/(2) 0·2

Dualizing we get

0 Z/(2) Z/(2) Z/(2) 0·0

The first cohomology group is kerZ/(2)→0
Im0

∼= Z/(2), so there are two extensions. The extensions
are Z/(2) ⊕ Z/(2) and Z/(4). It is immediate that these are both extensions, and are non-
isomorphic. A second way to see these re the only extensions, is that any extension must have
order 4, and these are the only two groups of order 4.

exercise - When taking a group extension of G by M , i.e. some group E, such that the
following is exact

0 M E G 0
j q

we may take a set function s : G → E, where qs = 1G, but s is not necessarily a group
homomorphism. There is a function c : G×G→ E which measures the defect of s from being
a homomorphism,

c : (g1, g2) 7→ s(g1)s(g2)s(g1g2)
−1

Show that s(1) = c(1, 1)
proof - Trivial

c(1, 1) = s(1)s(1)s(1)−1 = s(1)

exercise - In the previous question, we constructed a function c to measure the deviation
of a section from a group law, such a c is determined uniquely by the group extension E. We
would like to show that E uniquely determines some [c] ∈ H2(G;M), this will suffice to show
there is an injection

{E | E is an extension of G by M} ↪→ H2(G;M)
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It is immediate that c(G×G) ∈ ker q, so that we may identify c with j−1c : G×G→ M . We
still havent specified what H2(G;M) is, consider the chain complex given by Cn(G;M) as the
set of set valued functions Gn →M

0 C0(G;M)0 C1(G;M) C2(G;M) · · ·d0 d1 d2

Where we define

df(g0, g1, . . . , gn) = f(g1, g2, . . . , gn)+(−1)n+1f(g0, g1, . . . , gn−1)+
n∑

k=1

(−1)nf(g0, . . . , gi−2, gi−1gi, gi+1, . . . , gn)

in the case of d1 : C1 → C2, we get df(g1, g2) = f(g1) + f(g2) − f(g1g2), hence ker d is the
collection of group homomorphisms G→ M . It is the case that d2 = 0, so this defines a chain
complex. Since c is uniquely determined by s, it will suffice to show that given another choice
s′ : G→ E we have that c′ differs from c only by a coboundary. Show that [c] = [c′], equivalently
for some f : G→M we have that c′ = c+ df

proof - Since all of our sections map into ker q = Im j, we continue to refer to our maps as
G→M by implicity composing with j−1. Now we may define f = s′ − s, so that s′ = f + s, it
follows that

c′(g1, g2) = (f(g1) + s(g1)) + (f(g2) + s(g2))− (f(g1g2) + s(g1g2)) = c(g1, g2) + df(g1, g2)

So that [c] = [c′] ∈ H2(G,M) depends only on isomorphism class of E.
exercise - In the previous exercises we completed verifications to show that

Extensions ↪→ H2(G;M)

We want to show that this is a correspondence, i.e. we have an injection

H2(G;M) ↪→ Extensions

let c be a cocycle, we want to show that c defines a group operation on the set M ×G. Given
a cocycle c define a group operation on M ×G.

proof - We define the group law as (x, y)(z, w) = (x+ z+ c(y, w), yw), (associativity is easy
and painful to prove) the identity is (−c(1, 1), 1), as proof

(m,x)(−c(1, 1), 1) = (m− c(1, 1) + c(x, 1), x)

and since c is a cocycle, we have

0 = dc(x, 1, 1) = c(1, 1)− c(x, 1)− c(x1, 1) + c(x, 11) = c(1, 1)− c(x, 1)

So that the given identity is indeed the identity. The inverse is (−c(x, x′) − c(1, 1) −m,x−1),
which is verified below;

(m,x)(−c(x, x′)− c(1, 1)−m,x−1) = (m−m− c(x, x−1)− c(1, 1) + c(x, x−1), xx−1)

= (−c(1, 1), 1)
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5 Knots and Cobordisms

Remark. In this course on Algebraic Topology the focus has been on studying chain complexes.
Homology and Cohomology have been presented as useful invariants to study classes of chain
complexes (particularly in their aplications to topological spaces). Going forward we will focus
on a stronger notion of equivalence, chain homotopy. Knots are a natural situation to study
this equivalence since knots are objects each representing zero homology classes.

exercise - Suppose we have knot diagrams D ∼ D′, then their Jone’s polynomials ⟨D⟩ and
⟨D′⟩ agree up to units in Z[q, q−1]. Recall how the Jones polynomial is formed using local moves:

⟨∅⟩ = 1

⟨D ⊔⃝⟩ = (q + q−1) ⟨D⟩〈 〉
=
〈 〉

− q
〈 〉

proof - We want to show that the Jone’s polynomial is Reidemeister invarient. The case of
the Reidemesiter 0 move is obvious, consider the other 3 Reidemeister moves,

(I) ←→ ←→

(II) ←→ ←→

(III) ←→ ←→

We use the definition to compute as follows,

(I) ⟨D⟩ = ⟨D ⊔⃝⟩− q ⟨D⟩ = (q + q−1) ⟨D⟩ − q ⟨D⟩ = q−1 ⟨D⟩, which is equal to D up to the
unit multiple q. The other R1 loop is equal to q2 ⟨D⟩

(II) Here we apply the rules to a single crossing, then invoke the q2 version of the first Reide-
meister move, i.e.

〈
D1 D2

〉
− q

〈
D1 D2

〉
= −q2 ⟨D1 = D2⟩ − q

〈
D1 D2

〉
+ q2 ⟨D1 = D2⟩ = −q

〈
D1 D2

〉
See pdf.

(III) This one is quite painful to write out, I am unwilling to subject myself to more than scrap
paper for the purposes of these exercises.

exercise - Recall the definition of a graded vectorspace, i.e. W =
⊕

ZWn and ρ : Wn → n,
we define

grdimW :=
∑
n∈Z

qn dimWn
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Show that the natural definition of W ⊗ V as a graded vectorspace is such that

grdim(W ⊗ V ) = (grdimW )(grdimV )

proof - This exercise requires very little math, but is instead looking for an appropriate
definition. Since tensor commutes with direct sum, we find that(⊕

Z
Wn

)
⊗

(⊕
Z
Vn

)
∼=
⊕
Z

(
Wn ⊗

⊕
Z
Vm

)
∼=
⊕
Z2

Wn ⊗ Vm

So it makes sense to define (W ⊗ V )n = φ−1
⊕

i+j=nWi ⊗ Vj , where φ is the composition of
the two natural isomorphisms. Since dim(T ⊗ S) = (dimT )(dimS) it is immediate that this is
equivalent to the product of the formal power series as suggested in the problem statement.

exercise - Recall in class we used the state sum formula/hypercube to compute the cochain

complex C
( )

, the choices made in this construction where such that the Euler characteristic

of the complex was made to be ⟨D⟩. When recording the hypercube we record the resulting fully
simplified knot states with a ”height” corresponding to the number of left/right simplifications
(this corresponds to the factor of q in the first exercise of this section). This is compatible with
the

State Sum Formula For The Jone’s Polynomial: let S be the set of ”states”, i.e.
vertices of the hypercube, recall the height of a state s (write h(s) or i(s)) is equivalent to the
number of left-right crossings taken to get to that state, equivalently the left-right grading of
the hypercube when written out. Also, #s here is a slight abuse of notation as in it refers to
the number of connected components #H0(s).

⟨D⟩ =
∑
s∈S

(−q)h(s)(q−1 + q)#s

In order to construct a stronger invarient, we introduced an oriented Jone’s polynomial,

V (D⃗) := (−1)n−qn+−2n− ⟨D⟩

where n+ and n− respectively refer to the number of positive and negatively oriented crossings
in the knot diagram according to the familiar right hand rule.

We have discussed the hypercube as well as its height grading thus far, however to construct
a cochain complex we need a module or vectorspace. In the hypercube each of our knots is
reduced to some

⊔
⃝, where in the jones polynomial we associate ⃝ to q + q−1, as such we

define ⟨⃝⟩ = ⟨v+⟩ ⊕ ⟨v−⟩, with ρ(⟨v±⟩) := ±1, it follows that grdim
⊗n

1 V = ⟨
⊔n

1⃝⟩. We
define a shift operator for ℓ ∈ Z, (W{ℓ})m :=Wm−ℓ, or equivalently grdimW{ℓ} = qℓgrdimW ,
we apply the shift operator {i} to the vectorspaces corresponding to the states at height i of the

hypercube. [e.g. Applying this to our example of , we get V ⊗ V at height 0, V {1} ⊕ V {1}
at height 1, and (V ⊗ V ){2} at height 2.].

We are ready to define

C(D) :=
⊕
s∈S

(
#s⊗
1

V

)
[h(s)]{h(s)}
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(where S is the set of states). We similarly define

CKh(D⃗) = C(D)[−n−]{n+ − 2n−}

For each height i, we define W i = Ci(D), which is the vectorspace generated by the components
of C(D) at height i, similarly Wj = Cj(D) is the ρ−1(j), by taking the euler characterisic we
obtain ∑

i∈Z
(−1)igrdimW i =

∑
i∈Z

(−1)i
∑
j∈Z

qj dimW h
j =

∑
j∈Z

qj
∑
i∈Z

(−1)i dimW h
j

This recovers the jones polynomial, via χρ : C(D)→ Z[q, q−1] via taking qjχCj , where the Euler
characteristic is taken with respect to the height i.

Let D := (with orientation), compute CKh(D⃗).

proof - We first note that n− = 1, n+ = 0, so that

CKh(D⃗) = C(D)[−1]{−2} = (V ⊕ (V ⊗ V )[1]{1})[−1]{−2} = V [−1]{−2} ⊕ (V ⊗ V ){−1}

exercise - Consider the monoid m = (Z≥0,+, 0), we define the (monoidal) cobordism cat-
egory (cob) to have objects in correspondence n ←→

⊔n
1 S

1, 0 ←→ ∅, + ←→
⊔
. Then

Mor(X,Y ) are surfaces with boundarie X ⊔ Y . A TQFT is a monoidal functor from cob to
Vectk (or modR). We define the following functor (note that m is a ”pair of pants with leg holes
one the left”, i.e. 2 7→ 1, and ∆ is a ”pair of pants with leg holes on the right”, i.e. 1 7→ 2)

F :
n⊔
1

S1 7→
n⊗
1

V

m⇝


v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v−

v+ ⊗ v− 7→ v−

v− ⊗ v− 7→ 0

∆⇝

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+
v− 7→ v− ⊗ v−

F has unit (0 7→ 1), 1 7→ v+ and co-unit (1 7→ 0), v+ 7→ 0, v− 7→ 1. Evaluate F(T 2) as a map
Q→ Q.

proof -

F(T 2) = F((1 7→ 0) ◦m ◦∆ ◦ (0 7→ 1))

F(T 2)(1) = F(1 7→ 0) ◦ F(m) ◦ F(∆)(v+)

= F(1 7→ 0) ◦ F(m)(v+ ⊗ v− + v− ⊗ v+)
= F(1 7→ 0)(2v−) = 2

Hence F (T 2) = ·2 : Q→ Q.
exercise - Let D as in the previous question, compute the Khovanov cohomology of kh(D).
proof - From the cube of resolutions we get (where a, b are used for labelling)

V a{1}

V ⊗ V
⊕

V ⊗ V {2}

V b{1}

−∆m

m ∆
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Then, we decompose our cohomology with respect to the grading.

0 1 2

4 ⟨v+ ⊗ v+⟩
2 ⟨v+ ⊗ v+⟩

〈
va+, v

b
+

〉
⟨v+ ⊗ v−, v− ⊗ v+⟩

0 ⟨v+ ⊗ v−, v− ⊗ v+⟩
〈
va−, v

b
−
〉

⟨v− ⊗ v−⟩
-2 ⟨v− ⊗ v−⟩

the vertical grading is j, and horizontal is i, then dij : Ci
j → Ci+1

j , and use the basis va± =[
1
0

]
, vb± =

[
0
1

]
.

d02 =
[
1 1
]

d12 =

[
−1 1
−1 1

]
d00 =

[
1 1
1 1

]
d10 =

[
−1 1

]
d−2

and all other maps are zero. Now we can compute cohomologies (indexing before H to avoid
confusion):

−2H0(D) ∼= Q
0H0(D) ∼= Q, 0H1(D) ∼= 0, 0H2(D) ∼= 0
2H0(D) ∼= 0, 2H1(D) ∼= 0, 2H2(D) ∼= Q
4H2 ∼= Q

exercise - Note that H(D) is defined by taking the homology with respect to the i-grading
on C(D). Then, we define kh(D⃗) = H(D)[n−]{n+ − 2n−} Show that χρ(C(D)) = χρ(H(D))
and χρ(Ckh(D)) = χρ(kh(D))

proof - The second result follows directly from the first, since both i and j gradings are
shifted by the same amount. Now to compute the main exercise, it will suffice to show equiv-
alence for each j, so fix j ∈ Z, then if dij = 0 for each i the result is trivial since in that case

H i
j = Ci

j , then if rankdij is k ∈ Z>0 we have that by the rank nullity theorem dimH i
j = dimCi

j−k
and dimH i+1

j = dimCi+1
j − k, these terms cancel in the graded Euler characteristic.

exercise - Compute the Khovanov homology for the trefoil over Z.
Proof - Here I will use the Knot Space diagram taken from Bar Natan’s paper
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Applying our TQFT functor to this knot diagram gives the following:

V a{1} V ⊗ V a{2}

V ⊗ V V b{1} V ⊗ V b{2} V ⊗ V ⊗ V {3}

V c{1} V ⊗ V c{2}

−∆

−∆ 1⊗∆m

m

m

∆

−∆

−∆⊗1

∆

∆

1⊗∆

We first compute the Khovanov chain complex,

0 1 2 3

9 ⟨v+ ⊗ v+ ⊗ v+⟩
7

〈
(v+ ⊗ v+)a, (v+ ⊗ v+)b, (v+ ⊗ v+)c

〉 〈v−⊗v+⊗v+,v+⊗v−⊗v+,
v+⊗v+⊗v−

〉
5 ⟨v+ ⊗ v+⟩

〈
va+, v

b
+, v

c
+

〉 〈
(v−⊗v+)a,(v−⊗v+)b,(v−⊗v+)c,

(v+⊗v−)a,(v+⊗v−)b,(v+⊗v−)c

〉 〈v+⊗v−⊗v−,v−⊗v+⊗v−,
v−⊗v−⊗v+

〉
3 ⟨v+ ⊗ v−, v− ⊗ v+⟩

〈
va−, v

b
−, v

c
−
〉 〈

(v− ⊗ v−)a, (v− ⊗ v−)b, (v− ⊗ v−)c
〉

⟨v− ⊗ v− ⊗ v−⟩
1 ⟨v− ⊗ v−⟩
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d03 =

1 1
1 1
1 1

 d13 =

−1 1 0
−1 0 1
0 −1 1


d23 =

[
1 −1 1

]

d05 =

11
1

 d15 =



−1 1 0
−1 1 0
−1 0 1
−1 0 1
0 −1 1
0 −1 1


d25 =

0 1 0 −1 0 1
1 0 0 −1 1 0
1 0 −1 0 1 0


d27 =

0 −1 1
1 0 1
1 −1 0


Now we compute the homologies:

1H0(D) ∼= Z

3H0(D) ∼= Z, 3H1(D) =
⟨(1, 1, 1)⟩
⟨(1, 1, 1)⟩

= 0, 3H2(D) =
(1,−1, 1)
(1,−1, 1)

= 0, 3H3(D) = 0

5H0(D) = 0, 5H1(D) =
⟨(1, 1, 1)⟩
⟨(1, 1, 1)⟩

= 0, 5H2(D) =

〈
(1,1,1,1,0,0),

(1,1,0,0,−1,−1),
(1,0,0,0,−1,0)

〉
〈

(1,1,1,1,0,0),
(1,1,0,0,−1,−1)

〉 ∼= Z, 5H3(D) = 0

7H2(D) = 0, 7H3(D) ∼=
Z31 0 0

0 1 0
0 0 2


∼= Z/(2)

9H3(D) ∼= Z

Here to compute 7H3(D) I simply took the smith normal form of d27 = e11 + e22 + 2e33, in
tabular form this gives us the Khovanov Homology kh(D⃗):

0 1 2 3

9 Z
7 Z/(2)
5 Z
3 Z
1 Z

exercise - We define a chain complex C to be acyclic, when it is an exact sequence. Show
that if C′ ⊂ C is an acyclic subcomplex, then C has the same homology as C/C′.

proof - We use from Hatcher (equiv snake lemma) that if

C ′ C C/C ′
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is a short exact sequence of chain complexes, then we get the short exact sequence on homology

· · ·Hn+1(C/C
′) Hn(C

′) Hn(C) Hn(C/C
′) Hn−1(C

′) · · ·

Since this sequence is exact and Hi(C
′) = 0 for each i, we conclude that Hn(C) ∼= Hn(C/C

′)
for each i. This is also sufficient to show Hn(C) ∼= Hn(C

′) when C/C ′ is acyclic.
Construction of the LES - We have the following maps

0 C ′
n Cn Cn/C

′
n 0

0 C ′
n+1 Cn+1 Cn+1/C

′
n+1 0

ι

d

q

d d

ι q

Where the rows are exact, define

∂ :Hn(C/C
′)→ Hn+1(C

′)

[x] 7→ [ι−1dq−1(x)]

where we make an arbitrary choice of elements after taking q−1 and ι−1.
We first check this is well defined, firstly since ι is injective, the choice for ι−1 is unique.

Next assume that we took a different choice y′ for y ∈ q−1(x), then y − y′ is in ker q, hence
in Im ιn, by injectivity of ι and commutativity we find that ι−1(d(y − y′)) = d(ι−1(y − y′)) is
a coboundary, so the difference is zero on homology. Finally if x were chosen differently in its
homology class, then we can take x′ = x + dx′, then x′ = x + dj(y′) = x + j(d(y′)), so taking
preimages under j and then d we get d(y + d(y′)), d2 = 0 kills the extraneous y′ term leaving
the map to be well defined. Finally we need that this is indeed a map, that much is easy since
each of d, j, ι are linear so that so is ∂. All that remains to check is that the following is an
exact sequence:

Hn(C) Hn(C/C
′) Hn+1(C

′) Hn+1(C) Hn(C/C
′)

q∗ ∂ ι∗ q∗

qi = 0, implying q∗ι∗ = 0, conversely if q∗([x]) = 0, then q(x) = d(y), surjectivity of q gives
d(y) = q(x′), hence q(x − x′) = 0, but x′ is a boundary by commutativity implying that
q(x) = 0, so that [x] ∈ Im ι∗. Once again, ∂q∗ = 0 is immediate by definition of ∂, conversely
if ∂([x]) = 0, ι−1d(q−1(x)) = d(y) (once again choosing arbitrary representatives), so that
dq−1(x) = ιd(y) = dι(y), so that q−1(x) and ι(y) differ by only a coboundary, it follows that
[x] = [qι(y)]. Finally, it is immediate that ι∗∂ is a boundary by definition of ∂, conversely
we have that if ι∗([x]) = 0, then ι(x) = d(x′), hence x = ι−1d(x′), then take y, such that
x′ ∈ q−1(y), which means that x ∈ Im ∂ up to a coboundary in choice of q−1(y), linearity kills
this coboundary so that [x] ∈ Im ∂ as desired and the sequence is long exact.

exercise - Show that in cob/ℓ(B) the relation T is determined by S and 4Tu when B ̸= ∅.
proof - Proof by picture:
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exercise - Find f in the following diagram after delooping:

proof - f = 0, see picture
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exercise - Show the following chain complexes in CX(Mat C) are homotopic, given that
φ : b1 → b2 is an isomorphism.

· · ·C
b1⊕
D

b2⊕
E

F · · ·

α
β

 φ δ

γ ϵ

 [
µ ν

]

and

· · ·C
b1⊕
D

b2⊕
E

F · · ·

0

β

  φ 0

0 ϵ−γφ−1δ

 [
0 ν

]

proof - The following maps induce a homotopy of chain complexes, here we are using the
relations given by d2 = 0 to ensure that these are chain maps.

fC = gC = 1C

fD =

[
1 φ−1δ
0 1

]
, gD =

[
1 −φ−1δ
0 1

]
fE =

[
1 0

γφ−1 1

]
, gE =

[
1 0

−γφ−1 1

]
fF = gF = 1F

exercise - Check 4Tu, T and S are grading homogenous, this in particular applies that since
Cob(B) is graded we also have Cob/ℓ(B) is graded.

proof - T not changing grading is tautological, the zero map is grading agnostic so S is also
tautologically ungraded. Finally, for 4Tu each summand has grading equal to the original by
the symmetry of 4Tu so this is also straightforward.

exercise - Recall that in Cob/ℓ(B) that ρ(f) = deg f := χ(f)− #B
2 . Show that deg f ◦ g =

deg f + deg g.
proof - Denote L(f) to be the ”left” boundary of f , i.e. the boundary shared with g, then

∂L(f) =
⊔
S1
⊔#B

2
1 I

χ(f ◦ g) = χ(f ∪∂L(f) g) = χ(f) + χ(g)− χ(∂L(f)) = deg(f) + deg(b)−#B + χ(
⊔
S1

#B
2⊔
1

I)

= deg(f) + deg(g)− #B

2

Replacing χ(f ◦ g) by the degree completes the proof by cancelling out the #B/2 term.
exercise - Suppose that φ : Ci → C ′

i, show that the following are isomorphic chain complexes

C = · · ·Ci+1 Ci Ci−1 · · ·

Ĉ = · · ·Ci+1 C ′
i Ci−1 · · ·

di+1 di

φdi+1 diφ
−1
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proof - Here we define chain maps fj : C → Ĉ, g : Ĉ → C so that fg = 1.

fj =

{
1Cj j ̸= i

φ j = i
gj =

{
1Cj j ̸= i

φ−1 j = i

It is immediate that f, g are chain maps and that they compose to the identity.
exercise - Compute a diagram for a 3 crossing knot in CX(Mat(Cob/ℓ(2))). Compute an

equivalent diagram in CX(k[H])
proof - Computed by hand - took a few pages and is not very nice to read so proof is not

included.
exercise - Show that when #B is odd, that Cob(B) is the empty category
proof - An object in Cob(B) is of the form K =

⊔
A S

1
⊔

C I, so that #B = #∂K =
2#C + 0#A, so there is no such K when #B is odd.

exercise - Check the new relations in Cob/ℓ(3, ∗)
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proof -
exercise - Recall that in Cob/ℓ(B) we have that deg f = χ(f)− #B

2 . Show that in Cob/ℓ(4)

we have ρ(H if) = χ(f̃)− 2i− 2#dots− #B
2

proof - We can do induction on the number of dots. First if there are zero dots, H reduces
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the Euler characteristic by 2, so we are done since H if = H(1 ◦H i−1f) = · · · (H(1))n ◦ f which
has euler characteristic χ(f)− 2i.

Now if we assume the formula holds for n − 1-dots, adding the n-th dot will give us ·1 ◦ f̃
where each summand in ·1 ◦ f̃ has euler characteristic χ(f̃)− 2, so we are done.

exercise - Let C be the k-linear category given by the following quiver: ⋄ H , then
Mor(C) = End ⋄, show that Mor(C) ∼= k[H].

proof -
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We define the map F : k[H] → Mor C, F :
∑n

0 aiH
i 7→

∑n
0 aiH

i, since C is k-linear the
right hand side is a well defined morphism. It is immediate that the composition of morphisms
agrees with the product in k[H], and F preserving sums of morphisms is trivial by k-linearity.
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Injectivity is also an immediate consequence of the structure of C being formal combinations so
it will suffice to show surjectivity. To see surjectivity we need to show any summand in C is of
the form cHn, c ∈ k, so let M be a summand in Cob/ℓ(2), then M is of the form Hn⊔Ni=1 gi(ji)
where each gi(ji) is a closed surface of genus ji, if any one of the ji = 0 then M = 0 and we are
done, so assume not. Notice that 4Tu with a surface of genus j and Hn is [applying (∗) once
and (∗∗) recursively] Hn ⊔ g(j) = Hn+1 ⊔ g(j − 1) + 2Hn+j−2, so that we can repeat this with
Hn+1 ⊔ g(j − 1), eventually j will be reduced to 1, so it can be eliminated with the T relation.
This gives us

Hn ⊔N1 gi(ji) =
∑(

akH
k ⊔N−1

1 gi(ji)
)

applying this simplification recursively gives an expression of the form
∑
akH

k.
exercise - Let C be as in the previous exercise. Show that that we can identify CX(Mat(C))

with Comk[H]

proof - Consider a morphism in CX(Mat(C)), then this is an m × n matrix with entries
in End(−), so we can identify all the entries of the matrix under the isomorphism to k[H].
Because this is an isomorphism, this ensures that the chain map condition is still met. Any
morphism of chain complexes is still a matrix with entries in End(−), so can be identified
with the same matrix with entries having image under the isomorphism, since the isomorphism
preserves products and the matrix product rule is the same this preserves the composition
laws.

exercise - Compute a representative in End((=) ⊕ (||)) of the knot diagram for the reide-
meister 2 move.

proof -
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exercise - Consider the k-algebra B specified by the following quiver, with relations

SaDa = DbSa = 0, and SbDb = DaSb = 0
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a bDa

Sa

Sb

Db

Show that End((=)⊕ (||)) is finitely generated over K[H], and that End((=)⊕ (||)) ∼= B
proof - Here identify Sa with the saddle going from = to ||, and Sb the saddle in the

opposite direction. D is the dot relation wrt. The given orientation. To see that this is a
ring isomorphism, first note that both are k-linear categories so we only need to check that the
relations hold.

To see the relations, note that resolving the dot on Da/b in its composition with a saddle
gives a saddle with a handle minus a saddle with a handle up to isotopy, so it is equal to zero
and we are done.

Finally, surjectivity follows in the same way as for k[H] ←→ End(−) where we can resolve
closed surfaces to handles on Sa/b and Da/b, finally to see injectivity note that the only mor-

phisms remaining are H iDN
a/b, or H

i(SaSb)
N or H i(SbSa)

N , none of which are killed by relations

since we are taking formal k[H] linear combinations. Thus this defines an isomorphism, a very
nice way to cap off the course as now a full subcategory of Cob/ℓ(4) can be identified with the
simple ring given by this quiver.
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6 Additional Problems

Ben Williams HW2 Problem 2. Let p be a prime number, determine all group extensions
of Z/(pb) by Z/(pa).

proof - For k ∈ {1, . . . ,min{a, b}} we can consider the extension E = Z/(pa+b−k)⊕Z/(pk),
we can map this onto pb via (1, 0) 7→ 1, (0, 1) 7→ pb−k, then the kernel is generated by (pb−k,−1)
hence has order pa and is cyclic. This suffices to show that E is an extension as desired. It
remains to prove that these classify all extensions.

To do so, we can compute Ext(Z/(pa),Z/(pb)). Consider the free resolution

0 Z Z Z/(pa) 0
·pa

We dualize this free resolution to get

0 Hom(Z,Z/(pb)) Hom(Z,Z/(pb)) Hom(Z/(pa),Z/(pb)) 0
(·pa)∗

Which is equal to

0 Z/(pb) Z/(pb) G 0·pa

So that Ext(Z/(pa),Z/(pb)) ∼= (Z/(pb))/Im pa ∼= Z/(pmin(a,b)) this classifies all isomorphism

classes of extensions, to classify the extensions, suppose that φ : Z/(pa)
∼=→ Z/(pa), replacing

the injection j of A into E with jφ, we have the following diagram

0 Z/(pa) E Z/(pb) 0

0 Z/(pa) E′ Z/(pb) 0

jφ

φ∼= ∼=

Hence E ∼= E′ as groups if they differ by an isomorphism of Z/(pa). In particular we need
to quotient the action of AutZ/(pa) from Ext(Z/(pa),Z/(pb)). It follows that two elements
x, y ∈ Ext(Z/(pa),Z/(pb)) are similar iff x = ky for (k, pa) = 1, so in particular for k, k′ coprime
to p, we have that kpn ∼ k′pm ⇐⇒ n = m, so that

Ext(Z/(pa),Z/(pb))
AutZ/(pa)

= {1, p, . . . , pmin{a,b}}

so that min{a, b} is an upper bound for the number of extensions. Since we have already shown
that this many non-isomorphic extensions exist we know there are no more and thus we have
classified all extensions.

Ben Williams HW2 Problem 3. Let d ∈ Z and n ∈ Z>0 describe a sujrective map
Sn → Sn of degree d.

proof (not explicit) - Since deg f = degΣ∗f , it will suffice to provide a map S1 → S1 for
each degree. For d = 0, consider the map f that factors through

S1 p→ I
π∂S1→ S1

eiθ
p7→

{
θ/π θ ∈ [0, π]

2− θ/π θ ∈ [π, 2π)
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It follows that applying the homology functor, f∗ : Z→ Z factors through

Z→ 0→ Z

and hence must be zero. In the other cases deg f is consistent with winding number so we can
simply take f : x 7→ xd.

proof (explicit) - In the case d = 0, we use the same technique of letting f be the projection
of the sphere onto Dn (this is equivalent to taking (x1, x2, . . . , xn) 7→ (x1, x2, . . . , xn−1)), then
quotienting by the boundary of Dn. It follows that f once again factors through

Sn → Dn → Sn

and hence f∗ factors through

Z→ 0→ Z

As for the case of d ̸= 0, it will suffice by composition being multiplicative to provide a function
of degree {−1, 0, 1, 2, . . .}. If we consider Sn to have the cell complex of the upper and lower
hemisphere, then H̃n(Sn) = ⟨enN − enS⟩, taking f to be the map swapping the hemispheres is suf-
ficient. For d ≥ 1 take x 7→ xd, we can use the local degree formula at y = 1, f−1{1} = {ζkd}

d−1
k=0,

taking disjoint neighbordhoods ζk ∈ Uk, such that f(Uk) ⊂ V ⊃ {1}, we have by excision that
for some r, such that Br(ζ

k
d ) ⊂ Uk for all k, H̃n(Br(ζ

k
d ), Br(ζ

k
d )\{ζkd}) ∼= H̃n(Uk, Uk \{ζkd}), and

similarly H̃n(Brd(1), Brd(1)\{1}) ∼= H̃n(V, V \{1}), with this replacement of Uk, V we get that
f |ζkd is an homeomorphism hence having degree ±1, and furthermore f |−1

ζ
k1
d

f |ζkd is the identity

map, so that these maps have the same sign. It follows that xd has degree equal to the sum of
the degrees at ζkd which are each 1.

Ben Williams HW2 Problem 4. Extend a polynomial function f : C→ C to a map on
the riemann sphere (the one point compactification), show that deg f is the same as the degree
of f as a polynomial.

proof - The map z 7→ zn on the Riemann sphere has degree n, for the same reason it has
degree n on S2 in the previous question. We may rewirite f as a polynomial to be

∏N
i=1(x−αi)

ni ,
taking f−1(0) = {αi}N1 , by the sum of local degree formula it suffices to show that

f |αi : Ĉ \ {αi} → Ĉ \ {0}

has degree ni. By choosing a small enough neighborhood of αi, since polynomial functions have
isolated zeros we can homotope f |αi to x

n, due to excision this does not change the homology
and which is proven in the previous exercise to have degree n.

Example. Build a CW complex with a given homology
construction - Let G1, . . . , GN be abelian groups, we will construct X, such that H̃n(X) =

Gn. By the structure theorem we have that Gℓ =
⊕

j Z
⊕

i Z/(p
ki
i ), by the wedge sum property

it will suffice to compute Xℓ with H̃i(Xℓ) = Gℓ iff i = ℓ and 0 otherwise, then take X =
∨

ℓXℓ.

Now fix ℓ and call G := Gℓ, once again we may construct a space Xj
ℓ with H̃ℓ(X

j
ℓ ) equal to one

summand Gj in G, and the rest of the homology groups zero. We showed in a previous exercise
that there is a map f : Sn → Sn of degree d for any n ≥ 1 and d ∈ Z. If Gj = Z, then simply
take Xj

n = Sn, otherwise if Gj = Z/(m), take Xj
n to be en+1∪f Sn, so that Xj

n has cell complex

· · · 0 Z Z 0 0 · · ··m
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Taking the homology we get

H̃i(X
j
n) =

{
Z/(m) i = n

0 else

exercise - Compute H∗(CPn)
proof - We have

CPn ∼=
S2n+1

v ∼ λv
∼=

D2n

∼∂Dn

∼= e2n
⋃

∼∂e2n

CPn−1

and hence CPn has a cell complex with cells {e2k}nk=0. It follows that

Hk(CPn) = Ck(CPn) =

{
Z 2n ≥ k ≡ 0 mod 2

0 else

Hatcher prop. 0.17. We say (X,A) has the homotopy extension property, when for any
f0 : X → Y , the homotopy ft : A → Y of f0|A can be extended to a homotopy ft : X → Y .
Suppose that (X,A) satisfies the HEP and A ≃ {∗}, show that q : X → X/A is a homotopy
equivalence.

proof - Let f0 be the one map, and ft be a homotopy extending the contraction of A, with
q : X → X/A being the quotient map, quotienting the subspace A. It follows that we get

X X

X/A X/A

f1

q q

f1

Now since f1(A) is equal to a point, we can define a map g : X/A→ X as the upper diagonal
of the above square with gq = f1, it follows that g, q are the desired homotopy equivalences,
since gq = f1 ≃ f0 = 1X and qg(x) = qgq(x) = qf1(x) = f1 ≃ f0 = 1A.

Example from Hatcher. If U ⊂ Rn and V ⊂ Rm are open, then U ∼= V implies that
n = m.

proof - let Bn(x) be an open ball in U , then if f is a witness to the homeomorphism we have
f(Bn\{x}) is an open set in V , by excision we may consider an open ball containing y = f(x) in
V on homology. It follows that since f is a homeomorphism it is an isomorphism on homology,
hence Hn(B

n \ {x}) ∼= Hn(B
m \ {y}), but after removing the point both of these spaces are

homotopy equivalent to Sn, Sm respectively by a rectract. This means that Hn(S
n) ∼= Hn(S

m)
if n ̸= m, then the right hand side is zero and the left hand side Z, which is a contradiction,
hence n = m.
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