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Abstract

These are collected lecture notes on differential topology.
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Introduction

These are the collected lecture notes on differential topology. They are based
on [BJ82, GP10, BT82, Wall6]. Our reference for multivariable calculus is
[DK04a, DK04b)].

Differential topology is the study of smooth manifolds; topological spaces on
which one can make sense of smooth functions. This is done by providing local
coordinates. Through these, many of the results of multivariable calculus can be
extended to manifolds. The latter provide a convenient language, the former the
technical details: state globally, prove locally.

The motivating goal of differential topology is the classification of smooth
manifolds, and maps between smooth manifolds. This is done through numerical
invariants extracted from geometric objects living in our manifolds (e.g. subman-
ifolds) or on our manifolds (e.g. differential forms). Particular instances of these
ideas are intersection theory and de Rham cohomology.
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Chapter 1

Spheres in Euclidean space

In this first lecture we give a taste of differential topology, with a discussion of
spheres which are embedded or immersed in R*. The highlight will be Smale’s
result that the two-dimensional sphere can be everted. Along the way, we meet
a significant portion of the cast of this course: smooth manifolds, embeddings,
isotopies, orientations, immersions, regular homotopies, winding numbers, and
transversality.

1.1 Circle eversion
We are all familiar with the circle
Sti=A{(z,y) eR? | 2® +3° =1},
which we can thicken to an open annulus
A? = {(z,y) eR* | (1+0) ' <a? +¢y> <1+ 6}

for some small 6 > 0. There is of course a standard inclusion inc of A? into R?,
given by sending (z,y) € A2 to (z,y) € R2.

Sl
iz

A2

Figure 1.1 The circle S inside the annulus A2,

There are many other inclusions of A2 into R2. We could rotate by 90° degrees
counterclockwise

rotgg: A2 —_—> R2

(l‘,y) — (*ya .T),
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reflect in the z-axis
refl: A2 — R?
(way) _ (l’, _y)7
or invert the circle

inv: A2 — R?

(x,y) —> - ) Y )
22+ 42 22 4+ o2

These injective maps are not only continuous, but have three further properties.
Firstly, they are smooth: all partial derivatives exist and are continuous at each
point in (z,y) € A2, Secondly, not only does the total derivative exists at each
point, but it is injective (in fact, invertible). Thirdly, they are homeomorphisms
onto their image.

Definition 1.1.1. A continuous map A? — R? is called an embedding if it is a
smooth map which is a homeomorphism on its image and whose total derivative
is injective everywhere.

Figure 1.2 Three embeddings A? «— R2.

How different are these embeddings from each other? The maps inc and rotgg
are closely related to each other: they can be connected by a path of embeddings.
This path is given by varying the rotation angle

rot;: [0,1] x A2 — R?

(t, (z,y)) — (cos(§ - t)x + sin(5 - t)y, —sin(§ - t)o + cos(§ - t)y),
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a path of embeddings. It is called an isotopy because it is also smooth as a map
with domain [0,1] x A2
However, the cases of reflection and inversion are more subtle.

Proposition 1.1.2. Both refl and inv can not be connected to inc (or equivalently
rotgg) by such an isotopy.

Proof. The reason is that both refl and inv reverse orientations. The Euclidean
space R? has a so-called orientation, given by a consistent choice of direction of
“counterclockwise rotation,” and so does A2 as an open subset of R2. As can be
seen in Figure 1.3, rotations such as rotgg preserve orientation, but reflection refl
and inversion inv do not.

counterclockwise

O

I"Otgo refl inv

O

counterclockwise clockwise clockwise

Figure 1.3 The effect of our three embeddings on orientations.

If the inclusion inc and reflection refl (or inversion inv) were isotopic then the
latter would have to preserve orientation, because inc does and the embeddings in
an isotopy can not switch from being orientation-preserving to being orientation-
reversing. (This is the crux of the argument, and making it rigorous is something
we will do in these notes.) O

However, the composition of reflection and inversion does preserve orientation;
reversing orientation twice preserves it. This map

eve := invorefl: A2 — R?

(@,9) — | ———gr ——
x2+y2 $2+y2

is called eversion. Can eversion be connected to the identity by an isotopy?
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To answer this question, we look at S' — A?. This is our first example of
a smooth manifold which is not Euclidean space R™ or an open subset thereof.
More precisely, it is a one-dimensional smooth manifold; a topological space
which locally looks like R and on which we can make sense of smooth functions.
To do the latter, we use local coordinates on S* and our understanding of smooth
maps between open subsets of Euclidean space: the two charts (“coordinate
patches”)

¢o: (0,2m) — S
0 —> (cos(0),sin(0))
¢1: (0,27) — S*
0 — (cos(f + m),sin(f + 7))

cover all of S, and we say that f: S' — R? is smooth if both f o ¢g and f o ¢
are smooth. Similarly, it is an embedding if it is a smooth map which is a
homeomorphism onto its image and whose total derivative is injective everywhere.
It is easy to recognize it is a homeomorphism on its image; when we restrict the
target to its image we get a continuous bijection between compact Hausdorff
spaces.

If eve: A2 — R? were isotopic to inc, then by restricting the isotopy to S we
would be able to prove that eve|q: is isotopic to inc|g1. So, to prove that eve is
not isotopic to inc, it suffices to show that eve|g1 is not isotopic to inc|g1.

Figure 1.4 An example of the image of S! under an immersion into R2.

In fact, we will prove something even stronger. We can drop the condition
that an embedding is injective. Since the derivative controls the local behaviour
of smooth maps, that the derivative is everywhere non-zero means it is still locally
injective. A smooth map S' — R? with everywhere non-zero derivative is called
an immersion, and a smooth map [0,1] x S — R? consisting of immersions
is called a regular homotopy. This is a family of smooth maps where we allow
self-intersections to occur, but not the pulling tight of loops (the derivative would
blow up there).

Proposition 1.1.3. The embeddings eve|g1 and inc|g1 are not regularly homo-
topic.

Proof. Suppose a regular homotopy e;: [0,1] x S* — R? existed between eve|g:
and inc|g1, then for each s € [0, 1], the map es: S' — R? is an immersion. Thus,
when we take for §p € S* the derivative d%\g:(goes (cos(0),sin(f)) we get a non-zero
vector in R2. If we normalize these to have length 1, we get a smooth map

gauss(es): ST — SL.
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Here the domain S* is the circle which is the domain of our immersions, and the
target S! is the space of unit length vectors in R%. You can think of the latter as
the space of lines through the origin in R? with a choice of orthonormal basis (in
this case just a single vector).

If eve|g1 and inc|g1 are regularly homotopic through e;, then gauss(eve|g1)
and gauss(inc|g1) can be connected the path gauss(es) of maps S* — S!. In other
words, they would be homotopic. But they are not; as gauss(eve|g1) = refl o rotg
and gauss(inc|g1) = rotgg wind around the origin a different number of times;
the first once clockwise (so —1 times) and the second once counterclockwise (so 1
times). The difference between these winding numbers implies that gauss(eve|g1)
and gauss(inc|g1) are not homotopic. (Again, this is the crux and we need to
rigorously justify this claim.) O

1.2 Knots

Let us now increase the dimension of the target; instead of looking at circles in
R? we will look at circles in R3. Immersions are significantly easier to study than
embeddings; though both are smooth maps with injective total derivative, a local
condition, embeddings need to be injective, a global condition. This distinction
becomes evident when we try to discern the difference between embeddings
S < R? and immersions S! 9> R3.

Proposition 1.2.1. Each immersion S' & R? is reqularly homotopic to an
embedding.

Proof. This uses a technique called transversality. Informally, this allows you
take smooth maps to be “generic” without loss of generality. This means that by
making an arbitrary small change to an immersion eg: S — R3, we can make
its self-intersections have the “expected dimension.”

Here “arbitrarily small” means that for each € > 0, we can find an e; : S' — R3
whose values and derivatives are within e of those for eg. By taking € to be small
enough, during a linear interpolation

er: ST x[0,1] — R3
(t,0) —> (1 —t) - eg(0) +t-e1(6)

the derivative never becomes 0. In particularly, eg is regularly homotopic to e;.

The advantage of e; is that its self-intersections have the expected dimension.
This expected dimension is that of the intersection of two affine lines R? with
arbitrarily chosen coefficients: two such lines do not intersect, and thus generically
the self-intersections are empty as well. O

Isotopy classes of embeddings S' < R? are called knots. The isotopy class
of the standard circle inc: S' < R? is the unknot, but there are of course many
more interesting and complicated knots. At first sight many seem obviously
distinct, or at least non-trivial. This is an artefact of our tendency to draw rather
simple knots: it is by no means clear to me that Figure 1.5 is not the unknot. It
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should furthermore not be obvious how to prove that two knots are distinct, as
you need to rule out the existence of some extremely complicated isotopy. To do
so one uses knot invariants, with such disparate sources as algebraic topology,
combinatorics, number theory, hyperbolic geometry, or quantum field theory
[Ada04, Sos23]. We will discuss some of these later. At any rate, your intuition
is correct:

Figure 1.5 Haken’s “gordian knot,” which is actually unknotted (from [Sos23]).

Proposition 1.2.2. There are infinitely many distinct isotopy classes of embed-
dings S' < R3. That is, there are infinitely many knots.

Remark 1.2.3. This does not mean that distinguishing knots, or recognizing
unknots, is easy. Even though there exists an algorithm that says whether a knot
is the unknot, these algorithms are not very efficient [HLP99].

Armed with this knowledge, Proposition 1.2.1 seems rather useless. All we
have shown is that immersions of a circle into R? can be represented by knots.
However, we can use that this representation is not unique. In particular, if
we are interested in immersions we are allowed to make the strands of a knot
self-intersect! Using this, it is not hard to give an informal proof of the following:

Proposition 1.2.4. All immersions S* 9 R? are regularly homotopic.

Proof sketch. By another application of transversality, it is possible to draw each
knot as you are used to; a circle in the plane with some crossings, which never
occur at the same point. As we just explained, you can change any crossing using
a regular homotopy. Let us explain through an example a procedure to change
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crossings to end up with an unknot. Suppose our starting point is:

We fix a point pg in the knot, and start moving along it in an arbitrary direction.
When we cross under a strand, we (a) keep it as it is if we haven’t seen the
crossing yet, but (ii) if we have seen it we change the crossing. For example, the
first crossing clockwise from pg is not changed but the second one is. The result

will be:
A
/

QA

I will leave it to the reader to understand why this procedure always produces
an unknot (hint: look at the height of the strands). O

1.3 Sphere eversion

Let us now increase the dimension of the domain. There is a two-dimensional
sphere S? := {(z,y,2) € R? | 22 + y* + 22 = 1}. This is a two-dimensional
smooth manifold which is a subset of the thickened sphere A% := {(z,y, 2) € R? |
(1+6)t <a?+y?+ 22 <1+ 4} for some small § > 0.

Again, in addition to the identity map inc: A3 < R? there are many other
inclusions; we could rotate by applying an element A € SO(3) (the group of
rotations around some axis through the origin in R?), reflect in the (x,y)-plane

refl: A3 — R3
(xvyvz) — (‘Taya _Z)7
or invert it
inv: A> — R3

PR (R S R

22+ y? 22 % 4y 4 22 2?4 y? 4 22

All of these are smooth maps, and in fact embeddings. The rotation by A is
isotopic to the identity because the group SO(3) is path-connected (move the
rotation angle to 0), while both refl and inv are not isotopic to the identity
because they do not preserve the orientation.



8 Chapter 1  Spheres in Euclidean space

However, the eversion

eve :=refloinv: A3 — R3

@)= (g y )

2? +y? + 227 2%+ y? + 22 2 4y 22

does preserve the orientation. Is it isotopic to the identity? The answer turns
out to be negative; in fact, eve|g2 is already not isotopic to inc|g2. If it were,
we could “drag along” the disk D? = R3 that bounds the image of inc|g2 on the
inside along an isotopy of embeddings—a result called isotopy extension (which
requires the embeddings and isotopy are proper)—and would have to end up with
a disk that bounds the image of eve|g2 on the outside, which is clearly impossible.
(This requires justification.)

However, it is a surprising result of Smale that eve|g2 is regularly homotopic
to inc|g2 [Smab8]. That is, these two embeddings can be connected by a family
of immersions; self-intersections are allowed to form, but not the pulling tight
of the fabric of S2. The procedure is rather complicated, but you can watch
a video of it called Outside In online. The reason this works is that the two-
dimensional versions of the Gauss maps, gauss(eve|g2) and gauss(inc|g2), which
are maps from S? to the space Vo(R?) of two-dimensional planes though origin
with a choice of orthonormal basis, are homotopic. This homotopy can then be
approximated by a regular homotopy using holonomic approrimation, a instance
of general philosophy called an h-principle [EMO02]. Explicitly implementing this
approximation gives the video referred to above.

1.4 Problems

Problem 1. Is the following knot trivial (i.e. isotopic to the unknot)?

.'f,-

If no, explain why. If yes, draw an isotopy.




Chapter 2

Smooth manifolds

In this lecture we give the modern definition of a smooth manifold, which is the
one we will use throughout this course; you have read what is considered to be
the historically first one, due to Riemann. It is given in [BJ82, Chapter 1], but
unfortunately not in [GP10]. References for further reading are [Tull, Chapter
5] or [Wall6, Section 1.1]. We also give a number of examples (you need to know
S™ RP™, and CP™, but not the examples of moduli spaces).

2.1 Topological manifolds

Underlying every smooth manifold is a topological manifold. This is a topological
space which locally looks like Euclidean space, though we will ask it satisfies
some point-set topological conditions to make it more well-behaved. A local
property of a topological space is one which concerns sufficiently small open
subsets. For a k-dimensional topological manifold the relevant local condition is
“being homeomorphic to an open subset of R¥:”

Definition 2.1.1. A topological space X is locally Euclidean of dimension k if
each point z € X has an open neighbourhood V, ¢ X which is homeomorphic to
an open subset U, c R¥.

This models a “world” which, for a tiny creature living in it, is indistinguishable
from RF. This intuition is not compatible with certain pathological examples.
The “world” is not supposed to “split into two points” somewhere, as occurs
in a plane with doubled origin [SS95, §74]. This is ruled out by demanding
X is Hausdorff (any two distinct points have distinct open neighbourhoods).
Furthermore, the “world” should admit a notion of distance, i.e. a metric. For a
Hausdorff locally Euclidean topological space, being metrizable is equivalent to
being second-countable (admitting a countable basis for its topology) [Gau09],
and hence we demand that X is also second-countable. An example of a locally
Euclidean space which is Hausdorff but not second-countable is the long line,
created by “concatenating” uncountably many real lines [SS95, §45].

Definition 2.1.2. A k-dimensional topological manifold is a second-countable
Hausdorff space X which is locally Euclidean of dimension k.

9



10 Chapter 2 Smooth manifolds

This definition only involves properties of X. We can rephrase the property
that it is locally Euclidean as data instead, which will be necessary to define
smooth manifolds.

Definition 2.1.3. A triple (Uy, Vg, ¢) of open subsets U, < R¥, V,, ¢ X, and
a homeomorphism ¢, : U, — V, is called a chart or a local parametrization.

Definition 2.1.4. A collection of charts (Ua, Vi, ¢o) such that | J, Vo = X is a
k-dimensional atlas for X.

Figure 2.1 A chart.

Two local parametrizations ¢n: RF > Uy, — V,, ¢ X and ¢g: R* 5 Usg —
Vg < X give two competing identifications of V,, n V3 < X with an open subset
of R*, which we can compare by the transition function

—1

_ _ . %5
Yag = 05" 0 da: R¥ 2 ¢ (Vo 0 Vp) Lo Vo AV s 05" (VanV3) c RE. (2.1)

(It would be better to use the notation ¢,§1 o ¢a\¢;1(vamvﬁ) to point out we are
restricting the domain, but this notation would quickly become unwieldy.)

An atlas for a topological manifold X is not unique, but it turns out there is a
unique maximal one. We shall not discuss this in detail now, saving a discussion
of maximal atlases for smooth manifolds (where there is no longer a unique one,
i.e. there are exotic smooth structures). An alternative equivalent definition of a
k-dimensional topological manifold is then:

Definition 2.1.5. A k-dimensional topological manifold is a second-countable
Hausdorff space X with a maximal k-dimensional atlas.

2.2 Smooth manifolds

On a topological manifold, as on any topological space X, we can make sense of
continuous functions X — R. A smooth manifold is a refinement of a topological
manifold with additional data that allows us to make sense of smooth functions
X — R. This will use that we know from multivariable calculus what a smooth
function R¥ — R is: a map which has partial derivatives of arbitrary degree, in
other words, an infinitely-many times differentiable function.

As the domain of a chart is an open subset of R*, we know what it means
for a continuous function to be smooth with respect to the local coordinates
provided by a chart. To make guarantee consistency between charts, we require
that the transition functions 1,4 are smooth.
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Definition 2.2.1. A k-dimensional smooth atlas for a topological space X is a
collection of triples (Uy, Vi, ¢o) consisting of

- an open subset U, c R¥,
- an open subset V, < X, and

- a homeomorphism ¢, : U, — Vg,
so that | J, Vo = X and all maps

77[)04,3 = QSEI 0 Pu: Cb;l(va N V,B) - ¢51(Va N Vﬁ)

are smooth maps between open subsets of R¥. The triples (Uy, Va, ¢o) are called
charts and the maps qﬁgl o ¢, are called transition functions.

Observe that these transition function have the following properties:

Yaa =1id  and  Pag o Ygy = Vany.

Taking v = «, this gives
¢a6 % wﬁa = id7

as smooth maps R¥ o ¢ 1(V, n V3) — (bgl(Va N V3) < R*. This shows that
)ap is a smooth bijection with smooth inverse, and hence is what we call a
diffeomorphism. Thus, in a smooth atlas the transition functions are always
diffeomorphisms.

R* 5 U, : ( | 14) : I Us RF
\\ \\ // ¢E O¢Oz \\ /// //

Figure 2.2 A transition function.

Two atlases for X are said to be compatible if their union is an atlas. A
mazimal atlas is one with the property that every atlas compatible with it, is in
fact contained in it.

Lemma 2.2.2. FEvery k-dimensional smooth atlas is contained in a unique
mazimal k-dimensional smooth atlas.
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Proof. For uniqueness, it suffices to prove that every two k-dimensional smooth
atlases A" = {(Ug, V3, #3)} and A" = {UJ, V), ¢))} containing a given one
A = {(Uy, Vo, do)} are compatible. That is, we must prove that every map

(¢”) O%’ (%) ( V”) ( ) (V,B V”)

is smooth. Since being smooth is a local property, it is enough to prove that
each x € (¢'[3)—1(V[§ N V') has an open neighbourhood such that the restriction
of (¢)to ¢} to this open neighbourhood is smooth. Let us pick a chart
(Uas Va, #a) € A so that ¢s(x) € V. Then we can write the restriction of

(6)7 0 ¢ to (85) (Ve Vi 0 V) as
(#1)™ 0 6a) 0 (65" 0 ),

which is a composition of two smooth functions because both A’ and A” are
compatible with A. Hence it is smooth, and hence so is (gbg)_l o ¢j3. Thus A’
and A” are compatible.

Now that we have proven that A c A" and A c A” implies that A" and A”
are compatible, we can just define

Amax = | J A 0
Ac A

Definition 2.2.3. A k-dimensional smooth manifold is a Hausdorff second-
countable topological space X with a maximal k-dimensional smooth atlas.

That is, it is a k-dimensional topological manifold with an atlas where all
transition functions are smooth. Some questions and answers about this definition:
(a) How should I think of the smooth atlas? The interpretation that follows

directly from the definition is that it provides local coordinates, via the maps

#51, so that the transition between two of these coordinate systems is smooth.

A different perspective on the role of an atlas is the one we used to motivate

it: it tells you when a continuous function f: X — R is smooth:

Definition 2.2.4. A continuous function f: X — R is smooth when
foda: RF DU, — R

is smooth for all charts (Uy, Vi, ¢a)-

This definition generalizes with ease to the case where the target is R™. To
generalize to the case that the target is another smooth manifold, we involve
the charts of the target. We discuss the following definition in more detail in
the next lecture:

Definition 2.2.5. Let X and Y be manifolds with atlases {(Uq, Vi, ¢a)}

and {(U},,V/,,¢.,)} respectively. A continuous map f: X — Y is smooth if

(¢h) Lo foda: RF D¢ (Vo f7H(VL)) — ULy < RF

is smooth for all charts.
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When are two manifolds “the same”? Saying when two manifolds are equiva-
lent involves Definition 2.2.5:

Definition 2.2.6. A smooth map f: X — Y is a diffeomorphism if it is a
bijection with smooth inverse.

Two manifolds X and Y are to be considered equivalent when there is a
diffeomorphism between them; we say they are diffeomorphic.

Why demand X is Hausdorff and second-countable? We mentioned that this
“fits our intuitions,” but there are more utilitarian answers. First, atlases on
topological spaces without these properties rarely arise in practice. Second,
having these properties is helpful, as they imply the existence of certain
smooth functions X — R. For example, Hausdorffness will mean we can
construct a smooth function which separates two distinct points, and both
properties are used to construct partitions of unity.

Why demand that the atlas is mazimal? If we did not, then S? with two
charts would be a different smooth manifold than S? with three charts. This
would be absurd. Furthermore, we often want certain nice charts to exist.
If our atlas has few charts this may not be the case. However, in practice
we will want to specify a smooth manifold with an atlas that is as small as
possible; a finite amount of data is easier to comprehend that an infinite
amount. Then Lemma 2.2.2 generates for us a unique maximal atlas.

Can a topological space X have more than one mazximal atlas? The answer is
almost always yes, as you can change the charts by a homeomorphism X — X;
the resulting smooth manifold is a diffeomorphic but the maximal atlases are
not the same. On the homework you work this out. Moreover, even up to
diffeomorphism a topological space X can have more than one maximal atlas.
Another term for a maximal atlas is a smooth structure. Milnor surprised
the mathematical community when he proved that S” admits more than one
smooth structure up to diffeomorphism [Mil56a]; there are in fact 15.! This
is a global phenomenon except when n = 4, as R"” admits a unique smooth
structure up to diffeomorphism when n # 4. On the other hand, R* admits
uncountable many smooth structures up to diffeomorphism [Sco05, Section
5.4], and yes, you should be surprised by that.”

Can a topological space X have atlases of different dimensions? This is not
possible by a famous result of algebraic topology due to Brouwer called
invariance of domain, which says that any injective map from an open subset
of R¥ to R* has image given by an open subset [Hat02, Theorem 2.B.3]. If
two such atlases did exist, charts from them would give a homeomorphism
f:RF 5 U - V < R¥ between open subsets of RF and R¥ for say k > k.

!The more well-known figure is that the group O~ of oriented exotic spheres up to orientation-

preserving homeomorphism is isomorphic to Z/28. In this group, inverse is given by reversing

the

orientation, so that when we allow (not necessarily orientation-preserving) diffeomorphisms

there are 15 elements, corresponding {0}, {14} and {a, 28 — a} for 1 < a < 13.

2Tt is more accurate to think of this as there being many distinct 4-dimensional smooth

manifolds that for a magical reason happen to be homeomorphic to R%.
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But invariance of domain implies that the composition of f with the inclusion
iof:RF U —V cR¥ — RF

has image both an open subset of R¥ and contained in the subset R¥ < R¥,
which is impossible.

2.3 Examples of manifolds

2.3.1 First examples

Ezample 2.3.1 (Euclidean spaces). The prototypical example of a k-dimensional
smooth manifold is R” itself. It has second-countable and Hausdorff, and has an
atlas with a single chart: (U, V,¢) = (R¥,R¥ id).

Ezample 2.3.2 (Spheres). Recall that the k-sphere is the subspace of R¥*! defined

by
k
Exf = 1}.
i=0

As a subspace of a second-countable Hausdorff topological space, it is second-
countable and Hausdorff, Problem 2. We will now describe a k-dimensional
smooth atlas on it, making it a k-dimensional smooth manifold, in terms of
2(k + 1) different hemispheres. It suffices to describe the ¢~!’s (and then we can
of course recover the ¢’s as their inverse). For 0 < j < k and ¢ € {0,1}, we have
a chart given by

Sk = {(mo,...,xk)

it S* S Vi = {x e S* | (~1)'z; > 0} — Uyj = int(D¥) = RF

($07"'a$k)'—’(x0a"' sy Ljy e 71:]6)‘

The transition functions have most entries of the form x;, except that one has

the form , /1 -3, j x2. These are clearly smooth.

A different but compatible k-dimensional smooth atlas with only two charts is
given by stereographic projection. As before, we describe the ¢~ s: if C,Cg <
S* denote small closed neighborhoods of the north and south pole (+1,0,...,0),
then ¢~! is given by casting rays form N through S*\Cx onto a plane below the

sphere, see Figure 2.3.

Example 2.3.3 (Real projective spaces). The real projective space RP* is the
space of lines through the origin in R¥*!. Such a line is specified by a unit vector,
up to multiplication by +1. That is, it is the quotient space

RP = Sk /~
with ~ the equivalence relation generated by (zo,...,xg) ~ (—zg,...,—xg). We
will denote an example class as [z : -+ : zg].

The first of the atlases for S™ given in the previous example induces a k-
dimensional smooth atlas on RP*. Tt has (k + 1) charts given as follows: for



2.3 Examples of manifolds 15

Rk-ﬁ-l
S ‘/ — ASY]‘)\\C:’A\'

Figure 2.3 To obtain ¢~': V — U, the inverse of a local parametrization of S*¥ < RF*+1 follow
the rays.

0<j<kitis

¢, :RP* SV, = {zeRP* | z; # 0} — U; = int(D*) c R*

[zo:...: @] — sign(xj)(xo, -, &5, ,xk).
Ezample 2.3.4 (Surfaces of genus g). We will not describe atlases for these yet,

but for each g = 0 there is a compact surface of genus g. It looks like a sphere
with ¢ handles added to it:

Figure 2.4 A surface of genus g = 2.

The classification of surfaces say that all compact orientable two-dimensional
smooth manifolds (we will define “orientable manifolds” later) are diffeomorphic
to ¥, for some g.

2.3.2 Constructions of further manifolds

Example 2.3.5 (Open subsets). Suppose U < X is an open subset of a k-
dimensional smooth manifold. If {(U,, Va, ¢a)} is an atlas of X, then the maps

¢a|¢;1(VamU): Rk >U, D gb;l(Va ) U) —V,nUcU
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endow U with a k-dimensional smooth atlas. If the atlas of X is maximal, so is
this atlas of U.

Ezample 2.3.6 (Disjoint unions). Let M and N be smooth manifolds with smooth
atlases {(Ua, Va, ¢a)} and {(Ug, Vi, #3)}, of same dimension m = n. Then their
union is an atlas for the disjoint union M u N, though it is in general not
maximal even if the atlases on M and NN are. This is the disjoint union of smooth
manifolds.

Example 2.3.7 (Products). Now let M and N be smooth manifolds with smooth
atlases {(Ua, Va, da)} and {(Ug, Vi, ¢3)}, of dimension m and n respectively.
Then the maps

Ga X ¢ R X R" DUy x Uy —> Vo x V< M x N

endow the cartesian product M x N with an (m + n)-dimensional smooth atlas,
though it is in general not maximal even if the atlases of M and N are. This is
the product of smooth manifolds.

Ezample 2.3.8 (Pre-manifolds). A k-dimensional smooth pre-manifold is a set X
together with a collection {(Us, Vi, ¢a)} of Uy < R¥ an open subset, V, < X a
subset, and ¢, : U, — V, a bijection. We require that all maps

Yap = 05" 0 ¢a: RF 2 6.1 (Vo 0 Vi) — ¢5" (Va 0 Vg) c R

are smooth.

Then we can give X the smallest topology such that all ¢, are continuous.
If this is Hausdorff and second countable, then {(Uy, Va, ¢o)} serves as a k-
dimensional smooth atlas on X and hence makes it into a k-dimensional smooth
manifold. In terms of category theory, this in fact presents X as a colimit of
open subsets in Euclidean space.

2.3.3 Riemann’s vision

In this more advanced section, we recall some historical context. You should not
be surprised if much of this material is unfamiliar to you.

One-dimensional complex manifolds

If you have studied complex analysis, the following example may illuminate the
definition of a k-dimensional smooth manifold.

We will define complex manifolds by replacing R by C and smooth maps
by holomorphic maps: a 1-dimensional complex atlas for topological space X
is a collection of triples (Uy, Va, ¢o) of an open subset U, < C, an open subset
Vo © X, and a homeomorphism ¢ : Uy — Vg, so that | JV, = X and all maps

05" 0 ba: by (Va " V5) — 65" (Va 0 V3)

are holomorphic maps between open subsets of C. A 1-dimensional complex
manifold is then a second-countable Hausdorff topological X with a maximal
1-dimensional complex atlas.
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Since C can be identified with R? and all holomorphic maps are smooth, any
1-dimensional complex manifold is a 2-dimensional smooth manifold. However,
since it is much harder for a function to be holomorphic than for it to be smooth,
it is harder to produce 1-dimensional complex manifolds than 2-dimensional
smooth manifold.

Remark 2.3.9. By replacing C by CF, this definition generalizes to that of a
k-dimensional complex manifold. Such a complex manifold always gives rise to a
2k-dimensional smooth manifold.

The moduli spaces of Riemann surfaces

It is in Riemann’s Habilitationsvortrag that the general concept of a manifold
first appeared [Riel3].® He proposed that geometry should study “extended
magnitude or quantity,” objects made of points with a continuous transition
from one to another. To be mathematically useful, these objects should have
sufficiently many functions so that it is possible to find coordinate functions
which specify points uniquely, at least locally. One example he had in mind is
quite advanced even from our modern point of view: the moduli space of Riemann
surfaces of genus g with n marked points.

A Riemann surface is a compact one-dimensional complex manifold, as above.
It is a rather deep result that all of these are algebraic, that is, cut out by
polynomial equations in a complex projective space. Riemann’s idea was that
deformations of a Riemann surface structure on a fixed surface of genus ¢
with n marked points as pictured in Figure 2.5 are uniquely specified (up to
isomorphism) by 3¢g — 3 + n complex parameters. He wanted to use this to
show that one can organize all such Riemannn surfaces into (something like) a
(69 — 6 + 2n)-dimensional smooth manifold, each complex parameter giving rise
to two dimensions [Loo00], so that you could study all Riemann surfaces at the
same time. This has proven wildly successful, with entire fields doing dynamics
and geometry on such moduli spaces.

We are far from having the theory to make this precise, but this example
holds an important lesson: unlike spheres, many examples of smooth manifolds
do not arise as subsets of some Euclidean space.

2.4 Problems

Problem 2 (Point-set topology of subspaces).

(a) Prove that every subspace of a Hausdorff space is Hausdorff.

(b) Prove that every subspace of a second-countable space is second-countable.

Problem 3 (Connected vs. path components). Prove that for a topological
manifold, connected components coincide with path components.

%You can read it at https://www.emis.de/classics/Riemann/Geom.pdf. More about the
history of manifolds can be found in [Sch99].


https://www.emis.de/classics/Riemann/Geom.pdf
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Figure 2.5 A surface of genus g = 2 with n = 3 marked points.

Problem 4 (Gluing smooth structures). Suppose that if U,V < X is an open
cover of a second-countable Hausdorff space, and that we are given smooth atlases
on U and V which agree on U n V. Prove that there exists a unique smooth
maximal atlas on X which is compatible with the given ones on U and V.

Problem 5 (Complex projective plane). There is a complex analogue of the real
projective plane RP¥, as constructed in the homework. The complex projective
plane CP* has points given by complex lines in C**1, or equivalently by the

quotient
(CH {0/~

where ~ is the equivalence relation generated by (zo,...,2x) ~ (Az0,...,Az,) for
A e C\{0}. Give CP* a 2k-dimensional smooth atlas.

Problem 6. Recall that the quaternions H are the 4-dimensional non-commutative
unital R-algebra with generators i, j, k and relations

2 =2 =k =1, ij=—ji, ik=—ki, jk=—kj
ij =k, jk=1i, ki=j

In analogy with the previous exercise, construct the quaternionic projective plane
HPF.* What is its dimension?

4There is even an octionic projective space OP?, also known as the Cayley projective plane,
but no OP* for k > 2. This is harder to construct.
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Submanifolds

In the previous lecture we defined smooth manifolds, and we now discuss smooth
submanifolds. We will use some results from multivariable calculus to produce
examples of submanifolds of Euclidean spaces. 1 will assume you know the
relevant results, but if you do not, you can find these in Chapters 3 & 4 of
[DKO04a]. After that we will give five constructions of the 2-torus.

3.1 Submanifolds

A loop of string in R? can be thought of as a subset S of R3. Which subsets S
describe such loops of string? Let us abstract the situation by declaring that the
string is infinitely thin and bendable, but can not make sharp corners. Certainly
an ordinary circle {(z,y, 2) | 2 + y? + 22 = r?} = R? describes a loop of string,
but so do many other subsets. Some differ from the circle by being more wiggly,
and some by being knotted, see Figure 3.1.

Figure 3.1 Some subsets of R which describe strings.

However, in spite of their complicated global behaviour, all locally look like
smooth line segments: they are one-dimensional smooth submanifolds of R3,
subsets of R? that locally looks like R. This illustrates why the study of smooth
manifolds is so interesting: they have a straightforward local structure, but a
rich global structure.

19
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Of course, we need not restrict ourselves to one-dimensional objects: 2-spheres,
2-tori, and the surface of a coffee mug all locally look like R?. Indeed, for any
r = 0 we will define r-dimensional smooth submanifolds as subsets of R¥ that
locally look like R". More generally, we use charts to replace the ambient space
R* by a k-dimensional smooth manifold N.

3.1.1 The definition

To make precise the definition of a submanifold of a manifold, we recall the
definitions from the previous lecture. A k-dimensional topological manifold is a
second-countable Hausdorff space X which is locally homeomorphic to an open
subset of R¥. To give this the structure of k-dimensional smooth manifold, we
need to provide the additional data of a maximal k-dimensional smooth atlas.
This is a collection (Us, Vy, #o) of homeomorphisms ¢,: R¥ > U, — V, c X
such that (i) |, Vo = X, and (ii) all transition functions gZ)El 0 ¢ are smooth
maps between open subsets of R¥.

Intuitively, a submanifold is a manifold which lives inside another manifold.
This is made precise by demanding it looks like a linear subspace of Euclidean
space with respect to the atlas.

Definition 3.1.1. Let N be a k-dimensional smooth manifold. A subset X ¢ N
is an r-dimensional submanifold if for each p € X there is a chart (U, Vi, ¢o) of
N around p such that ¢, (X) = U, n R".

If X is a submanifold, it comes with a canonical structure of an r-dimensional
smooth manifold. Firstly, X with the subspace topology is second countable and
Hausdorff. We produce an atlas on this by taking a chart (U, Vi, ¢n) for N as
above, and creating from it a chart (U}, V., ¢.,) for X as follows:

Uy =UsnR', V=XV, and ¢} :=dalv.

3.2 Examples of submanifolds using calculus

We for now concentrate on submanifolds of Euclidean space, and apply tools from
multivariable calculus. We will eventually generalise these tools to manifolds, the
philosophy being that differential topology is globalised multivariable analysis.
3.2.1 S” by equations

Last chapter we defined the n-sphere by equations

n
Dlad = 1},
1=0

St = {(:vg,...,xn) e R**!

and by hand gave a smooth atlas for it.

However, when you define a manifold by equations, it is much easier to
obtain the smooth atlas using results from multivariable calculus; the inverse
function theorem. This uses the notion of a total derivative of a map g: R™” — RP
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(or between open subsets thereof) [DK04a, Section 4.5]: at x € R", the total
derivative Dg, of g at = is the linear map described by the (p x n)-matrix of
partial derivatives

0 0 0
L) L@ o 2@
L@ Lo - L@
T
Zw B@ o 2@

The local version of the inverse function theorem then says the following [DK04a,
Theorem 3.2.4]:

Theorem 3.2.1 (Inverse function theorem). Let Uy < R™ be open and a € Uy.
Suppose g: Uy — R™ is a smooth map whose total derivative Dg, at a is an
tnvertible linear map. Then there exists an open neighborhood U < Uy of a such
that g(U) is open and

glv: U — g(U)

s a diffeomorphism onto this open subset.
By adding variables, you can deduce the implicit function theorem [DK04a,

Theorem 3.5.1] from this. The following is a consequence of that result [DK04a,
Section 4.5]:

Theorem 3.2.2 (Submersion theorem). Let Uy < R™ be open and a € Uy.
Suppose g: Uy — RP, p < n is a smooth map whose total derivative Dg, of g at a
is a surjective linear map. Then there exist open neighborhoods U < Uy of a and
V < RP of g(a), and diffeomorphisms ¢: R™ — U and ¢: RP — V, such that

(1) ¥(0) = a,
(ii) ¢(0) = g(a), and

(iii) the following diagram commutes

R" —=5 UcUycR"®

oLk

RF — =,V cRP,

12

A

with 7, the projection (z1,...,zn) — (z1,...,2p). That is,
g((z1,...,2pn)) = @(z1,...,2p).

Remark 3.2.3. A stronger version of this theorem, which is the one stated as
[DK04a, Theorem 4.5.2(iv)], says that ¢ can be taken to be translation near 0.

Parts (i) and (ii) are just normalisations, part (iii) is where the magic happens:
the diffeomorphism v restricted to {0} x R"™P < R"™ gives a local parametrisation
of the inverse image g~!(g(x)) around z, identifying it with an open subset of
the origin in R"~P. We conclude that the subset g~!(c) for c € R? is an (n — p)-
dimensional smooth submanifold of R" when each of the total derivatives Dg,
for x € g71(c) is surjective.
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Example 3.2.4. If we take

g:Rn+1—>R
(205 -+ oy Tp) —> T2+ ..+ 22,

and ¢ # 0 € R, then the total derivative at x = (zo,...,z,) satisfying #3 + ... +

r2 = cis given by the (1 x n)-matrix

[23:0 2r1 - 2xn]

with not all x; zero. If ¢ # 0, then not all entries can vanish at the same time
and this matrix is surjective. In particular, we can take ¢ = 1 to obtain another
proof that the n-sphere is a smooth manifold.

Example 3.2.5. Let p, g be positive integers, and take

g:C? —CxR

(21,22) —> (2} + 23, |21 + | 22]%).

This is smooth, and its total derivative is surjective at all points g~1(0, ) for
(0,¢) € C x R with € > 0 small enough. Thus the inverse image g~'(0,¢) is a
one-dimensional submanifold of C2, which lies inside S2, the sphere of radius e
around the origin. It is in fact also a one-dimensional submanifold of S2, and if
we remove a point from it and identify the result with R3, the result is a so-called
(p, q)-torus link. See Figure 3.2 for an example.

Figure 3.2 A (3,7)-torus knot (since 3 and 7 are coprime, there is only a single component).

3.2.2 S" by parametrisations
One can often parametrise solution sets of equations, e.g. S' is the image of
h: R — R?
0 —> (cos(0),sin(0)).

This map is not a bijection, but it is locally a bijection. It seems quite
plausible that it is in fact a local diffeomorphism of R onto S', though giving an
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explicit formula may be hard. However, the difficulty of finding explicit formula’s
can be avoided by using the inverse function theorem again, in a slightly different
guise [DK04a, Section 4.3].

Theorem 3.2.6 (Immersion theorem). Let Uy < RP be an open subset and
a € Uy. Suppose h: Uy — R", p < n, is a smooth map whose total derivative
Dhg of h at a is injective. Then there exist open neighborhoods U < Uy of a and
V < R"™ of h(a), and diffeomorphisms 1p: RP — U and ¢: R™ — V, such that

(i) ¥(0) = a,
(7i) ¢(0) = h(a), and

(iii) the following diagram commutes

RF —= 5 UcCRP

4

R* —— V c R",
with v, the inclusion (x1,...,xp) — (x1,...,2p,0,...,0). That is,
h((z1,...,2p)) = p(x1,...,2p,0,...,0).

Remark 3.2.7. As before, there is a stronger version stated as [DK04a, Theorem
4.3.1] which says that ¢ can be taken to be translation near 0.

Again part (iii) is the important part: it provides a chart for A(U) as in the
definition of a submanifold. We will later see that the image of h is a submanifold
if we not only suppose that its derivative is injective everywhere but also that
the map h is a homeomorphism onto its image.

Example 3.2.8. If we want to parametrise the n-sphere S", we will need more
than one function h;. For example, we can use 2(n+1) ones indexed by 0 < i < n
and a sign +1:
hi:{yeR™ [[lyll <1} — R
(yla o 7yn) — (yh sy Yi-1, 1 - Hy||27y7,7 s 7yn)

Each covers one of the two hemispheres in each of the n + 1 directions of R™*1.

3.3 Five constructions of the 2-torus

Another important example of a smooth manifold is the 2-torus, one of the basic
surfaces. We will now give five constructions of the torus,

(1) By specifying it as a submanifold of R? using equations.
(2) By parametrising it as a submanifold of R3.

(3) As a product of two circles.

(4) By gluing edges of a square [0, 1]2.
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(5) As a quotient R?/Z2.
All these constructions give us diffeomorphic smooth manifolds, but we will not
prove this. The first three can be thought of as naturally being subsets of some
Euclidean spaces, but the underlying topological space of a smooth manifold
obtained by gluing or quotients is not naturally a subset of a Euclidean space.
This is one of the reasons we gave an abstract definition of manifold in the last
chapter.

3.3.1 The 2-torus specified by equations

Our first construction of a 2-torus is as those points that are distance 1 from
a circle of radius 1/2: it consists of those points (z,y, z) in R? satisfying the
equation (2 — 1/z2 + 32)? 4 22 = 1. More precisely, define

g:R*—R
2
(v,y,2) —> (2 — 2+ y2> + 22
This is smooth and has surjective total derivative at all points in the pre-image of
1. Thus the submersion theorem tells us that g=!(1) is a two-dimensional smooth
submanifold of R3:
T? = g~ '(1).

3.3.2 The 2-torus parametrised
We can parametrise the 2-torus, defined as ¢g~'(1) = R?, as the image of

h: R? — R?

(0,0) —> [(2 4 cos(0)) cos(¢), (2 + cos()) sin(¢), sin(6)].

This is smooth and has injective total derivative at all points in its domain. Thus
the immersion theorem provides local charts for the image of h. These exhibit
the image of h as a submanifold of R3, and give another description of the 2-torus
as a two-dimensional smooth submanifold of R3:

T? = im(h).

Some care is required now, as h is not a homeomorphism onto its image because
it is not injective. Trying to amend this leads one to the definition of the 2-torus
by gluing or as a quotient.

3.3.3 The 2-torus as a product

There is a general method to produce new submanifolds out of old ones.

Lemma 3.3.1. Suppose that X < R™ and Y < R™ are submanifolds of di-
mensions p and q respectively. Then X x Y < R™ x R™ = R"™™ 4s a (p + q)-
dimensional submanifold of R"*™.,
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Sketch of proof. Local parametrisations of X near x and Y near y combine a
local parametrisation of X x Y near (z,y). O

This gives a different construction of T? as a submanifold of R?*: take the
product of S* = R? with itself. Of course, we can forget that S! is a submanifold
of R?, and instead take the abstract product of manifolds discussed in the previous
lecture:

T2 = St x St

3.3.4 The 2-torus by gluing
Let us take a square [0, 1]* and make identifications along its boundary [0, 1]* =
{(x,y) €[0,1]2 | € {0,1} or y € {0,1}} as in Figure 3.3: take [0,1]%/~ with ~
the equivalence relation generated by

(an) ~ (17y) and (377 0) ~ (.’B, 1)
That is, the left edge {0} x [0, 1] gets identified with right edge {1} x [0,1] and

the bottom edge [0, 1] x {0} with the top edge [0,1] x {1} Such a gluing of the
square produces a torus.

Figure 3.3 The 2-torus is obtained by identifying edges of [0, 1]%.

We now give a 2-dimensional smooth atlas on [0, 1]?/~, see Figure 3.4. It is
easy to give charts for a point represented by (x,%) € (0,1)?; just use a small open
disk B.(z,y) contained in (0,1)2. For equivalence classes [(z,0)] represented by
(x,0) with = € (0,1) we use the chart determined by

¢: Bﬁ(xv 0) - [07 1]2/~

T (R

’ [(z",9)] ify >0
and similarly for the element represented by (0,y) with y € (0,1). For the

equivalence class [(0,0)] we use the chart determined by
¢: B(0,0) — [0,1]%/~
(' + 1,y +1)] ify <0,2" <0,

(@, y) —> [(z" +1,9)] if 2/ <0,
’ [(«',y + 1)] if y <0,
[

(', y")] otherwise.
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Figure 3.4 The open subsets V,, for three charts, one of each type.

The transition functions are mostly given by the identity map which is
obviously smooth, but sometimes by a translation which is also obviously smooth.
See Figure 3.5 for the hardest case. We conclude that

T = [0, 1]%/~.

Figure 3.5 A transition function.

The lesson is, using terms we have not defined yet: a sufficiently nice gluing of
a k-dimensional manifold with corners along its boundary is again a k-dimensional
manifold. In the above example k = 2, the manifold with corners is [0, 1]? and
the boundary is [0, 1]2.

Ezample 3.3.2. Changing the identifications to those in Figure 3.6 and using
similar charts we can endow the Klein bottle and real projective plane with a
2-dimensional smooth structure.

3.3.5 The 2-torus as a quotient

Let us recast this definition in terms of group theory. If you are not familiar with
group theory, you should take a look at a textbook on it, e.g. [Arm8&8].

We can add elements of R? from which we obtain an action of the abelian
group Z? on R?: the element (n,m) € Z? acts on (z,y) by sending it to its
translate (n,m) - (z,y) = (z + n,y + m). Let us look at the set

R?/Z? := R?/~ with (z,y) ~ (z',¢) if (n,m) - (x,y) = (2, ¢/) for (m,n) € Z*
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..................... > >
[0,1]? [0,1]?
..................... < <
Klein bottle real projective plane

Figure 3.6 Two more 2-dimensional smooth manifolds obtained by identifying edges of [0, 1]2.

with the quotient topology. This is still Hausdorff and second countable.

We claim that R?/Z? inherits from R? the structure of a 2-dimensional smooth
manifold. To do so we describe a 2-dimensional smooth atlas on R?/Z?: for
a point (z,y) € R? we can consider the open disks B.(z,y) for € < i. The

composition of the inclusion with the quotient map
Be(z,y) = R? — R?/Z2
is injective as € < %. We denote its image by V(; v) and resulting map by

¢Ex7y): Be(z,y) — (;7y)‘

We claim these chart give an atlas. Since the map ¢: R? — R2?/Z2 is surjective,
the V(fny) cover. For any two open subsets I/(;y), Y/&/,J/,), the transition function
is just given by translation and hence is smooth.

One way to visualise the result is to give a fundamental domain: an open
subset U < R™ such that U — R?/Z? is injective and U — R?/Z? is surjective.
Then you can think of R?/Z? as being obtained from U by making identifications
along 0U. In this case a moment’s reflection produces (0,1)? = R? as a candidate;
no two elements differ by translation by (m,n) € Z? so (0,1)?2 — R?/Z? is
injective, but (z,y) ~ (x — |z],y — |y|) € [0,1]? so [0,1]* — R?/Z? is surjective.
Thus R?/Z? is homeomorphic to [0,1]?/~ as in the previous section, and thus
we have produced another description of the 2-torus. Under this identification,
the charts we have described to go the charts in the previous section. We get

T? = R?/Z.

There is a general lesson here: a quotient of a k-dimensional smooth manifold
by a sufficiently nice action of a discrete group G is again a k-dimensional smooth
manifold. In the above example k = 2, the manifold is R? and G = Z2.

Ezxample 3.3.3. Can we come up with other examples? One idea would be to use
with some subgroup G of Z?, and take

R*/G = R?/~ with (z,y) ~ («,y) if - (z,y) = («/,y) for g € G,
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instead of R?/Z2. Most of these seem to give variations on the 2-torus, but the
subgroup Z x {0} = Z? does not. In this case a fundamental domain is given by
(0,1) x R, and R?/(Z x {0}) is given by identifying the left edge {0} x R of the
infinite strip [0, 1] x R with the right edge {1} x R; an infinite cylinder.
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Smooth maps

In this lecture we will define smooth maps. This material appears at the end of
Section 1 of [BJ82], as well as Section 2. For more details, see [Tull, Chapters 6,
8].

4.1 Smooth maps and diffeomorphisms

Let us recall some definitions from Lecture 2, on which we shall elaborate now:

Definition 4.1.1. Let M and N be smooth manifolds of dimension m and n,
with smooth maximal atlases {(Ua, Va, ¢a)} and {(Ug, Vi, ¢5)}. A continuous
map f: M — N is said to be smooth if for all charts (Uy, Va, ¢o) of M and
(Ug, V3, ¢5) of N, the map

(¢5) " o foda: R™ 265 (Va n [TH(VE) — (6) 7' (Vg) = Uy < R™ (4.1)
between open subsets of Euclidean spaces is smooth.

It may be helpful to expand (4.1) into a commutative diagram

R™ 5 ¢ (Vo f7UV) —2 Vin f7U(V)) € M

(¢g)*1ofo¢ai Jf
R™ S Up = (¢) 7' (V3) Vi< N.

2}3\

In terms the definition of a smooth map, we explained when we consider two
smooth manifolds to be the same:

Definition 4.1.2. A smooth map g: M — N between smooth manifolds is a
diffeomorphism if it has a smooth inverse.

We say M and N are diffeomorphic if there is a diffeomorphism between
them. This is an equivalence relation.

Example 4.1.3. The real projective space RP! is diffeomorphic to S*.
Example 4.1.4. The complex projective plane CP! is diffeomorphic to S2.

29
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Ezample 4.1.5. All five definitions of T2 that we gave—by equations, by parametriza-
tion, as a product, by gluing, and a quotient—are diffeomorphic.

Ezample 4.1.6. RF is diffeomorphic to R if and only if k = I. This is a smooth
variant of ‘nvariance of domain.

4.1.1 Properties of smooth maps

Definition 4.1.1 at first sight involves a condition that is hard to check, as both
maximal atlases will in general have infinitely many charts. However, it suffices
to only verify the condition on a smaller collection of charts; all these need to do
is cover the entire domain M, as well as the image f(M) < N in the target.

Lemma 4.1.7. Let {(U;, Vi, ¢i)}ier and {(U}, V], ¢})}jes be collections of charts
of M and N respectively, such that | J,c.; Vi =M and f(M) < UjeJ Vj/. If for all
1€l and j e J, the map

el

(65)7 0 fo s R™ 2 671 (V; A f7HVE)) — (¢) 71 (V)) = U] < R”

between open subsets of a Euclidean space is smooth, then f is smooth.

Proof. We must prove that every map
(@5) " o foda: R 26 (Van fTHVE) — (65) " (V§) = Uy < R”

is smooth. Since being smooth is a local property, it is enough to prove that
each v € ¢ (Vo f _I(Vﬂ’)) has an open neighbourhood such that the restriction
to this open neighbourhood is smooth. Let us pick charts (U;, V;, ¢;) so that
z € V; and (U}, V}, ;) so that f(z) € V. Then we can write the restriction to
O (Vo n Vi (f_l(Vé nV))) as

() o d) o (@)™ o f o) 0 (47 0 da),
which is a composition of three smooth functions. O

A first consequence of this is that in Definition 4.1.1 we could have equivalently
taken any atlases of M and N compatible with their maximal atlases. A second
consequence is the following rephrasing:

Corollary 4.1.8. A map f: M — N 1is smooth if and only if for all m € M
there is a chart (Un, Va, ¢a) around m in M and a chart (Uj, Vg, ¢j3) around
f(m) in N, such that the map

(@) o foda: R™ 26, (Van fTHVE)) — (¢) (V) = U < R”
between open subsets of Euclidean spaces, is smooth at m.

Sometimes you can pick a few charts particularly well-suited to your situation:
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FEzample 4.1.9. A map f: R™ — R" is smooth in the above sense if and only if it
is smooth in the sense of multivariable calculus, since we may use the identity
as a single chart for both R™ and R™. This justifies our lack of distinction
between “smooth in the sense of multivariable calculus” and “smooth in the sense
of differential topology.”

Ezxample 4.1.10. If M and N are spheres S™ and S™, we know that each of them
can be covered by two charts using stereographic projection and hence we can
get away with checking only four cases.

Ezample 4.1.11. The diagonal map

A:M— MxM
p— (p.p)
is smooth, where the target is made into a smooth manifold by taking products
of charts. Indeed, we can verify this using charts (Uy, Vi, ¢o) on the domain and
charts of the form (U, X Uy, Vo X Vi, o X ¢o) on the target. The result then

amounts to verifying that the diagonal R* — R* x R* given by 2 — (z,z) is
smooth.

4.2 Constructing smooth maps

In practice, one often constructs new smooth maps out of old ones using one of
the following tools. Parts (iii) and (iv) use the construction of a smooth structure
on an open subset of a smooth manifold.

Lemma 4.2.1.

(i) For every smooth manifold M, the identity map idps is smooth.

(ii) If {U;} is an open cover of M and each f|y,: Ui — N is smooth, then
f: M — N is smooth.

(iii) If f: M — N and g: N — P are smooth, then so is go f: M — P.
(iv) If f: M — N is smooth and U = M is open, then f|y: U — N is smooth.

Note that (iv) gives the converse to (ii), so we can replace “if” by “if and only
it” there.

Proof. (i) If f =idps, then (4.1) becomes

05" 0 ba: by (Va 0 V) — ¢35 (Va),

which is smooth by definition of an atlas, as it is a transition function
followed by the inclusion of an open subset.

(ii) By Lemma 4.1.7, it is enough to verify smoothness with respect to the
collection of charts (Uy, Vi, ¢o) with the property that U, < U; for some
i. In that case, we can replace in (4.1) the map f by f|y, and smoothness
follows from the hypothesis that f|y, is smooth.
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(iii) We write out (4.1) as
(¢h) " togofoga: R™ 2 ¢ (Van(gof) 1 (V))) — (¢5) 1 (Vy) = Uy c R
Then for each chart (Ug, V3, ¢5) we can write (¢2) togo fogq as

((¢7) " ogodh)o((¢h) " ofoda)

when restricting to ¢ (Vo f 1 (Vg)n (gof)~H (V). This is a composition
of a smooth map between open subsets of R” and R™ with a smooth map
between open subsets of R™ and RP, and hence is smooth. Since the
open subsets ¢ (Va 0 f71(V3) n (g o f)~'(VY)) give an open cover of
¢! (Va0 (go f)~1(V))) and smoothness is a local property, this tells us
that ((¢7) ™' o go f o ¢q) is smooth.

(iv) It suffices to prove that the inclusion i;: U — M is smooth, as then f|y is
the composition f oiy of two smooth maps. Using the chart on U obtained
by restricting those on M, (4.1) becomes

$5' 0 Pa: 05 (U N Vo V) — ¢35 (Va0 Vi),

which is just the restriction of the smooth map gbgl 0 ¢, to an open subset.
O

Remark 4.2.2. Using part (i) and (iii) we can define a I-category Mfd of smooth
manifolds; its objects are smooth manifolds and morphisms from M to N are
smooth maps. Part (i) then implies that this category has identity morphisms
and part (iii) implies that composition is well-defined. We takes this up again
later.

Category theory is a useful language for studying topology and related fields,
as many objects of interest can be defined in terms of universal properties saying
how other objects should map to them or receive maps from them. Let us give
two examples.

Recall that we have defined the disjoint union of M 1 N of two manifolds
of the same dimension. It is a consequence of parts (ii) and (iv) that a map
f: M u N — P is smooth if and only if f|y; and f|y are. This exhibits M 1 N
as the (categorical) coproduct in Mfd.

We also defined the product M x N of two smooth manifolds. By Problem 7
the projection m1: M x N — M and my: M x N — N are smooth. Thus by (iii)
if f: P — M x N is smooth so are its components 7 o f and 72 o f. Note that
we can recover f as

PAPXP (m1of)x(mwaof)

M x N,

which is smooth as a consequence of (iii), Example 4.1.11, and Problem 7 (d).
We conclude that f: P — M x N is smooth if and only if its components
mof: P— Mand meof: P— N are. Thus M x N is the (categorical) product
in Mfd.
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It is particularly easy to construct smooth maps into or out of submanifolds.

Lemma 4.2.3. Suppose that X < M is a submanifold.

(i) The inclusion i: X — M is a smooth map.
(i) If f: X — N extends to a smooth map f: M — N, then f is smooth.
(iii) If g: N — X is such that i o g is smooth, then g is smooth.

Proof. (i) Since X is a submanifold, we can find charts (Uy, Va, ¢o) of M
covering X such that ¢;'(V, n X) = U, n R¥. In fact, it is these charts
that generate the atlas on X. By Lemma 4.2.1 (ii), it suffices to prove that
ilv,~nx: Vo n X — M is smooth. Since we can cover V,, n X by the single
chart (Us N R¥, Vi 0 X, @aly, ~rr) and its image by the chart (Ua, Va, @a),
by Lemma 4.1.7 it suffices to prove that

-1 _ .
o 0tlv,~x O¢Q‘UamRk: U, ARF — U,

is smooth. But it is just the inclusion of those points with last m — k
coordinates equal to 0, which is clearly smooth!

(ii) Since f = f o, this follows from (i) and Lemma 4.2.1 (iii).

(iii) We again use charts (Us, Vi, #o) of M covering X such that ¢, (Vo n X) =
U, nRF. By Lemma 4.1.7, g is smooth if and only if

(¢alv,~rr) ' ogods

is smooth for all charts (U, é, Vé, (;523) of N. However, we are guaranteed that
all maps
(¢a) "o godls

are smooth, which differ from the previous maps by composition with
the standard inclusion R¥ — R™ onto the first k& coordinates, m > k.
Composing these with the projection R™ — RF onto the first k& coordinates,
we recover the previous maps as a composition of smooth maps and hence
they are smooth. O

Remark 4.2.4. We will later be able to prove that (ii) is actually an “if and only
if”.
Ezample 4.2.5 (Rotations as diffeomorphisms of S™). By Lemma 4.2.3 (ii) and
(iii), a map S™ — S™ is smooth if it extends to a smooth map R"*! — R+,
We will use this to construct diffeomorphisms of S™. Let us take a matrix
A € O(n + 1), the group of orthogonal (n + 1) x (n + 1)-matrices. By definition
an orthogonal matrix preserves the Euclidean norm ||z||, and hence z — Az
sends S™ to S™. Furthermore, each entry of Az is just a linear combination of
the entries of = so is easily seen to be smooth. Thus x — Ax gives an example of
a smooth map S™ — S™. It has an evident smooth inverse given by z > A~ 'z,
We have thus just produced a map O(n + 1) — Diff(S™), the latter the group
of diffeomorphisms of S”. The latter can be endowed with a natural topology
which makes this map continuous. If n < 3, it is a homotopy equivalence by work
of Smale and Hatcher [Sma59, Hat83]. If n > 4, it is not a homotopy equivalence;
the case n = 4 was only proven recently [Wat18].
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Ezxample 4.2.6 (General linear groups). The set M, (R) of (n x n)-matrices with
real entries can be identified with R"2, and through this identification can be
made into a smooth n?-dimensional manifold. Matrix multiplication gives a map

f1: My (R) x My (R) —> My (R)
(A,B) —> AB

which we claim is smooth. To check this, we use that there is a single chart
covering M, (R), the standard identification, and similarly a single chart covering
M, (R) x M,(R), a product of two standard identifications. By Lemma 4.1.7 it
suffices to prove that matrix multiplication is smooth with respect to these charts
only; this is true because it is a polynomial in the entries of the matrices and
hence smooth.

The open subset GL,(R) < M,(R) of invertible matrices, which can be
described as the complement of the closed subset determined by the equation
det = 0, is hence also a smooth n?-dimensional manifold. Since a composi-
tion of invertible matrices is again invertible, Lemma 4.2.3 implies that matrix
multiplication restricts to a smooth map

p: GL,(R) x GL,,(R) — GL,(R).
We can also take the inverse of an invertible matrix, giving a map

t: GL,(R) — GL,(R)
A ATY

which is also smooth. Indeed, using again the standard identifications as charts,
we can use Cramer’s rule:
-1 _ 1 T
det(A)

with C the cofactor matrix; its (i, j)th entry is given by (—1)"*7 det(A;;) where
A;; is obtained from A by deleting the ¢th row and jth column. The details are
not important, only that it is a smooth function of the entries of an invertible

matrix.

An example of a group which compatibly is a smooth manifold deserves a
name:

Definition 4.2.7. A Lie group is a smooth manifold G which is also a group,
such that multiplication p: G x G — G and inverse ¢: G — G are both smooth.

4.3 Problems

Problem 7 (Maps in or out of products). Let X,Y be smooth manifolds.

(a) Prove that the projection maps 71: X x Y — X given by mi(z,y) = x
and m: X x Y — Y given by ma(x,y) = y are both smooth.
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(b) Show that
T(:v,y) (X X Y) —> TxX (—BTyY

v (d(gy)m1(v), d(z ) T2(v))
is an isomorphism of R-vector spaces.
(c¢) Fixing a point y € Y, there is an injection map
iy: X — X xY
z— (z,9),
which you may assume is smooth. Prove that its derivative dyi,: T, X —
Ty (X xY) =T, X ®T,Y is given by w — (w,0).
(d) Let f: X > X" and g: Y — Y’ be smooth maps. Prove that

fxg: XxY — X xY’
(z,y) — (f(2),9(y))
is smooth. Prove that its derivative d(,,)(f x g): T(z4)(X x Y) —

y)
T @), (X x Y') is given by (v,w) +— (dgf(v),dyg(w)) under the
isomorphism (4.2).

Problem 8 (Complex general linear groups). Show that GL,(C) is a (2n)-
dimensional Lie group.

Problem 9 (Orthogonal groups). Show that O(n) < GL,(R) is an n(n2—1)_
dimensional Lie group.
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Derivatives

In this lecture we will define the derivatives of a smooth map at a point, and
in the next lecture we will assemble these together. This material appears at
the end of Section 1 of [BJ82], as well as Section 2. For more details, see [Tull,
Chapters 6, 8|.

5.1 Derivatives and tangent spaces

We want to extend the notion of a derivative of a smooth map between two open
subsets of Euclidean space to a smooth map between smooth manifolds. This
is useful because the derivative determines the local behaviour of smooth maps.
Using it, we will be able to formulate and prove global versions of the submersion
and immersion theorem.

If you are unfamiliar with the total derivative of smooth maps between open
subsets of Euclidean spaces, take a look at Chapter 2 of [DK04a]. For each x € R¥,
we can think of R¥ as a space of vectors based at z. It has a standard basis. A
smooth map g: R¥ 5 U — R¥ has a total derivative at x given by the linear
map, whose matrix with respect to the standard bases is the (k' x k)-matrix of
partial derivatives

0 0 0

B L@ - 2

By Ee o e
M

. o . o

aiﬁ, () aik;(x) ai’j:(x)

with g;j: U — R the jth component of g.

Our goal will be to construct for each point m in a k-dimensional manifold M
a tangent space T, M, as well as for each smooth map f: M — N a derivative
dm [+ TmM — Ty N. The tangent space should satisfy the following properties:

(I) Each tangent space T,,M is a R-vector space.
(IT) In local coordinates it can be identified with R¥ in a natural manner.
The derivative should satisfy similar properties:

(") Each derivative d,, f is a linear map.

36
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(IT’) In local coordinates it can be identified with the total derivative in a
natural manner.

(IIT") Tt satisfies dy,(idas) = id7,, m, and the chain rule dp,(go f) = df@m)g 0
dm f.
We have not explained what “in a natural manner” means here. It is intended
informally, but can be given some content by demanding that the identifications
are compatible with changing coordinates.

There is a number of perspectives on tangent spaces and derivatives, leading
to different but equivalent definitions. Which is most useful depends on your
setting, and we will discuss five of them eventually. In the end, the “stating
globally” part of our philosophy to state globally and prove locally, will allow us
to dispense with the details of the definitions.

5.1.1 The algebraicists’ definition

Intuitively, the tangent space to a k-dimensional submanifold of Euclidean space
at some point is the k-dimensional affine linear subspace that best approximates
it. However, we do not know (yet) that every smooth manifold is a submanifold
of some Fuclidean space, nor do we want to verify that the resulting definition is
independent of the choice of such an embedding. So instead, we want a definition
of T,,M that only refers to M and its maximal atlas. The first definition we will
give, the algebraicists’ one, does so, and will be our official one. However, you are
free to use one of the definitions in the next section if those are more convenient
for solving the problem at hand.

Germs of smooth maps and smooth functions

We start with the observation that the derivative of f: M — N at m € M should
only depend on the behaviour of f in a small neighbourhood of m. Let us define
an equivalence relation ~ on the set

{f: U — N|Uc M an open neighbourhood of m, f smooth},
by saying that
f ~ g if there exists an open neighbourhood V' of m such that f|y = g|v.

Definition 5.1.1. The equivalence class of a smooth map f: U — N under ~
is called germ of f at m, and denoted f: (M,m) — N. If we like to stress that
f(m) = n, we will use the notation f: (M, m) — (N,n).

We can compose germs: given f: (M, m) — (N,n) and g: (N,n) — (P,p),
their composition is

gofi=go7,

leaving it to the reader to verify this is well-defined, i.e. independent of the choice
of representatives.



38 Chapter 5  Derivatives

Definition 5.1.2. A function germ is a germ @: (M, m) — R. The set of
function germs is denoted E(M,m).

Pointwise addition, scaling, and multiplication of functions induces on E(M, m)
the structure of an R-algebra: this means it has addition, scaling, and multiplica-
tion operations

f+g=f+g, M =Xf, and fg:=fg for f,ge &(M,m)and N\ e R,

These should satisfy appropriate commutativity, associativity, unitality, and
distributivity axioms. We will leave it to the reader to verify these operations
are well-defined, and satisfy these required properties (which will follow directly
from the corresponding properties of the real numbers).

Ezxample 5.1.3. Evaluation at m € M induces a function

evpy: E(M,m) — R
[ f(m).
This is an R-algebra homomorphism, i.e. preserves addition, scaling, and multi-
plication.
We can precompose function germs in (M, m) by a germ f: (Q,q) — (M, m),
and thus get an R-algebra homomorphism
f*:&(M,m) — &(Q,q)

a|—>aof=ogof,

The usual properties of composition of functions imply:

Lemma 5.1.4.

- f* is an R-algebra homomorphism,
- id* = id, and
~(go f)F = [froyg”.

In particular, if ¢ is a diffeomorphism then ¢* is an isomorphism of R-algebras;
its inverse is given by (¢~!)*. Furthermore, since a germ only depend on maps
on arbitrarily small open neighbourhoods of m, it suffices that ¢ is a local
diffeomorphism.

We can apply this observation to a chart (U,, Vi, ¢o) with m € V,,. By
translation, we may assume without loss of generality that ¢, (0) = m. Then
we can consider ¢, as a local diffeomorphism U, — M and hence it induces an
isomorphism

(¢a)*: 8(Ma m) — &y,

of &(M,m) with &, := &(R¥,0), the R-algebra of functions germs (R¥,0) — R.
Any two such identifications differ by an isomorphism (¢g,)* induced by a
transition function.
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From germs to the algebraicists’ definition of tangent spaces

The idea behind the algebraicists’ definition is that a vector ¢ based at m € M
induces a directional derivative of functions f: M — R, which we can imprecisely
write as

o) = D

(The difficulty is that we can not make sense of m + tv, but let us just go with
it.) This only depends on the germ f of f at m. Furthermore, by the linearity of
derivatives and the product rule, this should satisfy

dg(f +79) = ds(f) +ds(9), da(Af) = Mdy(f),
and  dy(fg) = dg(f)g(m) + f(m)dy(g).
Let us abstract this definition:

(0) e R. (5.1)

Definition 5.1.5. A derivation X : E(M, m) — R is a function which satisfies
- X(f+9) = X(f) + X(9).
- X(Af) = AX(f), and
- X(fg) = X(H)g(m) + f(m)X ().
Example 5.1.6. The value of X on the constant function 1 is given by
X1H)=X1-1)=X(1)-1+1-X(1)=2-X(1),
so X(1) = 0. As a consequence of linearity, X (constant function) = 0.

We can add and scale such derivations, making them into a R-vector space:
(X +Y)(f) = X(f) +Y(f) and (AX)(f) = AX(f).

Definition 5.1.7. The tangent space T,, M is the vector space Der(E(M,m)) of
derivations X : E(M,m) — R.

Let us recap: &(M,m) is the R-algebra of germs at m of smooth functions
M — R. We take derivations of this algebra, a notion inspired by directional
derivatives. These form a vector space as in desideratum (I) but it remains to
show that the vector space T, M is k-dimensional if M is k-dimensional as in
desideratum (IT). To do so, we use that the isomorphism (¢, )*: E(M,m) > & =
&(R*,0) induced by a chart induces a linear isomorphism

ToR* = Der(&) > Der(E(M,m)) = T,, M.

Thus it suffices to prove that TyR* is k-dimensional. Unlike on M, on R* we
can make sense of addition, and hence the directional derivatives of (5.1) with
respect to each of the k coordinate directions give derivations

0
: —s R
of

To see that these are linearly independent, apply them to the coordinate functions
xj: (z1,...,2) — x;. Every other derivation is a linear combination of these:
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Proposition 5.1.8. The derivations 6%1 form a basis of TyR*, and in particular
the latter is k-dimensional.

We will use the following lemma:

Lemma 5.1.9. Let U c R* be an open neighborhood and f: U — R a smooth
function. Then there exist smooth functions fi,..., fr: U — R such that

k
f@) = £0) + ) wifi(x).
i=1
Proof. The fundamental theorem of analysis implies
1 d n 1
o dt = Jo
with d; f the partial derivative in the ¢th coordinate direction. So we have that

1

filx) = J dif(txy, ..., txy)dt. O
0

This implies that for germs we have f = f(0) + >, Z; f;.

Proof of Proposition 5.1.8. We prove that X = Z?zl X(xﬂ% by proving that

k 0
V=X — ZIX(xi)E

vanishes on all germs. By construction, it vanishes on the coordinate function.
Then we have that

Here we use that 7; evaluates to 0 at the origin, and that Y (z;) vanishes by
construction. O

The algebraicists’ definition of derivatives

A smooth map f: M — N sending m to n induces a map of germs f*: E(N,n) —
E(M,m), which in turn induces a map of tangent spaces
A f: TnM — T,,N
X+— Xo f*

This is the derivative of f at m. From the properties of f*, we easily deduce the
basic properties of the derivative, desiderata (I’) and (IIT’):
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Lemma 5.1.10.
(i) dpmf is a linear map
(ii) dpnid =id, and
(ZZZ) dm(g © f) = df(m)g odnf.
You may recognize (iii) as an incarnation of the chain rule. We will compare
it to the chain rule in multivariable calculus later in this section.

Ezample 5.1.11. If f: M — N is a diffeomorphism, then it follows from (ii) and
(iii) that dp, f is invertible with inverse d () f ™"

Ezxample 5.1.12. To compute the derivative, you can often exploit the chain rule.
Recall that m1: X x Y — X has derivative
dizy)T1: Lo X ®@T)Y =T, ) (X xY)—> T, X,

is given by projection onto the first summand. The analogous statement is true
formg: X xY Y.
We will deduce from this that the diagonal map

A M—MxM

m — (m,m)

has derivative T, A: T, M — Tpysmn (M x M) = T, M@®T,,, M given by v — (v, v).
To see this, observe that m; o A and me 0o A have derivatives given by the first and
second components of T;,A. We apply the chain rule to m; 0 A = idj; = w9 0 A.
For example, for the first equality: the first component of T,,,A(v) is given by

T(m,m)ﬂl o TmA(U) = Tm(wl 9) A)(U) = Tm(ldM)(’U) = V.
For example, this implies that the diagonal map has injective derivative every-

where.

Let us finally describe explicitly T}, f in terms of charts, and verify desideratum
(IT’). Fix a chart (Us, Va, ¢a) of M such that ¢, (0) = m, and a chart (U.,, V., ¢,)

/'y o

of N such that ¢/,(0) = f(m). Let us denote f(m) by n. What is the dashed
linear map which makes the following diagram commute?
dm f
T M —— T, N
;Tdoﬁba ;Tdotb;, (5.2)
RF >~ TyRF - > RF ~ TyR¥.
Lemma 5.1.13. It is the total derivative Do((¢,) " o f o ¢qa).
Proof. As (do¢l,)™! = d,((¢,)™") by Example 5.1.11, and

dn(¢h) " 0 di f 0 dodpa = do((Bhy) ™" 0 f 0 da)
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by (iii), it suffices to compute explicitly the derivative of g: R¥ — R¥ at the
origin; we will substitute g = (¢/,) "' o f 0 ¢o. We write g;: RF — R for the jth
component of g, 1 < j < k.

Given h € €j/, we can use the chain rule to compute that

dog(55;) () = M =] ih (9gj Z %i o

6:6, J’

As this is true for all h, the a——component is agj (0). These are exactly the entries
of the total derivative matrix. O

Remark 5.1.14. We can use this to justify calling d;,(g o f) = dfm)g o dmf a
chain rule, by proving that under charts it reduces to the chain rule you already
know. Fixing a third chart, we have a triple of commutative diagrams (three
instances of (5.2))

T, M o f T, N

;TToqba ;TTW;I

Do((¢' )" tofoda , ,
RF = TyRF %) ), R¥ ~ TyR¥,

df(m)9

Tp(m)IN Tyop(m)P

;TTO (b/o/ ;TTO ¢:;//

’ ’ D ((¢////)7logo¢l1) ” "
RF ~ TRV e o, R ~ TyRK",

dm(gof)

TN TooramP

;TTO ¢a ;TTO d):;//

D ¢”// 1o ofoda " "
RF = TuRE D WGar) 00T 00e) i

Identifying the term dj(,)g © dmf in charts using the vertical arrows in
the three commutative diagrams pictured above, we get a composition of total
derivatives

Do((¢n) ™" 0 g o dlas) 0 Do((¢) ™" © f © ¢a)-
By the ordinary chain rule this is the total derivative

Do((dar) ™ 0 g0 ¢ 0 (dp) ™ o foda) = Do((dar) " ogo foga),

which is indeed d,,,(g o f) under the above identification.
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Thus, we can combine the three squares into a larger commutative diagram
combining the general chain rule and the chain rule in local coordinates:

dm(gof)
e T
Ty M dnd T,N fom? dyo () P

;TTD% QTTO%I ;TTW’;,,
D ((gi)’,)_lofod)a) / , D (((j)””)_lofoqb/,) ” ”
RF ~ TyRF — @ RF ~ TpRF e oy RF ~ T RF

\—//

DO(((bi;//)ilogofo(ba)

5.2 Alternative definitions of tangent spaces and derivatives

Recall that we are giving five definitions of the tangent space T,,M, and have
just given the first. In this section we give three other definitions, leaving a final
one to the Problem 10.

5.2.1 The definition for submanifolds of Euclidean space

You probably have an intuition for the tangent space at m to some k-dimensional
smooth submanifold M < R™. Informally, it is the k-dimensional affine plane in
R™ through m € M, which is the best linear approximation to M. Before making
this precise, we give an example:

Example 5.2.1. By definition, a point z € S¥ < R*¥*! is given by a unit length
vector in RF*1. Then the tangent space T,S* is the k-dimensional affine plane
given by

T,8" ={x+v|vLla}

Note that, upon translating m back to the origin, this affine plane yields a
linear subspace of R™. This gives T,, M the structure of an m-dimensional real
vector space.

To define T,,, M rigorously, we fix a charts (Uy, Va, ¢o) of M such that m € V,,
and let z = ¢_!(m). Then from the inclusion i: M — R", we can construct a
smooth map between open subsets of Euclidean space

i0dy: RF o U, — R".

The best linear approximation to this smooth map at x is given in terms of the
total derivative D, (i o ¢ ) as

RF S U, 5y —> (10 ¢a)(x) + Dyp(iogo)(y —x) € R™.

It is a consequence of the definition of a submanifold that D(ic ¢, ), is an injective
linear map; indeed, in terms of some other chart of R™ it is a restriction of the
inclusion R¥ < R™. This tells us that:
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Definition 5.2.2. One definition of the tangent space T;, M is as
TSNS = 1+ D, (i 0 da) (R,

considered as a k-dimensional real vector space by its identification with D, (i o

o) (RY).

We need to verify that this is independent of the choice of chart. This is the
case because if we use another chart (Ug, V3, ¢3), we have

iogg=(i0da)o (da' 0 dp) = (i0da) o Vsa,

so its total derivative is given by D,(i 0 ¢q) 0 Dy (184). Since g, is a diffeomor-
phism, D,/(1)gq) is a linear isomorphism and hence

Dy (i 0 ¢3)(RY) = Dy(i 0 ¢o) (RY).

Relation to algebraicists’ definition

We have previously identified ToR"™ with the n-dimensional real vector space
spanned by the derivations 0/0x;. You can think of this as applying the formalism
above to M = R", using the standard chart (R™,R",id).

Given an inclusion i: M — R", where without loss of generality we may
assume by translation that i(m) = 0, we can compute the derivative of i at m
with respect to the standard chart of R” and some chart (Uy, Vy, ¢o) of M with
®(0) = m. By the chain rule there is a commutative diagram of linear maps

T, M dm1 TyR™
;TT()d)a ETid
RE ~ TyRF —200%%) pn o e,

Because M is a submanifold d,,i is injective, as in terms of appropriate charts
it is the derivative of the inclusion R¥ — R™. This tells us that we could have
defined T, M as the image of the linear map d,,i. By the commutative diagram,
this linear subspace is the same as the image of the total derivative Dy (i o ¢q).
Undoing the translation of i(m) to the origin, we recover the T5™P™fdAs We
conclude that there is a preferred linear isomorphism

T M —=> T,

5.2.2 The physicists’ definition

For physicists, a tangent vector is described in terms of a chart (thought of as
a local coordinate system), which transforms in a certain way when passing to
other local coordinates. That is, an element of T;, M is an equivalence class of a
chart (Uy, Vi, do) such that ¢,(0) = M and a vector v € R¥. The equivalence
relation tells us that v transforms as expected: by applying the total derivative
of the transition function g,
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Definition 5.2.3. The physicists’ definition of the tangent space of M at m is

TERYS M = || R*]/~
(UOA7VOH¢Q)

where the disjoint union is over all charts with m = ¢,(0) and the equivalence
relation ~ is given by

(a,¥) ~ (B,w) if and only if W = Dogtpga (V).

Remark 5.2.4. This definition reflects the experimental roots of physical theories:
the transformation rule under change of local coordinates for physical quantities
is determined experimentally, and a mathematical framework is built on top of
these results.

Since each Dy1)g, is a linear map, addition and scalar multiplication in each
copy of R induce a vector space structure on TP™SM. Since each copy of R¥ is
identified with every other copy, this is a k-dimensional vector space. To get a
corresponding notion of derivative, we observe that any smooth map f: M — N
induces a map

dphys_ Tphyspr Tphys N
rooom f(m)
[, 7] — [@', Do((¢a) ™" © f 0 ¢a) ()]

Relation to algebraicists’ definition
The maps
RF — T, M
(0, ) — (Doga) (Y vid/0w:)
i
are compatible with the equivalence relation, and thus induce a linear map
TPPYS(M) — T,, M. On representatives of the form (a, @), its composition with

the linear isomorphism (Dg¢a)~t: T, M — R¥ is given by (o, ¥) +— ©, so this is
an isomorphism. We conclude that there is a preferred linear isomorphism

TPhYS (M) % T, M.

This identification is compatible with the construction of derivatives: we leave it
to the reader to verify that the following diagram of linear maps commutes

phys
TR Ly TSN
b o
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5.2.3 The geometers’ definition

For geometers, a tangent vector is the derivative of a curve. As such, it is an
equivalence class of germs of smooth maps

7: (R,0) — (M, m).

Because we want to avoid a circular definition, we can not (yet) refer to the
derivative of this map. However, we can take a function germ g: (M, m) — R
and compute

d

Eg © ’Y(O),
a derivative of a real-valued function on a neighbourhood of the origin in R. This
allows us to introduce an relation ~ on curves through m, given by

5 ~7 if and only if %g ov(0) = %g on(0) for all g: (M,m) — R.
That is, if v and 7 define the same directional derivative.
Definition 5.2.5. The geometers’ definition of the tangent space of M at m is
TS M = {germs (R,0) — (M, m)}/~.

We will explain how to make it a vector space momentarily. To get a
corresponding notion of derivative, we observe that any smooth map f: M — N
induces a map

geom | rpgeom __, qgeom
dm: TE™M — THN

7] — [f on]:

Relation to algebraicists’ definition
There is a map
TE™MM = {germs (R,0) — (M, m)}/~ — T,, M = Der(E(M,m))
_ = d(hoy)
— h+—> —~
1 — (i 1220

By evaluation on coordinate functions in a chart, this is seen to be injective. By
construction of curves in the same chart, this is seen to be surjective. Hence it is
a bijection. In particular, we can use this to make T8*°™ M into a vector space,
getting tautologically a linear isomorphism.

TE™ M =5 T;, M.
)
Again, this is compatible with the construction of derivatives: we leave it to
the reader to verify that the following diagram of linear maps commutes

a5 f

eom geom
Teeom M Tf(m) N
o
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5.3 Problems

Problem 10 (The algebraic geometers’ definition). In this problem you will give
the algebraic geometers’ definition of a tangent space.

(a) Prove that there is a unique maximal ideal of (M, m), given by m,, =

{f | f(m) =0}
(b) Prove that for (M, m) = (R¥,0), the maximal ideal mg is spanned by the
coordinate functions z1, ..., xx.

(c) Prove that &(M,m)/m,, is a 1-dimensional R-vector space, and m,,/m2,
is k-dimensional if M is k-dimensional.

The algebraic geometers’ definition of the tangent space of M at m is
T2 M = (m,,/m2)*.

(d) Construct a linear map d28f: T38M — T?(gm)N for each smooth map
f: M — N. Prove it satisfies d?8id = id and d?¢(go f) = d?f(;m)g odf.

e) Construct a linear map 1,,M — T28M and prove it is an isomorphism.
p m p p
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Tangent bundles

We now assemble the tangent spaces to tangent bundles, and the derivatives of a
smooth map to a map of tangent bundles. This appears in Chapter 2 of [BJ82].
See also [Tull, Chapters 6, §8].

6.1 Vector bundles

Recall that the total derivative of a smooth map f: R™ — R" at a point z € R™
is a linear map R™ — R"™ which with respect to the standard coordinates is given
by the (n x m)-matrix of partial derivatives of its components at x. Importantly
it depends smoothly on . On smooth manifolds the domains and targets will
depend on points m and f(m) respectively, so we can not state the smooth
dependence on m without first assembling the tangent spaces and derivatives to
each m € M together in an appropriate object, known as a vector bundle. This is
one of the other geometric objects studied by differential topology, in addition to
smooth manifolds, and the tangent bundle is the prototypical example.

6.1.1 Vector bundles

We start with the topological variant, before adding in the smooth structure later
in this lecture:

Definition 6.1.1. A k-dimensional vector bundle over a topological space X is a
topology on the disjoint union E = | | .y E; of a collection of real vector spaces,
such that

(i) the function p: E — X sending E, to z is continuous,

(ii) for each x € X there exists an open subset V' < X containing = and a
homeomorphism
¢: | | Bx =V xR
eV

that restricts to an invertible linear map E, — {z} x R¥ for each z € V.

The continuous map p is called the projection, E the total base, X the base,
and each E, a fibre. Finally, the pair (V,() is called a bundle chart.

48
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Example 6.1.2. The cartesian product X x R* has an evident structure of a
k-dimensional vector bundle. We call this the trivial k-dimensional vector bundle
over X. The property in Definition 6.1.1 is often referred to as a local triviality
condition, as it is says that E locally looks like such a trivial bundle.

Ezample 6.1.3. The real projective space RP" is the space of lines in R"*!.
There is a 1-dimensional vector bundle over it with fibre of L given by those
v € R"! which lie in L. This is the canonical bundle. More precisely, writing
RP™ = S"/{+1}, we have

B ={ve R | v = Az for some \ € R} for [x] € RP™.

We topologise |_|[x] E},) as a subspace of RP" x R"™*1. The local triviality condition
is verified using charts.

6.1.2 Maps between vector bundles

Definition 6.1.4. Let p: E — X and p': £ — X’ be vector bundles (possibly
of different dimension). For a continuous map F': E — E’ to be a map of vector
bundles, the first requirement is that there is a continuous map f: X — X’ the

following diagram commute

O -

ool

x 15 x
Then F restricts to a map of fibres F.: £, — E}( )’ and the second requirement
is that this is a linear map.

Note that f is uniquely determined by F', and we say that F' covers f or F
is over f. It is clear that the identity is a map of vector bundles, and that maps
of vector bundles are closed under composition.

Definition 6.1.5. An isomorphism of vector bundles is a map of vector bundles
which admit an inverse map of vector bundles.

Example 6.1.6. Over S we have exactly two 1-dimensional vector bundles up to
isomorphism: the trivial one and the “Mobius strip” bundle. The latter is given
by the canonical bundle over RP! =~ S!, and can be concretely given by taking
[0,1] x R and identifying the endpoints by (0,v) ~ (1, —v).

Ezample 6.1.7. Let X x R™ be a trivial bundle. The (m x m)-matrices Mat,, (R)
are topologised by identifying them with RrR™ through their entries. Then any
continuous map A: X — Mat,,(R) gives rise to a map of vector bundles

X xR — X xR™
(,v) — (z, A(z)(v)).

This is an isomorphism of vector bundles if and only if A takes values in GL,,(R) <
Mat,, (R), the subset of invertible matrices.
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6.1.3 Smooth vector bundles

As for topological manifolds, we can package the data of k-dimensional vector
bundle over a topological space into an atlas: the collection of bundle charts
(V, Q) for (p, E, X) with V' covering X is called a bundle atlas. As in the case
of smooth atlases, we can define maximal bundle atlases and prove that every
bundle atlas is contained in a unique maximal bundle atlas.

A bundle atlas has transition functions: taking (Vi,(s) and (V3,(g), the
composition

—1
(Vo n'V3) x RE Se ) pil(Va N V3) e, (Vo n'Vp) x RF

is necessary of the form (z,v) — (z,&,s(x)(v)) for a linear map £,5(z): RF — R*
depending continuously on z € V, n Vg € X.

If the base is a smooth manifold, so are the open subsets V, n V3. Recall
that GLg(R) is an open subset of R** and hence inherits a smooth structure, we
can make sense of whether these transition functions are smooth. A bundle atlas
is smooth if all transition functors are smooth.

Definition 6.1.8. Suppose M is a smooth manifold. Then a smooth vector
bundle(p, E, M) is a vector bundle with a maximal smooth bundle atlas.

The proof of the following is left as a problem:

Lemma 6.1.9. If (p, E, M) is a smooth vector bundle then there is a unique
mazximal atlas on E such that all bundle charts (,: p_l(Va) — V, x R* gre
diffeomorphisms and p: E — M is a smooth map.

When we have a pair of vector bundles (p, E, M) and (p', E’, M') and a map
F: E — E' of vector bundles over f: M — M’, then we can use the bundle
charts to write

—1 / ,
(Vi fHV)) x BE S g (Vo - fH (V) 2 ()M (V) 225 V< RY

&%

As before, this preserves the first coordinate and hence is encoded by a continuous
map (Vo n f~1(V,)) — Lin(R*¥, R¥). We can ask this to be smooth, and if the
vector bundles are smooth this is independent of the choice of bundle charts. If
all these maps are smooth, we say that the map F: (p, E, M) — (p/, E', M) of
vector bundles is smooth. This is in particular always a smooth map between the
manifolds M and M’.

6.2 The tangent bundle and the derivative

In the previous lecture, we described how to assign a vector space T, M to each
m € M, as well as maps

dinf: TrnM — TN,

which satisfy the desiderata:
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(") dp.f is a linear map.
(IT') In local coordinates Ty, M is R¥ and d,, f is the total derivative.
(IT") dpmid = id and dyn(g o f) = dg(myg © dim f-
We next explain how to patch together the vector spaces T,, M to a smooth
vector bundle T'M over M, and the linear maps d,, f to a map df: TM — TN

of smooth vector bundle for each smooth map f: M — N. These should satisfy
analogous desiderata:

(I”) df is a map of vector bundles.
(I1”) In local coordinates T'M is given by R*’s and df by the total deriva-
tives.

(ITI1”) d(id) =id and d(g o f) = dg o df,

6.2.1 Constructing the tangent bundle

To construct the tangent bundle T'M of a manifold, we shall employ a general
construction, presenting a vector bundle as a colimit of trivial bundles.

Definition 6.2.1. A k-dimensional pre-vector bundle over a space X is a disjoint
union £ = | | _y E, of a collection of real vector space E,, together with a
collection B = {(Vy, ()} of open subsets V,, that cover X and bijections

Co |_| E, =V, x RF
€V,

that restrict to invertible linear maps E, — {z} x R¥. Furthermore, we require
that all transition functions £,5: Vo n Vs — GLg(R) are continuous.

That is, a pre-vector bundle is essentially a vector bundle that is of yet without
a topology on its total space. However, we have:

Lemma 6.2.2. There is a unique topology on E so that B = {(V,,(a)} is a
bundle atlas for (p, E, B).

Proof sketch. Give E the finest topology such that all {, are continuous. O

If we replace X by a manifold M, we can similarly define k-dimensional
smooth vector bundles, by demanding that all {,3 are smooth. Using the above
construction then makes (p, E, M) into a smooth vector bundle. In particular,
we can define the tangent bundle T'M by prescribing a smooth pre-vector bundle
on M:

- TM = |_|mEM T M,

- B = {Vy, (s} where (U, Vi, ¢o) is ranges over the charts of the maximal

atlas of M, and

ot Upmers TmM — Vi, x R¥ is given by

(m, v) — <m, <d¢;1(m)¢a)_l(v)> :

Implicitly, we are using here the identifications of T’ 71(m)Rk with R¥ using

i O 0
the basis FrTERRRE E
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Definition 6.2.3. The smooth vector bundle T'M over M constructed from this
pre-vector bundle is the tangent bundle to M.

Example 6.2.4. If U < R* is open, then TU = U x Rk,

Note that this does not depend on the exact construction of the tangent
spaces T,, M, but only that it satisfies the desiderata.

The tangent bundle is itself a smooth manifold. Indeed, there is a unique
2k-dimensional maximal smooth atlas on T'M such that each of the local trivi-
alizations TM|y = U x R* induced by a chart of M is a diffeomorphism. As a
consequence, the projection map T'M — M is a smooth map, as is the 0-section
so: M — TM; its image is a k-dimensional submanifold of T'M diffeomorphic to
M.

6.2.2 The derivative and its properties

It is now easy to define the derivative df : TM — TN of a smooth map f: M — N.
This will be a map of vector bundles which covers f, and hence it suffices to
give linear maps dp, f: Trn M — Ty(,) N and verify that these are continuous and

in fact smooth. Of course, we will take these linear maps the derivatives as we
defined before.

Lemma 6.2.5. The derivatives dy, f: Tp,M — Tf(n)N assemble to a smooth
bundle map df : TM — TN.

Proof. Since being smooth is a local property, it suffices to check this with respect
to the bundle charts defining T'M and T'N, i.e. those arising from charts. That
is, we need to prove that

(Va n f7HVE) x R¥ — V} x R¥
(m,0) — (£m), (g (1) 8) ™ © dinf © g1 my @ ()] (0))
is smooth. To do so, we precompose it with the diffeomorphism
do x id: 65" (Vo fTH(VE)) x RE = (Va0 f7(Vg)) x R
and postcompose it with the inverse of
¢g x id: U x RF =5 Vi x RF.

The result is the map ¢ (Ve N f_l(Vé)) x RF — Ug x R¥ between trivial
vector bundles over open subsets of Euclidean space given by

(2,0) — ((85)™" 0 f © 6a (@), [(dig)1 (g () 85) 0 g f © dadia] v))

Using the chain rule, we identify the right term as dx((gb/ﬁ)_l o f o ¢q), which
equals the total derivative Dx((gb’ﬁ)_l o fo¢y). That is, we are dealing with the
map

(z,v) — ((¢5) 7" o f 0 Pal@), Dul(¢) ™" © f 0 9a)(v)) -

This is evidently linear on each fibre and smooth. O
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Ezample 6.2.6. If U < R* and V < R¥ are open and f: U — V is a smooth map,
then df : TU — TV is the map

TU =U xRF — TV =V x RF
(z,v) —> (f(2), Duf(v))

obtained by applying pointwise the total derivative of f.

Using that the equations d,,(id) = id and dy,(g © f) = df(;m)g © dim f hold in
each fibre, we see that:

Lemma 6.2.7. The derivative satisfies d(id) = id and d(g o f) = dg o df .

6.3 Linear algebra of vector bundles

For later use, we want to generalize our usual definitions and constructions for
vector spaces to vector bundles.

6.3.1 Subbundles

The generalization of a subspace of a vector space is a subbundle.

Definition 6.3.1. Let p: F — X be a k-dimensional vector bundle. A subspace
E' c Eis a k'-dimensional subbundle if each E’, := p~!(x) n E' is a k’-dimensional
linear subspace of £, = p~!(E) and there are local trivializations ¢: | | _;; B, =
U x R¥ sending | |,.;; E to U x R¥'.

zeU

If (p, E,M) is a smooth vector bundle, we can make sense of a smooth
subbundle, by requiring that the local trivializations are smooth.

6.3.2 Kernels

Using this we can make sense of the kernel and image of certain maps of vector
bundles. This requires the following technical lemma, whose proof you do not need
to know. Let Lin(RP?, Rp/) denote the space of linear map RP — RP , topologised
by identifying it with R

Lemma 6.3.2. If I': R" — Lin(Rp,Rp/) is a continuous map whose image
lies in subspace of linear maps of rank exactly equal to r, then there exists an
open neighbourhood W < R™ of 0 and continuous maps B: W — GLy(R) and
C: W — GL,(R) so that C(w)I'(w)B(w) = I'(0) for allwe W. IfT' is smooth,

then B and C can also be taken to be smooth.

Proof. We may as well change bases to something more convenient: pick a basis
of R and RP' such that in this basis T'(0) is given by the (p x p/)-matrix (the 0’s
are rectangular matrices filled with 0’s of the correct size)

__[id, 0
"~lo ol
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With respect to these bases, for w in an open neighbourhood W of 0 the matrix
of I'(w) is given by
Tt A= [idr + Aqy AIZ}

Agi Ago

with [|A[|> < 1/2 (with ||A||? the sum of the squared entries). In fact, because
the first 7 rows contains a unique entry > 1/2, Ag; and Ajy have to be 0 for this
to have rank r.

We will use C'(w) to get rid of Aj;:

C(w) = |:(idr +6411)1 ids_r}

with the inverse in the top-right square existing because each row contains a
unique entry > 1/2. We compute that

i i A)tA

Clw)T(w) = 7, + A = [“ér (id, + 51) 12]

We will then use B(w) to get rid of the (r x p — r)-matrix (id, + A1) A19:
it will be the (p x p)-matrix given by

. (3 _1
B = |1y T

and it is a simple computation that C'(w)I'(w)B(w) = I'(0).
Since the construction of C'(w) and B(w) depends continuously on the entries
of I'(w) these maps are continuous. O

Lemma 6.3.3. Suppose p: E — X and p': E' — X' are vector bundles, and
G: E — FE' is a map of vector bundles so that G,: E, — Eé(z) has the same
rank for all t € X. Then

ker(G) = |_| ker(Gy)
reX

is a subbundle of E. If the vector bundles and the map between them are smooth,
then ker(G) is a smooth subbundle.

Proof. Passing to local trivializations of p and p/, we may assume that G is a
continuous map U x R? — V x RP' over a continuous map g: U — V so that
G(u,—): R? — R is linear of fixed rank r. In other words, G is described by a
g and a continuous map I': U — Lin(]Rp/7 RP) landing in the subspace of linear
spaces that have rank r. By the previous lemma, on a neighbourhood of each
point ug € U we adjust the local trivializations is that I' is constant with value
. O
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6.3.3 Images

The image of a vector bundle map is not defined in general. On the one hand,
if the underlying map on base spaces is not injective, it will try to assign two
fibres to the same point in the target. On the other hand, if the underlying map
on base spaces is not surjective, it will not know what fibres to assign to some
points in the target. These issues are resolved by restricting our attention to
inclusions of base spaces only, and constructing the image of the vector bundle
map only over the image of this inclusion.

Definition 6.3.4. Suppose that p: £ — X is a vector bundle and ¥ < X a
subspace, then Ely = Uer E, with the subspace topology is a vector bundle
over Y.

This definition makes sense, because the local trivializations of E restrict to
local trivializations of Ely .

Ezample 6.3.5. The local triviality condition in the definition of a k-dimensional
vector bundle p: F — X can rephrased as saying that for all x € X there exists
an open subset U < X such that E|y is isomorphic to the trivial bundle U x RF,

A similar argument as for kernels now tells us that:

Lemma 6.3.6. Suppose p: E — X and p': E' — X' are vector bundles and
X c X', and G: E — E' over the inclusion so that G,: E, — E! has the same
rank for all x € X. Then

im(G) = |_| im(Gy)

reX

is a subbundle of E'|x. If the vector bundles and the map between them are
smooth, then im(G) is a smooth vector bundle.

6.3.4 Quotients

Given a subspace of a vector space, we can take the quotient. Similarly, we can
take the fibewise quotient of a vector bundle by a subbundle.

Lemma 6.3.7. Let E — X be a vector bundle and E' < E a subbundle. Then
the quotients of the vector space E, by the subspace E! assemble to a vector
bundle

E/E' = | | E./E]
reX

over X wusing the quotient topology, which we call the quotient bundle. If E was
a smooth vector bundle and E' a smooth subbundle, then E/E’ is also a smooth
vector bundle.
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6.4 Problems

Problem 11 (Construction of smooth vector bundles). Prove Lemma 6.1.9.

Problem 12 (Tangent bundles to submanifolds). Let M < R"™ be a k-dimensional
smooth submanifold.

(a) Prove that

T3PS = {(m,v) € M x R™ | v+ m e TP Ar}

is a k-dimensional smooth vector bundle.

(b) Prove that TM and T5""™4d )/ are isomorphic as smooth vector bundles.



Chapter 7

Immersions and submersions

In this lecture we continue with implementation of one of the slogans of differential
topology: state globally, prove locally. We do so by importing the inverse function
theorem and its corollaries into the language of smooth manifolds. The main
difficulty is figuring out the correct statements, as most proofs will start by
passing to charts and then work on open subsets of Euclidean space.

This covers 1.§3 of [GP10], as well as a version of pages 51-52.

7.1 Globalizing the inverse function theorem

The easiest example of the above slogan is a characterisation of diffeomorphisms
where you do not need to go through the effort of finding the inverse and proving
it is smooth. We start by recalling the statement of the inverse function theorem
[DK04a, Theorem 3.2.4]:

Theorem 7.1.1 (Inverse function theorem). Let Uy < R™ be open and a € Uy.
Suppose g: Uy — R™ is a smooth map whose total derivative Dg, at a is an
invertible linear map. Then there exists an open neighbourhood U < Uy of a such
that g(U) is open and

glv: U —g(U)

18 a diffeomorphism onto this open subset.

To translate this into the language of smooth manifolds we recall the notions
we introduced in the previous lecture. We constructed for each k-dimensional
smooth manifold M a tangent bundle T'M, which is a k-dimensional smooth
vector bundle over M. Each smooth map f: M — N with M a k-dimensional
smooth manifold and N a k’-dimensional smooth manifold, induces a map of
smooth vector bundles df: TM — TN called the derivative.

By construction, both of the tangent bundle and the derivative are easy
to understand when viewed through the lens of a chart. A chart (Uy, Va, ¢a)
of M with p € U, gives an identification the restriction of TM to V, with
Ua x R¥. A chart (U}, V3, ¢;) with f(p) € Vj gives a similar identification of the
restriction of TN to Vé with U é x R¥". Under these identifications, the derivative

57
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dpf: TyM — Ty, N is the total derivative of (qﬁ’ﬁ)_l o f oy at ¢ (p). That is,
the following diagram of vector spaces and linear maps commutes:

T,M a2l Ty N
;J J; (7.1)
R RF.

D¢;1(p>((¢23)710f0¢u)

We shall translate the hypothesis on d,f into one about the bottom linear
map, and then apply the inverse function theorem to get:

Lemma 7.1.2. Let f: M — N be a smooth map with M k-dimensional and N
K'-dimensional, and suppose that d,f: T,M — TN is an isomorphism. Then
k =k and f is a local diffeomorphism at p, i.e. there is an open neighborhood V
of p in M such that f|y: V — f(V) is a diffeomorphism.

Proof. Using (7.1), the hypothesis translates into the statement that the total
derivative of the map

(¢3) " o foda: Ua D dy' (Va n fHVE)) — 3 (f(Va) 0 VE) < Up.

at ¢, '(p) is an isomorphism. This is only possible if the total derivative is a
square matrix, so k = k. When we call this function g and apply the inverse
function theorem to it at a = ¢, *(p), we get an open subset U < ¢, 1 (f(Va) N Vi)
such that g(U) is open and g|y: U — g(U) is a diffeomorphism. Translating this
back into M and setting V' := ¢, (U) through the commutative diagram

VooV —s f(v) e v

¢QT ¢gT

U,>U —2— 9(U) c Ug,

this is saying that f(V) = ¢3(g(U)) is open in N and fly: V — f(V) is a
diffeomorphism. O

Theorem 7.1.3. A bijective smooth map f: M — N which has a bijective
differential at all p e M is a diffeomorphism.

Proof. Since f: M — N is a bijection, it has an inverse f~': N — M. To see
that this is smooth at f(p) € M, apply the previous lemma and observe that
on f(V), f~! coincides with (f|1/)~!. The latter is smooth as the inverse of the
diffeomorphism f|y . O

Ezample 7.1.4. The quotient map R? — R?/Z? is a surjective smooth map which
has bijective differential at all p € R2, but it is not a diffeomorphism as it is not
even a homeomorphism.

We can avoid having to check that f is surjective by demanding M is compact
and N is connected.
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Corollary 7.1.5. If M is non-empty compact and N is connected, an injective
smooth map f: M — N which has a bijective differential at all p € M 1is a
diffeomorphism.

Proof. In light of the previous theorem it remains to prove that f is surjective.
By Lemma 7.1.2 the image of f is open. The image of every compact space
under a continuous map is compact and in a Hausdorff space every compact set
is closed, so the image of f is both open and closed. This means it is a union of
connected components of N and by assumption N has a single such component,
hence f must be surjective. O

7.2 Globalizing the immersion theorem

We next globalize the immersion theorem [DK04a, Section 4.3], which said:

Theorem 7.2.1 (Immersion theorem). Let Uy = R¥ be an open subset and a € Uy.
Suppose we have a smooth map h: Uy — R¥" such that the total derivative Dh,
of h at a is injective. Then k < k' and there exist open neighbourhoods U < Uy of
a and V. R" of h(a), and diffeomorphisms ¢: R¥ — U and ¢': R¥ — V such
that

(i) ¢(0) = a,
(i) ¢'(0) = h(a), and

(iii) the following diagram commutes

R* — Uc Rk
Lo

R¥ Tf V cRF,

with v, the inclusion (x1,...,zk) — (z1,...,2%,0,...,0).

Let us name the condition that the differential is injective at some point in
domain:

Definition 7.2.2. Let f: M — N be a smooth map.

- We say f is an immersion at p if d,f: T, M — T}y, N is an injective linear
map.

- We say f is an ¢immersion if it is an immersion at all p e M.

Applying the immersion theorem to ((b%)*l o f o ¢ for charts (Uy, Vi, da)
and (U [’_j, Vﬁ’, qﬁfg) around p and f(p) respectively, we deduce:

Lemma 7.2.3. Let f: M — N be a smooth map which is an immersion at p,
with M k-dimensional and N k'-dimensional. Then k < k' and there exists a
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chart (Ua, Vi, o) of M around p and a chart (UL, V., ¢.) of N around f(p) so
that the following diagram commutes

kSU, 228 M
, ¢!
R¥ > U} ~°LN

with vy the inclusion onto first k' coordinates.

Remark 7.2.4. Note that a linear map being injective is an open condition, which
is reflected in the above lemma by the observation that if f looks like the standard
inclusion in some coordinates at p, then it does so near p, namely on all of ¢, (Uy).

Unlike being a diffeomorphism, being an immersion is a purely local condition.
This means that its image may be pathological. Of course, since an immersion
need not be injective it may intersect itself, see the first example of Figure 7.1.
However, even an injective immersion need not be a homeomorphism onto its
image, see the second example of Figure 7.1.

FEzample 7.2.5. One of the worst examples is the immersion
h: R — T? = R?/7?
x — [x,0x]

with @ € (0,1) irrational. This immersion has dense image in T2. To see it is an
immersion define h(z): R — R? by x ~— (x,0z) and consider the commutative
diagram of vector spaces

TR—>T R?

h(z)

\ l oy

@) R?/Z2.

The linear map d; ()4 Is an isomorphism because the map h is a local diffeomor-
phism, and the tota{ derivative of h at z is easily seen to be injective, d,h must
also be injective.

That is, we would like f(M) not to intersect the image ¢3(Uj) of a chart again.
If f were a homeomorphism onto its image, then f(V,) would be open in f(M)
and this means that there is an open neighborhood V"’ in N such that V' f(M) =
f(Va) so by shrinking ¢%(Up) we could arrange that ¢%5(Ug) n f(M) = f(Va).
That such a open subset V' exists is proven by contradiction: if it did not
exist then there would be a sequence of points y; € f(M)\f(Va) converging to
y € f(M), which contradicts the fact that f(V,) is open. In this case the charts
from the immersion theorem give the image of f the structure of an r-dimensional
submanifold of N. We will make this precise in a moment.

Remark 7.2.6. The advantage of the condition on an immersion being purely
local is that we can classify them up to regular homotopy using an h-principle,
as discussed in the first lecture.
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Figure 7.1 The image of two different immersions of R into R2.

7.2.1 Embeddings

Definition 7.2.7. An embedding is an injective immersion which is a homeo-
morphism onto its image.

Ezample 7.2.8. If m,n are integers such that ged(m,n) = 1, then the map
é:R3t— (mt,nt) e R?

is easily seen to be an embedding. Taking the quotient by the action of Z? on
R? induces an injective smooth map e: R/Z — R?/Z? which is automatically
proper. To see this its differential is injective everywhere, we use the commutative
diagram of smooth maps

R—¢ . R2

! |

R/Z —%— R?/7?
and fixing p € R we get a commutative diagram of linear maps

TR —%° T, R?

| |

diple
T R/Z —= Te(p)R*/2%.

The vertical maps are isomorphisms by a previous example, and the top map is
injective. Hence the bottom map is also injective.

This gives an example of many embeddings of circles into T2, one in each
homotopy class (m,n) € Z? = 71(T?) which ged(m,n) = 1. These are the only
elements of the fundamental group which can be represented by embeddings (if
we use the convention ged(0,0) = 1) [Rol90, Theorem 2.C.2].

Proposition 7.2.9. A subset X < M is a submanifold if and only if it is the
image of an embedding.

Proof. For <, observe that we can use the local charts provided by Lemma
7.2.3 to make e(X) a submanifold. For =, it suffices to prove that the inclusion
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t: X — M is an embedding. It is visibly a homeomorphism onto its image, and
by computing locally in the charts provided by the fact ¢ is an immersion, we see
that its differential d¢ is injective everywhere. O

In the proof of Proposition 7.2.9, the charts used to make e(X) into a
submanifold exhibit e: X — e(X) as a bijective smooth map which has bijective
differential at all x € X. By Theorem 7.1.3, e is not just a homeomorphism onto
its image but a diffeomorphism. Let us record this:

Corollary 7.2.10. Ife: X — M is an embedding then it is a diffeomorphism
onto its image.

Let us discuss further the condition that an embedding is homeomorphism
onto its image. If the domain of an injective immersion X «— M is compact, it
restricts to a continuous bijection X — im(X) of compact Hausdorff spaces and
hence is a homeomorphism onto its image. If the domain is not compact, we can
instead add the following condition:

Definition 7.2.11. A continuous f: X — Y is proper if f~}(K) < X is compact
for all compact K c Y.

Intuitively, a proper map is one that “maps infinity to infinity.” One way
to see that a map is not proper is to recall that proper maps between locally
compact Hausdorff spaces are closed, allowing us to easily construct embeddings
that are not proper.

Theorem 7.2.12. A proper injective immersion is an embedding.

Proof. Tt suffices to prove that if e: X — M is an proper injective immersion
then it is a homeomorphism onto its image. Since e is presumed continuous
and injective, we will use properness to deduce that e is open. Thus we need
to show that if W is open in X then e(W) open in e(X). We will do so by
contradiction, and hence suppose there is a sequence yi, s, ... in e(X) but not
in e(W), and converging to y € e(W). As {y,y1,¥2,...} is compact in M, so is
its inverse image in X because e is proper. Thus it has an accumulation point,
and by passing to a subsequence we may assume that the e~!(y;) converge to
some z € X. Then e(e~!(y;)) converges both to y € e(W) and e(z) € e(X) so
y = e(z) and by injectivity of e thus e !(y) = z. But since W is open in X this
means that e~ (y;) € W for i large enough, contradicting y; ¢ e(W). O

Corollary 7.2.13. An injective immersion with compact domain is an embedding.

Proposition 7.2.14. A closed subset X is a submanifold if and only if the image
of a proper embedding.

Proof. For <, we use that proper maps are closed. For =, suppose that K < M
is compact and {U;} is an open cover of :~}(K). Then there exists an open cover
{Ul} of X n K © M and since X n K is closed inside a compact it is compact, and
there is a finite subcover Uy, ..., U,. The corresponding open subsets Uy, ..., U,
are finite subcover of ;71 (K) in X. O
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7.3 Globalizing the submersion theorem

We can similarly globalize the submersion theorem [DK04a, Section 4.5].

Theorem 7.3.1 (Submersion theorem). Let Uy < R be open and a € Uy.
Suppose we have a smooth map g: Uy — R* such that the total derivative
Dg, of g at a is a surjective linear map. Then k' < k and there exist open
neighbourhoods U < Uy of a and V < R¥ of g(a) and diffeomorphisms ¢: RF — U
and ¢': R¥ — V such that

(i) ¥(0) = a,

(it) ¢(0) = g(a), and

(iii) the following diagram commutes

RF —=— U c Uy c R*

Pk

RP % V c RF,

with mgr the projection (x1,...,xE) — (T1,...,Tp).

Definition 7.3.2. Let f: M — N be a smooth map.
- We say f is a submersion at p it dpf: T, M — T, N is a surjective linear
map.

- We say f is a submersion if it is a submersion at all p € M.
As before, we get:

Lemma 7.3.3. Let f: M — N be a smooth map which is a submersion at p,
with M k-dimensional and N k'-dimensional. Then k' < k and there ewists a
chart (Ua, Vi, o) of M around p and a chart (UL, V., ¢.) of N around f(p) so
that the following diagram commutes

RF S U, —2 % M

L

/ (b
R¥ > Uf — N,

with m the projection onto first k' coordinates.

Remark 7.3.4. Note that a linear map being a submersion is open condition,
which is reflected in the above lemma by the observation that if f looks like the
standard projection in some coordinates at p, then it does so near p, namely on

all of ¢ (Uy).

However, its main use is that if we denote ¢ := f(p) it says that f~!(c)
is a (k — k’)-dimensional submanifold near p; in the charts it is just U, n
{(0,...,0,zp41,...,2%)}. Furthermore, as in these chart the tangent spaces to
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this subset are given by the kernel of the derivative of 7/, the tangent space to
f7Y(c) at p is given by the kernel of d, f when we identify it with a subspace of
T,M using the derivative of the inclusion map f~!(c) — M. This leads to the
following definition and theorem:

Definition 7.3.5. Let f: M — N be a smooth map. Then a point c € N is
called a regular value of f if f is a submersion at all x € f~1(c).

Theorem 7.3.6 (Preimage theorem). If f: M — N is a smooth map and c € N
a regular value, then f~1(c) is a (k — k')-dimensional submanifold of M and

Tpf~He) = ker(dyf: T,M — Ty, M) for allpe f~1(c).

It is often more convenient to remember not the dimension of f~!(c), but
how much this is smaller than the dimension of M this is the codimension and
in the previous theorem f~!(c) has codimension k’.

FEzample 7.3.7. If f: M — N is a submersion, then all points in N are regular
values.

It may also be helpful to name those points in N that are not regular values.

Definition 7.3.8. Let f: M — N be a smooth map. Then a point c € N is
called a critical value of f if it is not a regular value of f.

Example 7.3.9. The map R¥ — R given by
(X1, 2p) —> 25+ 2f —al — .. —

has 0 has its only critical value; all other ¢ € R are regular values.

7.4 Problems

Problem 13 (Images of immersions). Are following subsets of R? the image of an
immersion and/or an embedding R — R? (you should imagine them continuing
indefinitely)? You need to explain your reasoning for each example, but do not
need to give proofs.

(iii) (iv)
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Problem 14 (Submersions, immersions, and smooth maps).

(a) Suppose that f: M — N is an immersion and h: P — M is a continuous
map. Prove that h is smooth if and only if f o A is.

(b) Suppose that f: M — N is a surjective submersion and g: N — P is a
continuous map. Prove that g is smooth if and only if g o f is.

Problem 15 (Submersions with compact domain).

(a) Suppose f: M — N is a submersion with M a compact smooth manifold
and N a connected smooth manifold. Show that f is surjective. (Hint:
show that its image is both open and closed.)

(b) Show that there exists no submersion from a compact smooth manifold
to a Euclidean space of positive dimension.

Problem 16 (A family of surfaces). Prove that the subspace
X ={(z,y,2) | (a* =22 +9*)? + 22 = ¢} c R3

is a 2-dimensional smooth submanifold for ¢ > 0 sufficiently small. Sketch it.
What happens when we increase €?

Problem 17 (Special orthogonal groups). Let O(n) < GL,(R) be the subgroup
of orthogonal matrices, i.e. A such that A = A~!. This is known as the orthogonal
group.
(a) Using the submersion theorem to prove that O(n) is a $n(n—1)-dimensional
manifold.

(b) Prove that O(n) is a Lie group.
(c) Show that O(n) has two path components.

The path component SO(n) < O(n) containing the identity is a Lie group known
as the special orthogonal group.

Problem 18 (Some orthogonal Stiefel manifolds). Let V5(R™) be the subset of
(R™)? of pairs (v1,ve) of vectors such that [[v1]|? = 1 = [|ve||? and vy - v = 0.

(a) Prove that V5(R") is a smooth manifold.
(b) Prove that Vo(R3) is diffeomorphic to the special orthogonal group SO(3).

(c) Let W, be the subset of C" of n-tuples (z1, . . ., z,) satisfying 22+ - - +22 =
0 and |z1]? + - -+ + |2,|? = 2. Prove that W, is a smooth manifold which
is diffeomorphic to V5 (R™).

Problem 19 (Configuration spaces in robotics). Fix an integer n > 1 and real
numbers r; > 0, 1 < r < n. We consider the space C of configurations of a robot
arm with n segments of lengths r1,...,r,. We take the attaching point of the
arm as the origin, and for simplicity assume that the segments are constrained
to move in the plane R?. That is, C' is the subspace of C* =~ R?" of points
(21,...,2pn) such that |z — z;_1| = r; for 1 < i < n (with the convention that
zZ0 = O)
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(a) Use the submersion theorem to show that C'is a submanifold of C". What
is its dimension?

(b) Show that C is diffeomorphic to (S')".

(c) Is it still a submanifold when we add the requirement that the segments of
the arm do not intersect outside the joints? That is, we take the subspace
D < C of those (z1,...,2,) such that for all 1 < ¢,j < n satisfying
i # j,j —1 we have z; ¢ {tz;_1 + (1 —t)z; | t € [0,1]} (again with the
convention that zy = 0). You have to explain your answer or give a
counterexample, but do not need to give a full proof.

Figure 7.2 A point (z1,22) in C for n = 2, visualized as an arm with two segments.

Problem 20 (Embeddings between projective spaces). Prove that the following
are smooth embeddings:

(a) The standard inclusion R"*! — R"*2 induces a continuous map
i: RP" — RP"™!
[wo - xn] —> [20: -t 2 : 0]
(b) The Segre embedding is the continuous map
S:CcP' xcpP' — cP?
([zo = z1], [yo, 11]) — ([oyo : z1y0 : Ty : T1Y1]).
Generalize this to an embedding CP? x CPJ — CPU+DU+D)-1
(c) Complexification R” — C™ induces a continuous map
j: RP" —» CP"
[Zo:...:xp] — [xo: ... 2],

where the left hand side is an equivalence class of (n + 1) real numbers,
which is considered as an equivalence of (n + 1) complex numbers on the
right hand side.
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Quotients and coverings

In this lecture we discuss smooth manifolds which are evenly covered by another
smooth manifold. Such covering maps often arise as quotients by discrete groups,
and we follow with a discussion of quotients by Lie groups.

8.1 Covering spaces

In point-set topology, there is a notion of a covering of one topological space by
another. One should imagine many sheets of fabric covering a surface.

Definition 8.1.1. A continuous map p: E — B is a covering map if each point
b € B has an open neighbourhood U such that p~!(U) can be written as a union
|; Vi of disjoint open subsets of E, such that p|y;: V; — U is a homeomorphism
for each .

FEzample 8.1.2. Prototypical examples are

R— S'={zeC]||z| =1}

where each z € S! has infinite pre-image, and

Sl — gt

z— 2",

where each z € S! has exactly n pre-images.

Is a cover of a smooth manifold again a smooth manifold? If p: £ — B is
a covering map and B is Hausdorff or locally Euclidean then so clearly so is E.
Similarly, F is second-countable when B is and p has countable fibres. Thus we
know when F is a topology manifold. It remains to lift the smooth structure on
B to one on E:

Theorem 8.1.3. If p: E — B is a covering map such that p~1(b) is countable
for allbe B and B is a k-dimensional smooth manifold, then there is a unique
k-dimensional smooth atlas on E such that p: E — B is a local diffeomorphism.

67
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Figure 8.1 A three-fold covering of S! L S! by S*.

Proof. Let us first take care of point-set topological requirements. We start by
proving that F is Hausdorff when B is: e # ¢’ € E with p(e) # p(e’) can be
separated by p~!(U) and p~1(U’) where U, U’ < B are disjoint open subsets such
that p(e) e U, p(e/) e U'. If e # ¢’ € E but p(e) = p(¢), then they must lie in
different V;’s and these open subsets separate them. To see that E is second
countable, we first observe that the condition on p~!(b) implies that each disjoint
union | |, V; as in Definition 8.1.1 is a countable one. Take {U;} a countable basis
for the topology of B. By possible discarding some of the larger subsets, we
may without loss of generality assume that p~!(U;) is a countable union of open
subsets Vj; of E homeomorphic to U;. The countable collection {V};} is a basis
for the topology of E.

We shall give a chart around each e € E: pick U around b = p(e) as in the
definition of a covering map, and a chart (Uy, Vi, ¢o) around b in B such that
Vo < U. If V; is such that e € V;, then we produce a chart around e by taking
Ul = Ua, taking V ; = (plv;) ! (Va) and setting ¢, ; to be

(plv;)™*

#h: RE S U, 2V, Vi cE.

The transition function between (Uy, ;, V, ;, éy, ;) and (Uj ;, V3 1, ¢ ;) is only non-

1)
trivial if V; n Vj, # @ and then it lies in V;. Thus we can write ¢;,; =
p|;i1 o ¢o and QSQM = p|‘_,i1 o ¢g, and the transition function is a restriction of
(p’;il o¢pz)to (p"_/il 0 o) = (%1 o ¢ and hence smooth. This completes the

construction of the smooth atlas on E.

To see that p is a local diffeomorphism with respect to this smooth atlas,
we use that with respect to coordinates given by the charts (U, Vy, ¢o) and
(Uni» Vavis @ ;) it is the identity map between the equal open subsets Uy, ; and
U, of RF.

To see that this smooth structure is uniquely determined by this property, we
must prove that the identity map of E is smooth with respect to any two smooth
structures A, As on E such that p: E — B is a local diffeomorphism. It suffices
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to verify this locally in E. The diagram

(Vi Aily;) —L— (Vi Aalvy)

;T(p\vi)’l ;lplvi

U, id U,

evidently commutes, and we can think of the left map as a diffeomorphism with
respect to Ajly;, and the right map as a diffeomorphism with respect to Asly;.
Since the bottom map is smooth, the top map must also be smooth. O

In fact, many local diffeomorphisms arise this way:

Proposition 8.1.4. Suppose E and B are smooth manifolds, and p: E — B is
a smooth map whose derivative is bijective at all points in E. If E is compact
then p is a covering map.

Proof. The conditions imply that E is a local diffeomorphism whose image is
a collection of components of B so we may as well assuming p is surjective by
discarding some components. For each be B, p~!(b) is a finite set and for each
e € p~1(b) the fact that p is a local diffeomorphism gives us an open subset V,
of FE containing e such that p|y,: Ve — p(V.) is a diffeomorphism. Using the
fact that F is Hausdorff we may assume that the V. are pairwise disjoint. Then
let U = (), p(Ve), which is an open neighbourhood of b because it is a finite
intersection of open subsets containing b.

We claim that p~1(U) is a union of the disjoint open subsets p~*(U) n V.
of E, at least after shrinking U. If so, p|y, provides not just a homeomorphism
p Y (U) n V. = U but in fact a diffeomorphism and we would be done. We give a
proof of the claim by contradiction: suppose that no matter how much we shrink
U it is always the case that p~1(U)\|J, Ve # @. Then there exists a sequence
of x; € E\|J, Ve such that the z; converges to some x € E (since E is compact)
and the p(z;) converges to b. This means that 2 € p~!(b), and hence z; lies in
some V. for ¢ large enough. This gives a contradiction. O

Ezample 8.1.5. The Lie group SO(n) has a path-connected double cover Spin(n)
for n > 3. Proposition 8.1.3 shows that Spin(n) has a unique smooth structure
making Spin(n) — SO(n) a local diffeomorphism.

8.2 Quotients by discrete groups

Let us discuss an important source of examples of covering maps: quotients of
sufficiently nice group actions. Recall that we have an action of a discrete group
G on a topological X, we always require it to be continuous in the sense that the
map

Gx X —X
(9,7) —> gx

is continuous. This is equivalent to each map g: X — X being a homeomorphism.
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Definition 8.2.1. Suppose a (discrete) group G acts on a topological space X.
It acts freely if gr = x for some x € X implies g = e.

We first give a condition on a free action that guarantees the quotient map
q: X — X /G is a covering map. The following strengthening of a free action will
suffice:

Definition 8.2.2. Suppose a (discrete) group G acts on a topological space X.
We say it is a covering action if each x € X has an open neighborhood U such
that g(U) n U # @ if and only if g = e.

Lemma 8.2.3. If the action of G on X is a covering action, then the quotient
map q: X — X /G is a covering map.

Proof. For q(x) € X /G, take the image ¢(U) in X /G of U in Definition 8.2.2.
Then ¢~ !(q(U)) = Ug gU and this is a disjoint union because

GUNhU #0 < hlgUnU=#@

and this implies h~'g = e so g = h. Furthermore, each gU is open as U is open
and g: X — X is a homeomorphism. In particular we conclude that ¢=!(g(U))
is open so ¢(U) is open by definition of the quotient topology.

To see that the restriction of ¢ to a map gU — ¢(U) is a homeomorphism,
we first observe that there is a commutative diagram

N i

with horizontal map a homeomorphism. Hence it suffices to prove that this only
for g =-e. As q|ly: U — q(U) is clearly a continuous bijection, it remains to see it
is open. But for W < U open, q|y(W) < q(U) is open if and only if ¢~ *(q|y(W))
is. Since ¢~ 1(qly(W)) = U, gW this is true. O

qgU

S
[

It is clear from the definition of the quotient topology that X /G is second-
countable if X is second-countable. However, it is not obvious that X /G is again
Hausdorff; this requires a stronger definition:

Definition 8.2.4. Suppose a (discrete) group G acts on a topological space X.
It acts properly if the map

Gx X —XxX
(9,2) — (z,97)

is proper, that is, preimages of compact subsets are compact.

Let us give some more easily verified conditions, under mild point-set topo-
logical hypotheses:
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Lemma 8.2.5. Suppose a (discrete) group G acts on a Hausdorff topological
space X. This action is proper if and only if g(K) n K # @ for only finitely
many g € G whenever K < X is compact.

Proof. For =, suppose there exists a compact K < X so that there are infinitely
many g; so that g;(K) n K # @. Then the action map a: G x X — X X z is not
proper because open cover of a~!(K x K) by the open subsets {g;} x X admits
no finite subcover.

For <, note that a compact subset K/ © X x X is contained in the compact
subset K x K for K = m(K')uma(K'). Then a(K x K) = U e {9} x (K ng(K))
is a finite union of compact subsets so compact, and as a closed subset of this
a~(K') is also compact. O

Lemma 8.2.6. Suppose a (discrete) group G acts on a locally compact Hausdorff
topological space X. This action is proper if and only if any two (not necessarily
disjoint) x, 2’ € X have open neighbourhoods U,U" such that g(U) n U’ # & for
only finitely many g € G.

Proof. For =, we apply Lemma 8.2.5 to the union U U U of disjoint compact
closures of open neighbourhoods of z and z’, which exist since X is locally
compact Hausdorff.

For <, let K < X be compact. We can pick for each p = (x,2’) € K open
neighbourhoods U of z and U’ of x’ so that there are only finitely many g € G
so that g(U) nU’" # @. Since K is compact, it has a cover by finitely many
products of such open neighbourhoods. Suppose now that z € g(K) n K and
write z = g(2’). then (z,2’) lies in one of these finitely many U x U’ and hence
g must be among the finite collection of corresponding elements of G 0

Note that smooth manifolds are always locally compact and Hausdorff.
FEzample 8.2.7. Z" acts freely and properly on R™ by translation.

Ezxample 8.2.8. If X is locally compact Hausdorff and G is finite, then G acts
freely and properly if and only if it acts freely. To see this, observe that latter
implies that for each x all elements gx for g € G are distinct. Using the Hausdorff
property we can find for each g € G an open subset U, around gz with the
property that U, n Uj, # @ if and only if ¢ = h. Then U := ﬂggfl(Ug) is
an open subset around x which satisfies g(U) n U # & if and only if g = e.
A similar argument shows that any two x,2’ € X in distinct orbits have open
neighbourhoods U, U’ such that g(U) n U’ = & for all g € G.

Proposition 8.2.9. If G freely on a locally compact Hausdorff space X, then it
acts properly if and only if g: X — X /G is a covering map and X /G is Hausdorff.

Proof. For =, if the action is free in addition to being proper, for each r € X
we can find an open neighbourhood V' such that g(V) n V # @ if and only if
g = e. To see this, take z = 2/ in Lemma 8.2.6, V = U n U’ and shrink it
using the Hausdorff property if necessary. Thus we have a covering action and
by Lemma 8.2.3 says that the quotient map ¢: X — X /G is a covering map.
It remains prove the quotient is Hausdorff. Take representatives x,z’ of two
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disjoint orbits, apply Lemma 8.2.6 and use the Hausdorff property to shrink
U,U’ so that g(U) n U’ = @ for all g € G. Then ¢ (q(U)) = Uygeqg(U) and
g HqU") = Uyegg(U’) are disjoint and open, so ¢(U) and q(U’) are open sets
separating [z] and [z'].

For < we note that the right side Lemma 8.2.6 follows for x, 2’ in distinct
orbits by finding disjoint open neighbourhoods W, W’ of [z],[z'] using that
X /G is Hausdorff, while for z, 2" in the same orbit it follows from the covering
property. (]

If X /G happens to be a smooth manifold, this gives a smooth structure on
X. We now want to go the other direction, taking X to be a smooth manifold
M and assuming that the action is compatible with the smooth structure in the
following sense:

Definition 8.2.10. We say that a group G acts smoothly on a smooth manifold
M if the action map G x M — M is smooth.

As G is discrete, this is equivalent to each g: M — M being a diffeomorphism.
It is also equivalent to the following map being smooth

GxM—MxM

(g,m) — (m, gm).

Theorem 8.2.11. If a discrete group G acts freely, properly, and smoothly on a
k-dimensional smooth manifold M, then there is a unique k-dimensional smooth
atlas on M /G such that q: M — M /G is a local diffeomorphism.

Proof. We know from Lemma 8.2.9 that ¢ is a covering map, and that M /G is
Hausdorff and second countable. We next produce a smooth atlas on M/G. Let
us take for each orbit [p] € M /G an open neighbourhood U as in Definition 8.1.1,
so that ¢71(U) = |, Vi. Let us also take charts (Uy, Va, o) such that V, < V;
for some i and [p] € ¢(Vy). The charts in our atlas for M /G are then given by
the (Uou q(VOé)7 Q|Vi © (z)oz)-

The transition function between (Ua, ¢(Va), qlv; © ¢a) an (Ug, q¢(V3), qv; © ¢p)
has non-empty domain and target if and only if ¢(V,) ng(Vs) # @, which happens
only if Va n ¢ (q(Va) n q(Vp)) © Vi and Vz n g (q(Va) n q(Vp)) < g(V;) for
some g € G. Hence for the sake of computing transition functions we may replace
qlv; by qlg(v;)- Then the transition function is given by

(Q|g(Vi) © d)ﬁ)_l © (Q|‘/z © ¢a) = ¢,§1 © g0 Pa;,

which is smooth by the assumption that g: M — M is a diffeomorphism. This
completes the construction of the smooth structure on M/G.

To see q is a local diffeomorphism with respect to this smooth structure, we use
that in the local coordinates given by the charts (U, Va, ¢o) and (U, ¢(Va), qodq)
it is the identity map of U, — RF.

To see that this smooth structure is uniquely determined by this property,
we must prove that the identity map of M /G is smooth with respect to any
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two smooth structures A;,As on M/G such that ¢: M — M/G is a local
diffeomorphism. The diagram

M—9 M

I I

(M/G, A1) —94 (M/G, As)

evidently commutes, and we can think of the left map as a local diffeomorphism
with respect to A1, of the right map as a local diffeomorphism with respect to As.
Since the top map is smooth, the top-right composite is. Since ¢ is a submersion,
the bottom map must also be smooth. ]

Ezxample 8.2.12. Since Z" acts freely, properly, and smoothly on R™ by translation,
Theorem 8.2.11 gives another way to construct the smooth structure on the n-
torus T" = R"/Z".

Ezample 8.2.13. Fix two coprime integers p and ¢. Let Z/p act on S® = {(21, 22) |
|21|2 + |22]? = 1} = C% by

k- (Zl, 22) _ (627rik/pzl’ e?m’qk/pz2)‘

This is a free smooth action of the finite group Z/p on the 3-dimensional smooth
manifold S2, so by Theorem 8.2.11, L(p, q) := S3/(Z/p) is again a 3-dimensional
smooth manifold. These are lens spaces. As an example, let us take L(2,1). This
is the quotient of S by the equivalence relation generated by (z1, 22) ~ (—21, —22),
so is diffeomorphic to RP3.

Ezxample 8.2.14. Define the configuration space of n ordered particles in a manifold
M as
Conf, (M) = {(m1,...,my) € M™ | m; # m; if i # j}.

As an open subset of a finite product of manifolds, this has a canonical smooth
structure. The permutation action on M"™ by the symmetric group G,, is proper
and smooth, but not free. The subset Conf, (M) exactly consists of all free orbits,
so the restriction of this action to Conf,, (M) is smooth, proper, and free. Thus
the configuration space of n unordered particles

Cn(M) :== Conf,(M)/&,,

again has a canonical smooth structure.

8.3 Quotients by Lie groups

Above we gave conditions on an action of a discrete group G on a smooth manifold
M, so that the quotient M /G is again a smooth manifold. What can we say if
we instead we take G to be a Lie group? The definitions, when phrased correctly,
go through without modification: as before, we say that G acts smoothly on M
if the map

GxM-—MxM

(g,m) —> (m, gm)



74 Chapter 8 Quotients and coverings

is smooth, it acts properly if this map is proper, and acts freely if the action is
free. A generalization of Theorem 8.2.11 to Lie groups is the following, which we
shall not prove [Leel3, Theorem 21.10]:

Theorem 8.3.1. If a Lie group G of dimension r acts freely, properly, and
smoothly on a k-dimensional smooth manifold M, then there is a unique (k —r)-
dimensional smooth atlas on M /G such that q: M — M /G is a submersion.

Ezample 8.3.2 (Complex projective space as quotients). The Lie group C* of non-
zero complex numbers under multiplication acts freely, properly, and smoothly
on C™\{0}. Its quotient

cP = (©\{0})/C”

is thus a smooth manifold, giving a construction of the complex projective plane
without having to give charts by hand. We will leave it an exercise for the reader
to verify this construction is diffeomorphic to the previous one.

In many application we fix a Lie group G, as well as a Lie subgroup H c G,
which is a subgroup which is also a smooth submanifold. It is evident that the
action of H on G by multiplication is smooth and free. Furthermore, as H must
be closed [Leel3, Corollary 15.30] it follows that the action is proper. The above
theorem says that G/H is a smooth manifold and the quotient map

G — G/H

is a submersion.

Ezample 8.3.3 (Orthogonal Stiefel manifolds). Recall that the orthogonal Stiefel

manifold V5(R") is the submanifold of R?" given by pairs (u,v) of orthogonal
vectors in R™ of length 1. If we identify O(n — 2) be the subgroup of O(n) as

A 0

On—2)3A— {0 idg]

which is also the subgroup which fixes the vectors e,_1, e,. This identifies it as
the stabiliser of this point of the transitive action of O(n0 on V2(R™), so we get
an identification

Va(R™) = O(n)/O(n — 2).

This gives another construction of the left side as a smooth manifold, which is
diffeomorphic to its description as a submanifold. Replacing n — 2 by n — r, we
obtain more generally the orthogonal Stiefel manifold

V.(R") := O(n)/O(n —r)

of orthogonal frames of r vectors in R”. Replacing orthogonal groups by general
linear groups we similarly obtain ordinary Stiefel manifolds.
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8.4 Problems

Problem 21 (Higher-dimensional lens spaces). Fix an integer p and integers
q1,---,qn coprime to p. The higher-dimensional lens space L(p,qi,...,qn) is the
quotient of S?"~1 = {(z1,...,2,) | |21|> + -+ + |2n|?> = 1} = C" by the smooth
action

k- (21,...,20) = (eXT0k/P 2Tk, )

Prove this admits a unique smooth structure such that the quotient map
q: > ' - L(p,q1,...,qn) is a local diffeomorphism.

Problem 22 (Dold manifolds). Let Z/2 act on S x CP"™ by multiplication by
—1 on S™ and by complex conjugation on CP™. Prove that

D(m,n) = (S™ x CP")/Z/2
is a smooth manifold. This is called a Dold manifold.

Problem 23 (Orthogonal Grassmannians). We can O(r) x O(n — r) with a
subgroup of O(n) by

O(r) x O(n — 1) 5 (A, B) — {é g} e O(n).

(a) Show that the quotient
Gr,(R") :== O(n)/(O(r) x O(n — 1))

is a smooth manifold.
(b) Use Gram-Schmidt to explain why we can think of Gr,(R") as a smooth
manifold of r-dimensional linear subspaces of R™.

The smooth manifold Gr,(R™) is called the orthogonal Grassmannian of r-planes
in R™.
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Three further examples of manifolds

In these additional notes we describe three more manifolds, each interesting and
an example of a more general construction.

9.1 The Poincaré homology sphere

We start with one of the first manifolds ever described, due to Poincaré. For
more constructions, see [KS79].

9.1.1 The quaternions

Our construction starts with the quaternions H. These are an associative R-
algebra, generated as an R-vector space by elements 1,1, j, k¥ which satisfy the
relations

=432 =k=—1, ij=—ji, ik=—ki, jk=—kj
ij =k, jk=1i, ki=j.

This is visibly not commutative, e.g. 7 = k but ji = —k. The elements which
commute with every other element, the center, is given by R - 1. As a R-vector
space, it is 4-dimensional, with a basis given by 1,1, 7, k.

This is a so-called division algebra, which means that algebraically it behaves
like a non-commutative four-dimensional version of the complex numbers. Firstly,
the quaternions have a conjugation operation

a+bi+cj+dk=a—bi—dj —ck.

Lemma 9.1.1. Conjugation is linear and an antthomomorphism, i.e. satisfies
Ty =Y.

In terms of this, we define ||z||? := 2. Explicitly, this is given by

lla + bi + ¢j + dk|| == Va2 + b2 + 2 + a2,
and hence is visibly a norm (in fact the usual Euclidean one).

76
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Every non-zero element of H has a unique multiplicative inverse, which can
be written in terms of the conjugation and norm

=
[lz]*

X

The 3-sphere as a Lie group

The subset S — H of quaternions with norm 1 is a smooth manifold; it is just
the subspace {a + bi + ¢j + dk | a® + b* + ¢ + d* = 1} < H. The multiplication
and inversion of H restrict to S2. This uses the following lemma:

Lemma 9.1.2. [[zy[| = [|2||/y]]
Proof. Since the conjugation is an anti-homomorphism, we have
layl* = zyzy = xyyz = ||=|]?||y|* O

This exactly says that the product of two elements of norm 1 has norm 1. It
also implies that the inverse of an element of norm 1 has norm 1: more generally,
if  # 0 we have

-1 -1
L= 1] = [lzz™"|] = [|=|[[l=""1],

so |lz7 | = [J=f| .

To see that both multiplication and inverse are smooth maps on H\{0},
observe they are given by polynomials in a, b, ¢, d. In fact, inverse is particularly
easy: ¢~ = g. Hence their restriction to the submanifold S® is also smooth, and
we conclude that S2 is a Lie group.

Remark 9.1.3. S' and S? are the only spheres that admit the structure of a Lie
group.

Ezample 9.1.4. In fact, this is isomorphic to the Lie group SU(2) of unitary
(2 x 2)-matrices with complex entries and determinant 1. The correspondence is
given by thinking of a quaternion a + bi + ¢j + dk € H, on which S? acts, as a
pair (a + bi, ¢ + di) of complex numbers, on which SU(2) acts. Explicitly, the
isomorphism of Lie groups is given by

a+ bi c+di

3 ) ] —
S°3a+bi+cj+dk [—c—l—di Ca—bi

]ESU(Z).

9.1.2 The Poincaré homology sphere via the binary icosahedral group

It follows from our results about quotients of manifolds by discrete groups that if
G < 83 is a finite subgroup, S®/G admits a 3-dimensional smooth structure such
that the quotient map

S3 — 83/G

is a local diffeomorphism.

Ezample 9.1.5. Taking G = {£1}, we obtain $3/{+1} = RP3.
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Thelimage of BN 8 Challener Wadidarsa 111G

I. CIRCOGONIA. 2. CIRCORRHEGMA . 3. CIRCOSPATHIS
} G. CIRCOPQRUS . 7. CORTINETTA, &, CATINULUS.

Figure 9.1 Haeckel’s “Fig. 1: Circogonia icosahedra, n. sp., x 80. The entire shell, with
twelve radial tubes and twenty triangular faces. In the centre of one face is the mouth, with
siz teeth.” (from https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Platesi12#
/media/File:Radiolaria_(Challenger) Plate_117.jpg.

Our next goal is construct a particular rather large finite subgroup of S3. The
first observation is that for g € S® the conjugation

5335 h—> ghg~'e S?

preserves the subset of quaternions of the form bi + ¢j + dk.

We can identify this subset with R3 through bi + ¢j + dk < (b, ¢, d). Under
this identification the norm on H corresponds to the Fuclidean norm, and thus
we get an action of S2 on R3 which is orthogonal. The resulting homomorphism
83 — SO(3) has kernel of order 2. That the kernel has order at least 2 is easy to
see: both x, —x € H map to the same linear transformation. We leave it as an
exercise to the reader that there are no further elements in the kernel.

Let the icosahedral group I < SO(3) be the subgroup of symmetries of the
icosahedron, and let I* be its inverse image in S2. I* has order 120. The quotient
manifold is the Poincaré homology sphere:

P = S3/T*.


https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#/media/File:Radiolaria_(Challenger)_Plate_117.jpg
https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#/media/File:Radiolaria_(Challenger)_Plate_117.jpg
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Remark 9.1.6. Why is the Poincaré homology sphere interesting? As you might
expect, it was first constructed by Poincaré, though he did not construct it this
way. Poincaré produced it as a counterexample to the first version of the Poincaré
conjecture: it has the same homology as a 3-sphere, but it is not homeomorphic
to 52 because it has fundamental group isomorphic to I*. The correct Poincaré
conjecture says that a 3-dimensional differentiable manifold that is homotopy
equivalent to S3 is diffeomorphic to it. This was eventually proven by Perelman
in a series of papers in 2002-2003, for which he received a Fields medal.!

Remark 9.1.7. For a while some scientists thought the cosmic microwave back-
ground radiation was most consistent with the universe having space-like direction
S3/T* instead of R3, though with the acquisition of more data this is no longer
the case.”

9.2 The K3-manifold

Our second example come from algebraic geometry, and is a particular case of a
general construction of a hypersurface in complex projective space.
Recall the complex projective spaces CP*, defined as

CP* = (CM\{0})/~,

where the equivalence relation ~ is generated by (zo,...,2x) ~ (Az0,..., Azg) for
A € C\{0}. In other words, we are taking the quotient of the free action of the non-
zero invertible complex numbers C* by scalar multiplication on C¥*1\{0}. We
denote the equivalence class of (2o, ..., 2k) by [z0 : -+ : zx]. It is a 2k-dimensional
smooth manifold, covered by the k + 1 charts

¢;: CF — CP*
(21,...,Zk)'—> [2’1 . '”ZZj_l . 1:Zj . ”-:Zk].
The image Vj of ¢; is given by {[zo : ... : 2zx] | z; # 0}.
Suppose we are interested in subsets of CP" given by points which satisfy
some equation, e.g. f(zo,...,2r) = 0. Whether or not a point [zo : ... : 2]

satisfies this equation ought to be independent of the choice of representative,
and one way to guarantee this is the case is to assume that f is homogeneous:

f()‘ZOw : 'a)\zk‘) = )\df(ZOa" . 7Zk‘)

for some d > 1. If so, if f vanishes on all representatives of [z, ..., zx] when it
vanishes on one of them.

We shall now restrict our attention to such f which are polynomial, homoge-
neous polynomials. These are polynomials in zg, ..., z; in which every term has
the same total degree d.

'See https://www.ams.org/notices/200310/fea-milnor.pdf for the history and context
of this problem.

2See e.g. http://wuw.ams.org/notices/200406/fea-weeks.pdf and https:
//mathoverflow.net/a/9717/798.


https://www.ams.org/notices/200310/fea-milnor.pdf
http://www.ams.org/notices/200406/fea-weeks.pdf
https://mathoverflow.net/a/9717/798
https://mathoverflow.net/a/9717/798
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Ezample 9.2.1. The polynomial 22 + 27 of 2, 21 is homogeneous, but zo + 27 is
not.

We now use the submersion theorem to answer the following question: when

does the zero set of homogeneous polynomial describe a smooth submanifold of
CP*?

Theorem 9.2.2 (Hypersurfaces in complex projective spaces). Let p be a homo-

geneous polynomial of zy, ..., zr such that
k
{(z0,---,2x) | p(20,...,2k) =0} N ﬂ {(zo,...,zk) a%jp(zo,...,zk) = O} = {0},
j=0

then the subspace
{[ZO el Zk] ’p(Z(),...,Zk) :O} CCPk
is a (2k — 2)-dimensional smooth submanifold.

This statement requires an explanation. We can identify the domain C*+! with
R%* by zj <> x; +1y;, and similarly identify the target C with R2. Then p is not
only differentiable as a function R?**2 — R2, is in fact complex-differentiable as
a function C**! — C. That is, for each 1 < i < k the limit W with

as C 5 h — 0 exists, and these limits are the partial derivatives %(zo, ey Zk)-
J

Proof. Let us write X := {[z0 : ... : 2zx] | p(20,...,2x) = 0}. If suffices to prove
that X nV} is a smooth submanifold for all 0 < j < k. To do so, we may pass to
the local coordinates provided by the chart ¢;, i.e. prove that <Z>j_1(X nV;) c C*
is a smooth submanifold. This is given by the vanishing set of the polynomial
q; given by p(z1,...,2j-1,1,2j,...,2;) of the k variables z,..., 2, (it is not
homogeneous).

We now ought to identify the domain C* with R?* and the target C with
R?, and show that when gj(z1 + iy1,..., 2k + iyk) = 0, the (2 x 2k)-matrix of
partial derivatives of the real and imaginary part of ¢; with respect to x1,...,z
and yi, ...,y is surjective. However, it is more convenient not to leave the
world of complex numbers, as g; is complex-differentiable with respect to the
k complex variables z1,..., 2. In this case, we can form a (1 x k)-matrix of
complex numbers

0q; 0q;
[%(zl,...,zk) %(zl,...,zk).]

This is surjective if and only if the (2 x 2k)-matrix with real entries mentioned
before is surjective.

Thus the condition is that when g¢; vanishes, at least one of the partial
derivatives of ¢; does not vanish. We will get a contradiction with the hypothesis
from the assumption that ¢; and all its partial derivatives vanish simultaneously.
We start by relating these vanishing for ¢; and partial derivatives back to p:

q; vanishes at (z1,...,2;) <= p vanishes at (21,...,2j-1,1,2j,...,2k),
oq; . op .
.. vanishes at (21, .., 21) = i vanishes at (z1,...,2j-1,1,2j,...,2k),
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with ' =rif r < jand ' =r + 1 if r > j. This gives us information about all
partial derivatives except %pj.

To understand this remaining partial derivative, we use a fact due to Euler:

k
op
Za—(zo,...,zk)-zj=d-p(zo,...,zk), (9.1)
— 025
7=0
with d the degree of p. To prove this, consider the function p(Azp, ..., Azk) —
Ap(20, ..., 2). This vanishes identically because p is homogeneous of degree d,
hence so its derivative with respect to A. Evaluating this derivative at A = 1
gives (9.1). If we use this at the point (21,...,2j-1,1,2j,...,2k), we know the
right hand side vanishes as do all terms on the left hand side expect one. We get
that

op
7&2 (21, e ,ijl, 1,Zj, e ,Zk) = 0,
J
which contradicts the hypothesis. This completes the proof. O

Remark 9.2.3. Implicitly we used the complex version of the submersion theorem,
[DKO04a, Section 3.7].

A smooth manifold obtained as in Theorem 9.2.2 is called a hypersurface.
The example which plays such an important role in algebraic geometry is the
K3-manifold,® also known as the Fermat quartic. It is obtained by taking the
homogeneous polynomial p given by 2§ + 2 + 25 + 23:

K3:={[z20::23]) | 23 + 2{ + 23 + 2§ = 0} c CP™.

It is easy to verify that the polynomial p satisfies the conditions in Theorem
9.2.2, so this is a 4-dimensional smooth manifold: if a%jp(zo, 21, 22, 23) = 0 then
zj = 0, so all partial derivatives vanish simultaneously only at the origin.

Remark 9.2.4. Why is the K3 manifold interesting? It plays an important role in
algebraic geometry and the study of 4-dimensional smooth manifolds.

When one does algebraic geometry over C, out of a smooth k-dimensional
variety one can extract a smooth 2k-dimensional manifold (“taking the analytic
topology”). In particular, the K3 manifold can be obtained this way from not one
but many algebraic surfaces. There are roughly three types of algebraic surfaces:
Fano surfaces (which are “easy”), surfaces of general type (which are “hard”),
and Calabi-Yau surfaces (which are “intermediate”). The latter class contains
only complex 2-dimensional tori and the K3 surfaces, and all K3 surfaces have
the same underlying 4-dimensional smooth manifold: the K3 manifold that we
constructed above.

Because it has an algebraic origin, the gauge-theoretic invariants used to
study exotic smooth structures on smooth 4-manifolds can be computed for K3
using more algebraic approaches. This gives a starting point for constructing
exotic smooth 4-manifolds: start with K3, make a modification to it, and study
how this changes the gauge-theoretic invariants.

3The name is due to Andre Weil, who motivated it by “In the second part of my report, we
deal with the Kéhler varieties known as K3, named in honor of Kummer, Kéhler, Kodaira and
of the beautiful mountain K2 in Kashmir.”
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9.3 The Whitehead manifold

Our final example is quite peculiar. It is an example of a 3-dimensional smooth
manifold which from the perspective of algebraic topology looks like R3, but is
not in fact diffeomorphic to it. It is an example of infinite phenomena leading to
pathological objects in differential topology.

We start with the following injective immersion S* x R? — R? of an open torus.
Let us denote its complement in R? by W;. This contains another, curiously
linked, open torus; its complement in R? is denoted by W. We can keep iterating
this procedure, finding a linked copy of S' x R? in the previous copy of S* x R2,
and denoting its complement by W,.

The Whitehead manifold is then defined to be increasing union

W .= UW”'

This is an open subset of R? and hence a smooth 3-dimensional manifold. It is
the complement of the intersection of all the linked open tori, which is known as
the Whitehead continuum.

Remark 9.3.1. Why is the Whitehead manifold interesting? The Whitehead man-
ifold is a contractible 3-dimensional smooth manifold which is not diffeomorphic
or even homeomorphic to R3. (Surprisingly, it is homeomorpic to a union of two
copies of R? intersecting in another copy of R? [Gab11].)

The reason is that being contractible does not take into account the “topology
at infinity,” i.e. how W\ K,, behaves as for a sequence K, of compact codimension
0 submanifolds exhausting W. This is a general phenomenon: if you want to
use algebraic topology to study non-compact manifolds you need to take into
account the topology at infinity.

9.4 Problems
Problem 24 (Klein quartic). Prove that the subspace
X ={[z:y:2]eCP?| 2%y + 132+ 2%z = 0} c CP?

is a 2-dimensional compact submanifold. It is called the Klein quartic. What is
its genus?

Problem 25 (Milnor manifolds). Let m < n. Prove that the subspaces

H(m,n) = {([zo, ey Zmly [wos <oy wp])

m
Z Zjwj = 0} c CP™ x CP™
§=0

are 2(m + n — 1)-dimensional smooth submanifolds. These are called Milnor
manifolds.



Chapter 10

Partitions of unity and the weak Whitney
embedding theorem

In this lecture we prove that every compact manifold can be embedded into a
Euclidean space, using partitions of unity.

10.1 The weak Whitney embedding theorem

We now prove that every compact smooth manifold M arises a smooth subman-
ifold of some RY, by constructing a smooth embedding M < RY. The result
is true also for non-compact smooth manifolds, but proving that requires more
care and will be done later. Thus we could have set up the theory by demanding
every smooth manifold is of this form, as [GP10] does.

The new tool in our argument is the existence of partitions of unity, and this
is one of the reasons that we demanded M was second-countable and Hausdorff.
Recall that the support supp(n) € M of a continuous function n: M — [0,1] is
the closure of the open subset n71((0,1]).

Definition 10.1.1. Let W = {W,};cr be an open cover of M. Then a partition
of unity subordinate to W is a collection of smooth function n;: M — [0, 1] with
the following properties:
(i) supp(ni) = Wi,
(ii) each p € M has an open neighbourhood on which only finitely many »;
are non-zero,

(iii) for all pe M, >, ni(p) = 1.

Theorem 10.1.2. Every open cover W = {W;}ier of M admits a subordinate
partition of unity.

The main use of partitions of unity is to construct a function (or something
similar) on W;, usually the codomain of a chart, multiply it with 7; and extend
the result by 0 elsewhere. The result is then defined on all of M.

Theorem 10.1.3 (Whitney). Every compact k-dimensional smooth manifold M
has an embedding into some Euclidean space RN .

83
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Proof. Since M is compact it can be covered by the codomains V; of finitely
many charts (U;, V;, ¢;) for 1 <i < r. Let n;: M — R be a subordinate partition
of unity subordinate to this cover. We then define

n(p)oy H(p) ifpeVi,
0 otherwise.

(Thus 7, (p)é;! ought to be interpreted as a compound symbol.) This is smooth
as the support of n; is contained in V; and 7; is smooth.
Then we define the following map

p: M —s RT(k+1)

pr— (m®),m@ér @), ne () n-(p) by L (p))-

Since each of the components of p is smooth, so is p.

We must now verify p is injective and has injective differential for all p e M
(it is automatically proper because M is compact). We start with injectivity and
suppose that p(p) = p(p’). Since the n; are a partition of unity we can pick an 7;
such that n;(p) = n;(p’) # 0. From this we deduce that both p and p’ are in V;.
We can then divide the equation 7;(p)é; ' (p) = ni(p')é; 1 (p') by ni(p) # 0 to get
¢; 1 (p) = ¢; 1(p') and apply the injective map ¢; to deduce p = p/.

Next we verify p has injective differential everywhere. Let p € M be such that
ni(p) # 0 and set ¢ = ¢; ' (p). Since projections are smooth and on n; *((0,1])
division by 7; is a smooth map, the following is a smooth map n;” 1((0,1]) - R*:

g — p(a) P4 0i(@)¢; (q) 9 61 (g).

It is visibly equal to ¢;, so it has bijective differential d,¢; at p. By the chain
rule we can write
dppi = d,p (divide o proj) o dpp

and since the left hand side is bijective the term d,p on the right hand side must
be injective. O

FEzample 10.1.4. The embeddings produced by Theorem 10.1.3 have a target of
unnecessarily high dimension. For example, at best it produces an embedding of
S™ into R?"*2, even though we know S™ can be embedded into R"*!. We shall
later prove that every compact k-dimensional manifold embeds into R2++1.

10.1.1 Tangent bundles of submanifolds

Suppose M is a k-dimensional manifold and Z < M is a submanifold of codimen-
sion r. Then both M and Z have tangent bundles T'M and T'Z. The inclusion
i: Z — M is an injective map whose derivative is injective at all z € Z. Thus
the map di: TZ — T'M is injective; it maps at most one fibre to each T,,M and
on that fibre it is injective. We claim that this allows us to think of TZ as a
subbundle of TM|z. Indeed, taking E =TZ, X = Z, ' = TN, X' = M and
G = di in the previous lemma about images of bundle maps, we see that im(di)
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is a subbundle of TM|z. Of course it is also true that ker(di) is subbundle of

TZ, but it is O-dimensional. This makes precise the statement that “T'Z is a
subbundle of TM|z.

Ezample 10.1.5. By the Whitney embedding theorem, T'M is a subbundle of
TR |5z, which is the trivial bundle of dimension N over M. We conclude that
the tangent bundle to a compact manifold is always a subbundle of a trivial
vector bundle.

10.2 Existence of partitions of unity

We now prove the existence of partitions of unity. Before doing so, we must
establish a few results about the point-set topology of M, which require that M
is second-countable and Hausdorff.

Lemma 10.2.1. M is a union of countable many open subsets with compact
closure.

Proof. Let {W;};cr denote the countable basis for the topology of M and let
A ={(Uq, Va, da)} be the atlas of M. If there is a codomain V,, of a chart that
contains W;, pick one and call it V;. This gives a collection of open {V;};cp
indexed by a subset I’ = I. We have | J,., Vi = M, because the V,, cover M
by definition of an atlas and V,, is a union of elements of the basis {W;}cr by
definition of a basis for a topology.

Given a chart (U;,V;, ¢;) for i € I’ take all open balls B, (r;) c U; in its
domain such that €¢; > 0 is rational, z; € U; has rational coordinate, and the
closure B, () is contained in U;. We denote these

W,Lj = Qﬁi(BeJ- (mj))7

indexed by some countable set J;. The collection of all of these is a countable
union of countable sets, so is countable. We will prove that {sz }ie 1" jeJ; is the
sought-after collection of open subsets.

To see that the WZJ cover M, we remark that for fixed i we have (¢ ;. WZJ =V
and then varying ¢ we have

JUwi - Y=o

el jed; iel’

The image of the compact set Eej (xzj) under ¢; is compact. Because M is
Hausdorff each compact subset is closed and thus the closure of ¢;(B,(z;)) is
contained in ¢;(B,,(r;)). Hence it is a closed subset of a compact set, so itself
compact. U

Lemma 10.2.2. There are compact subsets K; € M, indexed by integers i = 0,
and open subsets Vi 1o < M such that Ko < Vi < K1 < Viyyp © -+ and
Uizo Ki = M.



86 Chapter 10  Partitions of unity and the weak Whitney embedding theorem

Proof. Let M = | J,cy Wi with W ; compact. We define the K; inductively, starting
with Ko = Wg. Suppose we have defined K,,_1, then let N be the smallest
integer > n such that K,y c Wy u---UWy. Set V,,_yp =W u---u Wy and
K, =Wiu---uWh. (]

If U is an open cover of X, we say taht a second open cover V is a refinement
if each V € V is contained in some U € /. One can deduce from the previous
lemma that M is paracompact, i.e. every open cover has a refinement to a locally
finite subcover and it is then a standard fact in point-set topology that partitions
of unity by continuous functions exist. We instead want partitions of unity by
smooth functions, so we must use somehow that M is a smooth manifold. We
first prove a slightly weaker version of Theorem 10.1.2 and along the way we will
prove that M is paracompact.

Proposition 10.2.3. Every open cover W = {W;}ier of M has a refinement
which admits a subordinate partition of unity.

Proof. Let Ko < Vi © K1 € Viiip € -+ be as above M and W = {W}ics be
the open cover. Any p € M lies in a unique K,,\K,,—1, which has V,, 1 p\Kp 1 as
an open neighborhood. We can then pick a chart (Ug, V3, ¢3) of M, a point z € Ug,
and 6 > 0, such that Bs(z) < Up, p = ¢g(2) and ¢5(Bs(2)) € Wi 0 Vg1 0\ K1
for some 1.

Ranging over all p € M (and thus implicitly all n > 0), the open sets
¢5(Bsy3(2)) in particular cover the compact set Kp1\Vp,—1/2, hence there is
a finite subcover ¢gm(Bsm/3(2")), 1 < i < jm of Kpmi1\Vy;—1/2. Taking the
{dpm (Bsm3(2]")) }1<i<ji for all m, these give a cover of M, as

U Emit Wiz 2 [ Kner\Em = M.

m=0 m=0

By construction ¢gm (Bsm 3(2;")) is contained in W;, so this is a refinement of W.
It is locally finite since the open subsets ¢gm (Bgsr(2{")) can only intersect the
open subset VnH/Q\Kn,l for n = m — 1, m. At this point we have proven that
M is paracompact.

In Problem 26 you will show that there exists a smooth function p;": Ugm —
[0, 1] which vanishes outside Bsm 5(2;") and is equal to 1 on Bsm 3(2"). We can
then define a smooth map 7/*: M — [0, 1] by

‘ 0 otherwise.

Since the collection of open subsets ¢gm (Bsm 3(2;")) covers M and the collec-
tion of open subsets ¢gm (Bsm (2{")) is locally finite, we have that

p— > 7" (p)
is locally equal to a finite sum of non-zero terms, so is a smooth map M — R.j.
We then define n/": M — [0, 1] by
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This is the desired partition of unity subordinate to the refinement of W given
by the ¢gm (Bsm 3(2]")). O

Remark 10.2.4. If M is compact, the proof of Theorem 10.1.2 greatly simplifies
as you can forget about the K; and Vi q/’s.

The above construction has multiple functions with support in W;. Instead,
it is often more convenient to have one function for each W; in W.

Proof of Theorem 10.1.2. By the previous proposition we can find a refinement
W' = {Wj}jes of W = {Wi}lier and a partition of unity {n;: M — [0,1]}
subordinate to it.

For j € J, fix a W; such that Wj’ c W;. This gives a function A: J — I. We

claim that
ni= Y, 1
jeJ=1(i)
gives the desired partition of unity. By property (ii), this is a locally finite sum
and hence a smooth function. By property (i), the sum of the n; is 1 everywhere.
From property (i), we know that Supp(n;) c WJ’ and hence is also contained in
W;. Now observe that

supp(n:) =1, (0, 1) = () (m))=1((0,1)).

jed ()

By property (ii), the latter is a closure of a locally finite union of open subsets.
This is equal to the union of the closures, by an elementary argument in point-set
topology. So we conclude that

supp(;) = | ) ()70, 1) = | supp(n)) = Wi
jeJ (i) jeJ (i)

This finishes the proof. O

10.3 Problems

Problem 26 (A bump function).
(a) Prove that

fiR—R

e~ 1/ if x >0,
x€r ——
0 ifx<0

is smooth.
(b) Observe that g(z) = f(z)f(1 —x) is smooth, positive on (0, 1), and 0 outside
of this interval. Prove that
S a(y)dy
o0
20 a(y)dy

is smooth, equal to 0 when z < 0 and equal to 1 when = > 1.

h(z)
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(c) Construct a smooth function on R¥ which is 1 on an open neighborhood of
the origin and is supported in the unit ball.

Problem 27 (Charts from coordinate axes). Suppose that M is a k-dimensional
smooth manifold and e: M — RY is a smooth embedding. Prove that for each
p € M there is an open subset U < M containing p and integers i1, ..., in
{1,..., N} such that

M>U— RF
p— (7Ti1 oe(p),...,mk oe(p))

is a diffeomorphism onto an open subset. Here 7;; : RY — R is the projection on
the i;th coordinate.



Chapter 11

Transversality and the improved preimage
theorem

In this lecture we improve the pre-image theorem to give a sufficient condition
under which pre-images of submanifolds are submanifolds. This will have many
applications, among them a generalization of the Whitney embedding theorem
to non-compact manifolds.

11.1 The preimage theorem restated

Recall that given a submanifold Z < M, with ¢: Z — M denoting the inclusion,
we have that by considering the image of di we can consider T'Z as a subbundle
of TM|z. This makes precise the statement that “T'Z is a subbundle of TM|;.”

Many submanifolds arise through the pre-image theorem: we have a smooth
map f: M — N with regular value ¢ and Z = f~1(c). The pre-image theorem
said that Z is then (k — k’)-dimensional submanifold of M and T,f !(c) =
ker(dyf: TyM — TypyM) for all p e f~1(c). The latter part about the tangent
spaces to Z, can be improved to a statement about tangent bundles. The proof
is identical, but it is only now that we can phrase it:

Theorem 11.1.1 (Preimage theorem). If f: M — N is a smooth map and c € N
a regular value, then Z = f~1(c) is a (k — k')-dimensional submanifold of M
and TZ = ker(df: TM|z - TN) c TM|z.

Erample 11.1.2. Recall that S™~! can be written as g~ (1) with g: R” — R given
by (z1,...,2n) = 23 + ... + 22. The map g is smooth and has total derivative
[2x1,...,2x,], so all non-zero real numbers are regular values of g. In particular,
S"~1is an (n — 1)-dimensional differentiable manifold and T'S™~! is the kernel of
the total derivative maps; for x = (x1,...,2,) € S"~! the kernel of [2z1, ..., 2z,]
is just the (n — 1)-dimensional plane - of vectors orthogonal to .

11.2 Transversality

The most important geometric notion in differential topology is transversality.
This condition tells you in terms of tangent spaces when submanifolds (or the
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image of a map and a submanifold) intersect nicely.

11.2.1 Submanifolds locally

We start by recalling the definition of a submanifold, and describe how in suitable
local coordinates all submanifolds are the inverse images of projection maps.

Suppose that we have a k’-dimensional differentiable manifold N with a
submanifold Z < N of codimension r (that is, Z is (k' — r)-dimensional). Then
for each z € Z we have a local parametrization, that is, open subsets U < R¥
and V < N as well as a diffeomorphism ¢: U — V so that ¢ 1(Z n V) =
U ~ ({0} x R¥="). That is, on U we can define 7,: U — R” projecting onto the
first r coordinates and ¢=1(Z n V) = 7,71(0). Thus we see that

ZAVcV=g¢m10)cV.

If we want to explicit understand 7,2 < T, N, then we may as well identify
it in U by applying the linear isomorphism d.¢~!. Here it is the tangent space
to U n ({0} x R¥=") at ¢—'(2), which is just {0} x R¥~". Applying the inverse
dg-1(z)¢ of d.¢~1, we see that T,Z is the following (k' — r)-dimensional linear
subspace of T, N:

T.Z = dy-10y6({0} x R¥ ") < TLN. (11.1)

11.2.2 Improving the pre-image theorem

Now suppose we have a smooth map f: M — N. We will give a criterion that
tells us when f~!(Z) is a differentiable submanifold of M.

To find a local parametrization of f~1(Z) = M near p € f~1(Z), we might
as well find one of f~1(Z " V) < f~1(V) € M. The advantage of passing to this
open subset is that on f~!(V) we can use projection to define the smooth map

9=V eMLVve N UcRY TR
This has the property that
g7H0) = fHo(m, 1 (0)) = fH(6 HZ A V) = fTHZ V).

The pre-image theorem then tells us that f~'(Z n V) is a submanifold of
f~1(V) = M of codimension r whenever 0 is regular value of g. That is, g should
be a submersion at all pe f~1(Z n V).

So we need to understand when d,g: T, M — ToR" is surjective. Writing

dpg = dy- 5y 0 dyp)d ™" © dy,

we first observe that for d,g to be surjective, im(df(p)¢*1 o d,f) should be a
linear subspace of T f(p)Rk/ = R¥ which surjects onto TpR" = R" under the
linear map dg-1 ()7 R* — R”. This is the case exactly when im(df(p)gb_l o
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dpf) + ker(dg-1 p(ymr) = RF. Using the fact that ker(dy-1;(,)m) = {0} x RF ="
we obtain the requirement

im(dg¢ " odyf) + {0} x R¥ =" = R¥.

Let us apply the linear isomorphism dg-17(,)¢ to translate this back to a
statement about linear subspaces of the original tangent space T,y N. By the
chain rule dg-15(,) ¢ sends im(dgy¢~t o dyf) to im(dy,f), and by (11.1) it sends

{0} x R¥ =" to T ¥(p)Z- Since a linear isomorphism preserves sums, we see that
dpg is surjective if and only if

im(dpf) + Tpp)Z = Ty V-
Let us give this condition a name:

Definition 11.2.1. Let Z < N be a submanifold. We say that f: M — N is
transverse to Z at p € f~1(Z), denoted fh,Z, when im(dpf) + Ty Z = Ty N-

Definition 11.2.2. Let Z < N be a submanifold. We say that f: M — N is
transverse to Z , denoted fMZ, when f is transverse to Z at all pe f~1(2).

Ezample 11.2.3. A smooth map f: R — R? is transverse to R x {0} if and only if
the derivative 0 f2/0t is non-zero whenever f(t) crosses the z-axis.

SR x {0} g MR x {0}

Figure 11.1 Examples of smooth functions R — R2.

Then the above discussion tells us that f: M — N being transverse to Z at
all pe f~1(Z n V) implies that f~1(Z n V) = g71(0) is a submanifold. Varying
the local parametrizations, we see that f being transverse to Z implies f~1(Z) is
a submanifold. We can say a bit more; by the pre-image theorem the tangent
space to f71(Z n V) = g~1(0) at p is given by the kernel of dpg, i.e. (dpg)~1(0),
which is equal to (dpf)*l(Tf(p)Z).

Theorem 11.2.4 (Improved preimage theorem). Let Z < N a submanifold
of codimension r and suppose that f: M — N that is transverse to Z. Then
f~YZ) = M is also a submanifold of codimensionr and T f~1(Z) = (df) 1 (T Z) <
TM|p-1(z)-
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Remark 11.2.5. This is an improvement of the preimage theorem, because we can
recover the preimage theorem by take Z to be a point ¢. Since the tangent space
to the (rather boring) 0-dimensional manifolds ¢ is 0-dimensional, f is transverse
to c at pe f~1(e) if and only if d, f is surjective.

Ezample 11.2.6. Suppose Z < N is a collection of points and M is of smaller
dimension than N. Then f: M — N is transverse to Z if and only im(f)nZ = &,
as it is not possible for the sum of a 0-dimensional and < k’-dimensional subspace
to equal a k’-dimensional vector space.

Ezample 11.2.7. Though fhZ implies that f~1(Z) is a submanifold, the converse
is not true: the inclusion i: Z — N is very much not transverse to Z, but

iNZ)=2Z.

Remark 11.2.8. You may want to try to come up with the definition of two
smooth maps f: M; — N and g: M2 — N being transverse, and then prove that
{(m1,m2) | f(m1) = g(m2)} € M1 x Ms is a submanifold.

11.2.3 Transversality for submanifolds

The case that is of most geometric interest is when f is the inclusion j: Y — N
of another submanifold. In that case, it is more convenient to forget about the
maps i: Z — N and j: Y — N and state the transversality condition in terms
of the submanifolds:

Definition 11.2.9. Let Y, Z ¢ N be submanifolds. Then Y and Z are transverse
atpeY n Z, denoted YN, Z, if T,,Y + 1,7 =T,N.

Definition 11.2.10. Let Y, Z < N be submanifolds. Then Y and Z are trans-
verse, denoted YhZ, if Y and Z are transverse at all pe Y n Z.

Ezxample 11.2.11. If Y n Z = @, YA Z because there are no pointsinpeY n Z
at which any conditions are imposed.

The improved pre-image theorem says that if Y hZ then Y nZ is a submanifold
of Y, and hence a submanifold of N. (If this sounds surprising, you should go
through the definitions again and verify that a submanifold of a submanifold is a
submanifold). At eachpeY nZ, T,(Y n Z) = T,Y nT,Z. This in particular
implies that

codim(Y n Z) = codim(Y") + codim(Y).

You should think of YhZ as saying that Y and Z intersect nicely. Let us make
this more precise:

Ezxample 11.2.12. Two linear subspaces U and V in R" of codimension r and s
respectively intersect transversally if and only if U n V is a linear subspace of
codimension r + s.

The direction = is a consequence of the general formula for the codimension
of a transverse intersection. For the direction <, we note that at each pe U "'V
we can identity T,U and T,V with U and V again. To compute their sum U + V'
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transverse not transverse

Figure 11.2 Examples of 1-dimensional submanifolds of R2.

we use the inclusion-exclusion formula for the dimension of a sum of two linear
subspaces:

dim(U+V) = dim(U)+dim(V)—-dim(U+V) = (n—r)+(n—s)—(n—r—s) = n.

Hence U + V =R" and U and V intersect transversally at pe U n'V.

Any transverse intersection locally is of the form in Example 11.2.12 in the
right coordinates:

Lemma 11.2.13. YA,Z if and only if there is a chart (Uy, Vo, ¢o) such that
o1 (Y) and ¢, 1 (Z) are given by the intersection with Uy, of two linear subspaces
intersecting transversally.

Proof. < follows from transversality being preserved by diffeomorphisms, so we
focus on =. Since the intersection is non-empty the codimensions r and s of Y
and Z satisfiy r + s < k'.

The proof of the improved pre-image theorem provides a chart (Uy, Vi, ¢1) in
which ¢=(Z) = Uy n ({0} x R¥~"). We may assume that ¢ (0) = p by translating.
Translated to this chart, Y h,Z says that Ty (V) + {0} x R¥~" = RF". Thus
by applying a linear isomorphism of R¥ preserving {0} x R¥ ~" we may assume
that Too; H(Y) = R¥ = x {0}.

So it remains to fix ¢ (Y). Consider the map m: ¢71(Y) — RF'~% x {0}
given by restricting the projection map R¥ — R¥'—s x {0}. The derivative of 7
at 0 is the identity and hence bijective. Inverse function theorem then tells us
that 7 is a local diffeomorphism. Thus near the origin,

o1 (V) = {(w, p(w)) e R¥* x R*}

for a smooth map p: R¥ 5 — R® with p(0) = 0. Thus there exists an open
subset Uy of the origin in R¥ so that the diffeomorphism p: R¥ — R given
by p(w,v) = (w,v + p(w)) maps Uy n (R¥ =5 x {0}) onto a neighborhood of the
origin in ¢; '(Y). Note that p preserves {0} x R*" we only translate in the last
s coordinates and s < k' —r as k¥’ > r + s. Thus the desired chart is

(U2, Vo, ¢2) = (U2, 1 0 p(V2), ¢1 © p). [
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11.3 Another construction of the Poincaré homology sphere

As an extended example, we will now give an alternative and at first sight
completely unrelated construction of the Poincaré homology sphere P = S3/I*
which we first saw as an additional example.

To do so, we consider the map

f:C*—cC

(21,22, 23) — z% + zg’ + zg’

We claim that
X = f710) n (C*\0)

is a codimension 2 submanifold of C3\{0}. We of course would like to use the
submersion theorem, and we could do by identifying the domain C? with R® by
2j < xj +1y;, and similarly identify the target C with R?. We would then need
to verify that the total derivative, a (2 x 6)-matrix, is surjective.

However, it is much convenient to keep working with complex numbers: as a
polynomial, p is not only differentiable as a function R® — R?, is in fact complex-
differentiable as a function C* — C. We can compile these into a (1 x 3)-matrix
of complex numbers

[%(21722723) 2L (21,22, 23) 57];(21,22,23)]-

This complex total derivative is surjective if and only if the total derivative is
surjective.
In our case, the complex total derivative is given by

[221 323 52i] (11.2)

and hence surjective for all (21, 22, z3) € C*\{0}. We conclude that X < C3\{0}
is a 4-dimensional smooth manifold, or equivalently has codimension 2.

To reduce the dimension by one, we will intersect with the sphere S° =
{(21,22,23) | |21]* + |22]® + |23/ = 1}, of codimension 1. We claim this is
transverse to X. To see this is the case, we use that the tangent bundle to X
at © = (z1, 22, 23) € X is given by the kernel of the matrix (11.2); this has fibers
isomorphic to C? =~ R* so is 4-dimensional. A particular vector in this kernel is

w = (21/2,22/3, 23/5).

The tangent bundle to S° at 2 € S® is given by those vectors orthogonal to z; this
is b-dimensional. It is convenient to work with complex numbers, and observe
that w = (w1, ws, ws3) € T,C3 being orthogonal to x is equivalent to

Re(Z - w) = 0.
Let us evaluate this on the above vector in T, X: we get

Re(T - w) = [21[*/2 + |22*/3 + |25[*/5,
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and since |21|2 + |22|% + |23/ = 1, we see this is at least 1/5 so non-zero. Thus
T,X ¢ T,S5° and by a dimension count we conclude that T, X + 7,5° = T,C3.
Thus f~1(0) n S° is a submanifold of S®. Tts codimension is 2 + 1, so it is
3-dimensional. It is in fact diffeomorphic to the Poincaré homology sphere [[KS79,
p. 128-132].

Remark 11.3.1. A smooth manifold which arises as the transverse intersection
of a zero set of a complex polynomial (here 22 + 23 + 23) with a small sphere
around a singularity (here we took the sphere of radius one around the origin), is
called a link of a singularity. These have been studied in detail, see e.g. [Mil68].
Particularly interesting are the Brieskorn spheres X(ki,. .., ky,), constructed as
the links of the singularity at the origin of polynomials

k
AR

These give examples of smooth manifolds which are homeomorphic of spheres
but not diffeomorphic to them [Bri66]. For examples, the cases

2(2,2,2,3,6k — 1)

give all examples of exotic 7-spheres up to diffeomorphism.

11.4 Problems

Problem 28 (Brieskorn manifolds). Verify that all Brieskorn spheres are (2n—3)-
dimensional manifolds.

Problem 29 (RP3 as a link of a singularity). Recall the smooth manifold W,
from a previous problem. Use the map

f:C?—c?
(w1, we) —> (w? + w3, i(w? — w3), 2w ws)

to produce a diffeomorphism RP3 — W3. Conclude that SO(3) is diffeomorphic
to RP3.
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Stable and generic classes of smooth maps

It is a standard strategy to study the effect of small deformations on mathematical
objects. On the one hand, such deformations can make the object more generic
and hence easier to understand. On the other hand, small enough deformations
often preserve important properties. To start applying this strategy to certain
types of smooth maps, we will need to do the following;:

(i) make precise what we mean by a “deformation,”

(ii) understand which types of smooth maps are “stable”, i.e. preserved by small
deformations, and

(iii) understand what a “generic smooth map” looks like.

12.1 Homotopies of smooth maps

A reasonable definition of deforming of a smooth map fy is to situate it in a family
of smooth maps fs; which depends smoothly on the parameter s. Restricting the
parameter s to lie in the closed interval [0, 1], we get the following definition:

Definition 12.1.1. A homotopy is a smooth map H: M x [0,1] — N.

Ezample 12.1.2. Out of a smooth map f: M — N, we can construct a constant
homotopy H: M x [0,1] — N by H(p,t) := f(p). This homotopy does not
deform f at all!

We have not officially said what it means to have a smooth map with domain
M % [0, 1]; we will later define manifolds with boundary, but for now it suffices to
say that it should extend to a smooth map whose domain is an open neighbourhood
of M x [0,1] in M x R.

Since the restrictions of smooth maps are smooth, each f[y/x;y: M — N is
a smooth map. In particular this is the case for fj := f|MX{0} and f1 = flyxqn
and we say that H is a homotopy from fy to fi.

Definition 12.1.3. Two smooth maps fy, fi: M — N are homotopic, denoted
fo ~ f1, if there is a homotopy from fy to fi.

Lemma 12.1.4. Homotopy is an equivalence relation of smooth maps M — N.

96
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Proof. The constant homotopy shows it is reflexive. To see it is symmetric, note
that if H: M x [0,1] — N is a homotopy from fy to fi then H(p,t) .= H(p,1—1t)
is a homotopy from f; to fo. In Problem 30 you will show it is transitive. O

12.2 Stable classes of maps

A class of smooth maps is stable if it is preserved by small perturbations, in the
following sense:

Definition 12.2.1. A subset U of the set of all smooth maps M — N is stable
if for each fp € U and smooth map H: M x R" — N starting at fy there exists
an € > 0 such that H|p/, ) € U for all [[z]] <e.

This definition has a straightforward consequence for homotopies:

Lemma 12.2.2. If U is stable then for each fo € U and homotopy H: M x
[0,1] — N starting at fo there exists an € > 0 such that H|pr gy € U for all
t<e.

Proof. There exists a smooth map 7: R — [0, 1] such that 7(¢) = 0 for ¢t < 0 and
7'(t) > 0 for t > 0. Now apply the condition in the definition of stable classes of
maps to Ho (id x n): M x R — N. O

Remark 12.2.3. If we were to go to the trouble of defining a suitable topology on
the set C*°(M, N) of smooth maps M — N, open subsets of C*(M, N) would
be stable.

This remark makes us suspect that subsets which are defined by “open
conditions” should be stable. Let us look at an example: in the space Lin(RP, RP)
of all linear maps RP — RP the invertible linear maps are open (as they are
defined by the condition that the determinant is non-zero). This means that if
an invertible A € Lin(RP, RP) is perturbed slightly, it remains invertible. Since a
map f: M — N is a local diffeomorphism if and only if all derivatives d,f are
invertible, one might expect that this condition should be preserved by a small
perturbation of f, as it gives rise to a small perturbation of each d,f. Thus, if
we could somehow “bound the determinant of the d, f” away from 0, any small
perturbation of f will remain a local diffeomorphism.

The problem with this vague argument is of course that one can’t make sense
of the determinant of a linear map between two different vector spaces. The idea
is to use the determinant in finitely many charts, and to guarantee M is covered
by finitely many charts we assume it is compact.

Let us now make it precise:

Theorem 12.2.4. If M is compact, then the following classes of smooth maps
f: M — N are stable:

(i) local diffeomorphisms,
(ii) immersions,

(iii) submersions,
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(iv) maps transverse to a submanifold Z < N,
(v) embeddings,
(vi) diffeomorphisms.

Proof. The case (i) is a special case of both (ii) and (iii). Case (ii) is very similar
to case (iii) and proven in Guillemin & Pollack, so we will only prove the latter.
Suppose fo: M — N is a submersion and H: M x R” — N is a smooth map so
that H|yrx (o) = fo- Pick a finite collection of charts {(U;, Vi, ¢:)}, 1 < i < r, such
that | J, Vi = M and f(V;) < Vj’(i) for some chart (U;(i),‘/Jf(i),¢;.(i)) of N. Taking
a partition of unity 7;: M — [0, 1], we find compact subsets K; := supp(n;) < V;
which also cover M. Each compact subset fo(K;) is contained in an open subset
Vj’(i). Hence there exists a §; > 0 such that

H(K; x Bs,(0) = Vi,

For suppose no such ¢; > 0 exists, then there is a sequence (pg, tx) with py € Kj,
try — 0 and H(pg,tx) € N \Vj’(i). Since M is compact, without loss of generality
pi converges to p. Since N \Vj/(i) is closed, we get

N\Vj/(i) E) hlIcn H(pk,tk) = H(p, 0) = fo(p)

and thus a contradiction to fo(K;) < Vj’(i). So if we take § = min(d; | 1 < i <
r) >0 we have that H(K; x Bs(0)) < V], forall 1 <i <.

This setup has the following goal: whether there is an € € (0,6) such that
H|prxqpy for all [[t|| < e is a submersion is equivalent to whether each of the
finitely many functions

ftz = (¢;’(i))_1 o Hlp, 1y © ¢i

has a surjective total differential at all points in its domain for all ||t|| < e.
Each f} is a smooth map from the compact subset (;S;I(KZ—) c R* to the open
subset V;.’(i) — R¥. Consider now the continuous function

maximum of absolute value of determinants

-1 ; B — ,
¢ (Ki) x B5(0) 2 (p,1) of (k' x k')-submatrices of d,, f}

7
The right hand side is positive if and only if there is a square submatrix of full
rank, which happens if and only if it is surjective. Hence we know that for ¢t = 0,
the total derivatives at all x € ¢; (K;) are surjective and hence the above function
is strictly positive. Since ¢, 1(KZ) is compact, it is bounded away from 0 for ¢t = 0,
and by continuity thus for all ¢ in some small ball B, (0) = Bs(0) with ¢; > 0. The
argument this is similar to the above argument that H(K; x Bs(0)) Vj’(i) for
some 0; > 0, and you should work it out yourself. Taking e = min(e; | 1 <7 < r)
gives the desired € > 0.

We may reduce the case (iv) to the case (iii) by picking finitely many local
parametrizations covering the intersection of Z with an open neighbourhood of
fo(M). In the coordinates coming from each of these local parametrizations, Z
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is given by {0} x R" and by composing with the projection 7, onto the first
k" — r coordinates we can rephrase fhZ in terms of 7y, o f being a submersion.

For (vi) we may reduce to the case that M and N are connected by considering
each connected component separately. But an embedding f: M — N between
compact connected manifolds of the same dimension is the same as diffeomorphism.
Hence (vi) reduces to (v).

Furthermore, (v) reduces to (ii) as soon as we prove that there must exist an
€ > 0 such that each H|Mx{t} is injective for t < e. Suppose this is not the case,
then we will derive a contradiction. Then if we define H: M x R? — N x R" by
H(p,t) = (H(p,t),t) we can find a collection of pairs (r;,;), (p}, t;) € M x R with
t; — 0, p; # v} and H(p;,t;) = H(p),t;). Using the fact that M is compact, by
passing to a subsequence we can assume that both sequences p; and p) converge
to p and p’ in M. Then fo(p) = lim H(p;, t;) = lim H(p},t;) = fo(p") and since
fo is injective p = p/. We may compute that

dipoyH = [dpof 0 :1] . T,M @R — Ty, ;)N OR’,
which is injective. Hence H is an embedding near (p,0), so in particular injective
and hence (p;,t;) = (p}, ;) for i large enough, contradicting the construction of
the sequences p; and pf. O

Ezample 12.2.5. If Z is a compact submanifold of M, then any sufficiently small
perturbation of the inclusion map i: Z «— M is still an embedding. Concretely,
when you pick any smooth function g: S — R?, there exists some ¢ > 0 such
that

itl Sl —>R2
p+—p+tg(p)

is an embedding for ¢t < e.

12.3 Generic classes of smooth maps

A class of smooth maps is generic if we can deform any smooth map to such a
map by an arbitrarily small perturbation. It will be technically convenient to
allow these perturbations to be indexed by R" instead of R.

Definition 12.3.1. A subset D of the set of all smooth maps M — N is generic
if for all fo: M — N there exists an r > 0 and a smooth map H: M xR" - N
such that M|yrx 0y = fo and for all € > 0 there exists an x € R” with [[z]| <€
such that H|p/y (s € D.

Remark 12.3.2. If we were to define a suitable topology on the set C*(M, N) of
smooth maps M — N, dense open subsets of C*(M, N) would be generic.

FEzample 12.3.3. We will later prove that if the set of all smooth maps M —
N transverse to Z is generic. Thus every smooth map f: M — N can be
approximated by maps transverse to Z.
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The main tool to find generic classes of smooth maps is Sard’s theorem, often
applied to homotopies or families of maps but incredibly useful in general:

Theorem 12.3.4 (Sard). If f: M — N is a smooth map, then the critical values
of f have measure zero.

We need to explain the statement: a subset C' of R? has measure zero if
there is a countable collection of rectangles R; < RP such that C < U;’il R;
and > 77, vol(R;) < €, and a subset C of M has measure zero if for each chart
{(Ua, Vi, #0)} of M the subset ¢ !(C) has measure zero.

Corollary 12.3.5. If fi: M — N is a countable number of smooth maps, then
the set of c € N which are regular values for all f; is dense.

Proof. The countable union | J; crit(f;) = N of measure zero subsets has measure
zero, so it suffices to observe that the complement of a measure zero subset C' is
dense. If it were not dense, C' would have non-empty interior and in some chart
contain a small ball of some definite volume > 0. O

Let us give some first applications of Sard’s theorem:

Ezample 12.3.6. There are space-filling curves, continuous maps f: [0,1] — [0, 1]?
which are surjective. However, no smooth space-filling curve can exist: a regular
value of such a smooth map is a point in [0, 1]? which is not in the image of f,
and the regular values need to be dense in [0, 1]? by Sard’s lemma.

The following is an elaboration of that idea:

Definition 12.3.7. A path-connected differentiable manifold M is said be to
m-connected if every smooth map f: S* — M is homotopic to a constant map
for i < m.

Remark 12.3.8. To connect this definition to a more familiar one in algebraic
topology involving continuous maps instead of smooth maps, one uses the fact
that every continuous map is homotopic to a smooth one.

Corollary 12.3.9. The sphere S* is (k — 1)-connected.

Proof. As before, the regular values of smooth map f: S* — S* for i < k — 1 are
those that are not in the image of f. Since these must be dense f must miss
some point zo € S¥. We can then identify S¥\{z¢} with R¥ and consider f as a
smooth map f: S* — R¥. This is homotopic to a constant map by the homotopy
H: S x[0,1] — R* given by H(p,t) = tf(p). O

Next chapter we will use Sard’s lemma to improve the Whitney embedding
theorem.
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12.4 The proof of Sard’s theorem

The following is the proof of Sard’s theorem, Theorem 12.3.4, which is essentially
a result in multivariable calculus and as such not part of the course proper. Its
proof is the standard one, and is included for completeness. It needs one fact
regarding sets of measure 0, a special case of Fubini’s theorem. This falls within
the realm of measure theory, so we will assert it without proof (but see Appendix
1 of [GP10] in the case C is closed).

Lemma 12.4.1. Suppose that we are given an open subset U < R**! and a
subset C < U such that C ~ ({t} x R¥) has measure 0 for allt € R. Then C has
measure 0.

Theorem 12.4.2. The set of critical values of any smooth map f: M — N has
measure 0.

Proof. When we proved that partitions of unity exist, we prove that there exists a
countable collection of charts {(U;, Vi, ¢;)} covering M and a countable collection
of charts {(Ui’(j), Vi’(j)7 qS;(j))} covering N such that f(V;) c Vi’(j). The set Crit(f)
of critical values of f is equal to

Crit(f) = U%(i) (Crit«(ﬁ;’(i))il ofo ¢i)> :

We observed in the proof of Corollary 12.3.5 that subsets of measure 0 are closed
under taking countable unions, so it suffices to prove Sard’s theorem for each of
the functions on the right hand side. That is, it suffices to prove Sard’s theorem
for smooth maps f: U — R* with U < R¥ open. We will prove this by induction
over k.

In the case k = 0, there are either no critical values (when k' = 0) or a single
one (when k&’ > 0), so this initial case is true. For the induction step from k — 1
to k, we let C' < U denote the set of critical points of f and filter it by

Co5C1 20>+,

letting C; be the subset where all partial derivatives of order 1 < r < ¢ vanish.
Now we will write C' as (C\C1) U | J;=, Ci- We have to prove f(C) has measure
0. As f(C) = f(C\C1) uU;= [(Ci) it suffices to prove that f(C\C1) and f(C;)
for ¢ = 1 have measure 0.

This is done in three steps:

The case f(C\Cy). If ¥ =1 then C = C; and there is nothing to prove, so
assume k' > 2. At ce C\(, gf;; (¢) # 0 for some i and j. Without loss of
generality (reordering the coordinate directions) we may assume i = 1 and

j = 1. Define a smooth map

h: U —> RF

(xla v ,l’k) — (fl(x)aan v axk)a
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which is easily seen to have bijective total derivative at ¢. Applying the
inverse function theorem, we see it is a local diffeomorphism, i.e. there is an
open neighborhood V' around ¢ such that h restricts to a diffeomorphism
UV —h(V)cRM.

Now consider the composition of its inverse with f

foh™': h(V) — R¥
(@1, ..., 2) — (21, fo(h(2)), - . ., fu(h(2))).

This sends the manifold h(V) n ({t} x R¥=1) to {t} x R¥~1 and a point
(t,c’) is a critical point of f if and only if ¢’ is a critical point of

foi= (falts =)y oo falt, =) A(V) A ({t) x RF1) — {1} x R,

Applying the inductive hypothesis to each of these, we see that the set of
critical values of f; has measure zero.

Letting C/( ft) denote the critical points of f;, the application of Fubini’s
theorem discussed above then tells us that

it} x F(C()

also has measure 0. But that union is exactly the subset of the critical
values of g o h~! where not all first order partial derivatives vanish. Since
h~! is a diffeomorphism, these are also the subset of such critical values of
gly. Thus f((C\C1) nV) has measure 0. Since a countable collection of Vs
cover C\C (using second countability of M), we conclude that f(C\C1)
has measure 0.

The case f(C;\C;+1). Starting as in the previous case, at ¢ € C;\Ci+1 we know
ai+1f'
that .

Bz, On # ( for some j and k;, and without loss of generality we
can assume both are equal to 1. Then we define

i+1

h:U — R”
ai
(x1,...,2) — <fl,x2,...,mk).
i+1

6% te é’xk

As before, h is a diffeomorphism onto its image when restricted to an open
neighborhood V of ¢. It also maps C; into {0} x R*~1, because the first
entry involves an ith partial derivative. Thus foh™! only has critical points
of type C; in {0} x R¥=! and we can apply the inductive hypothesis to
(fo h_1)|{0}ka_1 to see its critical values have measure 0. An argument
as in the first step finishes the argument.

The case C;. Finally, one proves that Cy has measure 0 for N > k/k’ —1. Then
C; = (Ci\Cit+1) U --- U (Cn-1\Cn) U Cp, all of which have measure 0. To
see this final case, it is convenient to assume U = (0,1)*, with f extending
to an open neighborhood of [0, 1]¥. We may make this assumption because
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countably many rescaled versions of closed cubes with these properties cover
U. If c e Cy, the Taylor approximation to order < N of f at ¢ vanishes, in
the sense that ||f(c + h) — f(c)|| < D||h||N*+! for some constant D > 0 and
||h|| < €0, cf. [DKO4a, Theorem 2.8.3].

Since Cy is closed in [0,1]¥ it is compact, and the constants D and e
depend continuously on ¢ € Cy we may find constants D > 0 and ¢y > 0
that work for all ¢ € Cy. Then subdivide [0, 1]* into cubes with sides 1/L
where 1/L < ¢y/2. Then f must map of each the cubes that intersects
Cy into a disk of radius < D(vk/L)N*!. Hence Cy is contained in a
set of volume < LFD/(vk/L)¥(N+D_If N > k/k' — 1 the exponent L is
<k —Kk'k/k' =0, so goes this volume goes to 0 as L — o0. O

12.5 Problems

Problem 30 (Concatenation of homotopies).

(a) Suppose that H: M x[0,1] — N is a homotopy from fy to fi. Construct a
different homotopy H: M x [0,1] — N from fp to fi such that H(—,t) =
fo for t <1/4 and H(—,t) = fi for t > 3/4. (Hint: use bump functions.)

(b) Use part (a) to show that the relation of homotopy is transitive, i.e. fo ~ fi
and f1 ~ fo implies fo ~ fo.

Problem 31 (The fundamental group). For a smooth manifold M with chosen
basepoint mg € M, we consider the set of smooth maps v: S' — M sending
1€ S' to mg e M. We say that two such smooth maps vp,71: S' — M are
homotopic relative endpoints if there is a homotopy H: M x [0,1] — N from ~q
to 71 such that H(1,t) = my for all ¢ € [0, 1].

(a) Prove that being homotopic relative to endpoints is an equivalence rela-

tion.

We denote the set of homotopy classes relative endpoints by 1 (M, my), the
fundamental group M at mg. As the name suggests it has a group structure,
which you will construct below:

(b) Use the ideas of Problem 30 to prove that concatenation of loops gives a
well-defined map

7T1<M)m0) X 7-[-1(]\477710) - 7T1(M, mO)’

(c) Show that concatenation makes (M, mg) into a group. (Hint: the
inverse is given by reversing loops.)
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Two applications of Sard’s theorem

In the previous lecture we proved Sard’s theorem: the set of critical values of a
smooth map f: M — N has measure 0. Today we give two applications: (i) the
strong Whitney embedding theorem, (ii) the Brouwer fixed point theorem. This
is in Sections 1.§8, 2.§1 and 2.§2 of [GP10], and uses results from Appendices 1
and 2 of [GP10].

13.1 The strong Whitney embedding theorem

Let’s recall the weak Whitney embedding theorem: any compact manifold M can
be embedded into some Euclidean space. Today we prove the stronger statement
that any compact k-dimensional manifold M can be embedded into R?**! and
deduce from it that a non-compact k-dimensional manifold M can be embedded
into R2+2,

13.1.1 The compact case

Theorem 13.1.1 (Strong Whitney embedding theorem). If M is a compact
k-dimensional smooth manifold, then there exists an embedding of M into R?*+1,

This is a direct consequence of the following proposition using the weak
Whitney embedding theorem and the fact that all injective immersions with
compact domain are embeddings, since every continuous map with compact
domain is proper.

Proposition 13.1.2. If M is a k-dimensional smooth manifold with an injective

immersion of M into RN for some N, then there exists an injective immersion
of M into R?k+1,

Proof. If N < 2k + 1 there is nothing to prove. If N > 2k + 1, we will show that
we can reduce N to N — 1. Let i: M — RY denote the injective immersion and

104
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consider the following two smooth maps

M ox M\{(m,m) | me M} — gN-1
®P) = i) =i

ftane. TM\0-section —> gN-1

di(v)

V> ————

||di(v)]]

These maps were chosen because of the meaning we can ascribe to their regular
values. For each z € SN~! there is a linear projection m,: RN — zt. If
x ¢ im(f™) then 7,01 is injective, and if z ¢ im(f**8) then the derivative of 7, o3
is injective. In particular, if z ¢ im(f™)Uim(f*#"8), then m0i: M — zt ~ RN-!
is an injective immersion of M into a Euclidean space of lower dimension.

Both M x M\{(m,m) | me M} and TM\M are 2k-dimensional. As N —1 >
2k, this means z is disjoint from the images of f™ and f'"8 if and only if z is a
regular value of f™ and f'"&. By Sard’s theorem such joint regular values are
dense so must exist. O

In fact, since the derivative is linear, to see that m, o4 has injective differential,
we only need to avoid the image of

e e TM | ||di(v)]] = 1} — V!

v —> di(v).

Its domain is (2k — 1)-dimensional, so we can go one dimension further if we only
care about guaranteeing that the derivative remains injective. We can do a bit
better by picking z to be a regular value of f: M x M\{(m,m) | m e M} — S,
In that case the intersection points of the immersion will be transverse. If M is
compact, then there must be a finite number of them since transverse intersection
points are isolated.

Corollary 13.1.3. If M is a compact k-dimensional smooth manifold, then there
exists an immersion of M into R?* with finitely many transverse intersections.

Ezample 13.1.4 (Whitney double point). We can always add more self-intersections,
by inserting in a local chart one of the following maps, due to Whitney [Whi44,
Section 1.2]. These are immersions with a single transverse double point that are
approximately linear outside a compact set:

ap: RF — Rk

1 T1 T1X9 T1T3 T1T)
(mly-"7xk) 77'%1_277 s L2, y L3y 0y , Tk
u u u u

with u = (1 4+ 2})--- (1 + 27). Their existence is used in the proof that every
compact k-dimensional smooth manifold embeds into R?* [Whi44, Theorem 5].
This is the best possible bound: RP?" does not embed in R2"F-1
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13.1.2 Non-compact case

We continue with a discussion of the non-compact case. It is based on a double
application of Proposition 13.1.2 and the following lemma:

Lemma 13.1.5. Fvery smooth manifold M admits a proper smooth function
A M — [0,00).

Proof. Using our lemma about compact exhaustions, we can pick compact subsets
K; and open subsets Vi, 1, of M such that Ko ¢ Vi <€ K1 © Vigyp © -+
and | J; K; = M. Applying our result about the existence of partitions of unity,
let 7;: M — [0,1] be a partition of unity subordinate to the open cover by
Vig12\Ki—1. Then we define

A: M — [0, 0)
P'—’Zim(P)~

This sum is locally finite so smooth, and if A(p) < ¢ then at least one of the n;
for j < i has to be non-zero, so p € K;1. Thus A71([0,1]) is a closed subset of
the compact set K;11 and hence X is proper. O

Theorem 13.1.6. If M is a k-dimensional smooth manifold, then there exists
an embedding of M into some Euclidean space RN .

Proof. Using once more our lemma about compact exhaustions, pick compact
subsets K; and open subsets V; 15 of M such that Ko < Vi < K1 < Vi C

- and | J; K; = M. Then K;1\V;_y/5 is compact, and hence can be covered by
finitely many charts. The proof of the weak Whitney embedding theorem then
provides an injective immersion of an open neighbourhood W; of Ki;1\V;_/ in
Viis /Q\Ki_l into some Euclidean space. By Proposition 13.1.2 we may assume
this Euclidean space is in fact R2*+1,

Thus we have an open cover by W; < M so that W; n W, # & is only possible
if |i — j| < 2, which come with injective immersion p;: W; — R**!. Now pick
a partition of unity n;: M — [0, 1] subordinate to the W;’s and define smooth
maps

— ni(p)pi(p) if pe W;,
p — ni(p)pi(p) = (P)i(p) .
0 otherwise.

We can then define for each 7 a new smooth map
B M — ROCK+2)
put in the jth copy of R?**2,
pr—i(p);nip)pip)) 1 < j < 9, if i =
(mod 9)
and zeroes in all other entries, and take

p: M N R1+9(2k+2)

p— (Z im(p),Zﬁi(p)> :
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This is smooth since each sum is locally finite.

This is proper because ), in;(p) is proper, as in Lemma 13.1.5. For each p
there is an open neighborhood on which only five terms in each sum are possibly
non-zero; if p € W; then only the terms ¢ — 2,7 — 1,4,7 + 1,7 + 2 can be non-zero.
In the second entry all of these open subsets map to a different copy of R?¥*+2, so
the differential is injective by the same argument as used in the weak Whitney
embedding theorem.

For injectivity, we further observe that if p € W; then i —2 < ), in;(p) < i+2.
That is, if { := ), ini(p), then p € U?Zi2 Wii)+;- From this we conclude that
if p(p) = p(p’), then both p and p’ are in U§=—2 Wii)+;- On this open subset
only nine terms in the second sum are possibly non-zero, all of which map to
a different copy of R?**2, Again we can apply the proof of the weak Whitney
embedding theorem to deduce injectivity. O

In fact, we can now reduce the dimension again:

Corollary 13.1.7. If M is a k-dimensional smooth manifold, then there exists
an embedding of M into R*+2.

Proof. We start with an embedding as in the previous lemma. Proposition
13.1.2 gives us an injective immersion of M into R2*+1 . If we pick a proper
smooth function A: M — [0,00) as in Lemma 13.1.5, we get an embedding
i=(\e): M — R?*+2, O

Remark 13.1.8. In fact, by the argument on pp. 53-54 of [GP10] you can decrease
the dimension once more to get an embedding M < R?**! by a projecting along
a suitable z € S2F+1,

13.2 Manifolds with boundary

A k-dimensional smooth manifold M is a second countable Hausdorff space with
a k-dimensional smooth atlas. The atlas provides a local identification of M with
an open subset of R¥, such that transition functions are smooth.
Unfortunately, using these definitions such reasonable spaces as D™ and
M x [0,1] are not smooth manifolds, because a point in D™ resp. M x {0, 1}
does not admit an open neighbourhood homeomorphic to an open subset of R¥.
To allow these examples, we need to broaden our scope and consider manifolds
to have boundary. These are locally modelled on [0, 00) x R¥~! instead of R*.

13.2.1 Definitions

Definition 13.2.1. A k-dimensional smooth atlas with boundary for topological
space M is a collection of triples (U, Vy, ¢o) consisting of open subsets U, <
[0,00) x R¥=1 V,, © M and homeomorphisms ¢, : U, — V4, so that UVa=X
and all maps

¢5' 0 Ga: b (Va 0 Va) — 65" (Va 1 V3)
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are smooth maps between open subsets of [0,00) x R¥~1 (they are then automat-
ically diffeomorphisms since they have smooth inverses). The triples (Uy, Vi, 00)
are called charts and the maps gbgl o ¢ are called transition functions.

Here we use that we already know what a smooth map between open subsets
of [0,0) x RF~! is; it is a function which locally extends to a smooth function
on an open subset of R*. All of the previously discussed machinery goes through,
starting with the definitions:

Lemma 13.2.2. Fvery k-dimensional smooth atlas with boundary is contained
in a unique maximal k-dimensional smooth atlas with boundary.

Definition 13.2.3. A k-dimensional smooth manifold with boundary is a Haus-
dorff second countable topological space X with a maximal k-dimensional smooth
atlas with boundary.

Ezxample 13.2.4. If M is a k-dimensional smooth manifold in the ordinary sense,
it is also a k-dimensional smooth manifold with boundary. Its boundary just
happens to be empty.

Ezample 13.2.5. If M is a (k — 1)-dimensional smooth manifold, then M x [0, 1]
is a k-dimensional smooth manifold with boundary.

Suppose that a diffeomorphism between open subsets of [0, 00) x R¥~1 sends
a point in (0,00) x R¥~! to a point in {0} x R¥~1. Its derivative is bijective, so
the inverse function says it is local diffeomorphism. This means that it must also
hit some points in (—o0,0) x R¥~1, which is not allowed. Hence a diffeomorphism
must send points in {0} x R¥~! to points in {0} x R¥~!. Hence the following is a
reasonable definition:

Definition 13.2.6. The boundary dM of a k-dimensional smooth manifold M
with boundary is the subset of those points that are in the image of {0} x R*¥~1
under a chart.

The charts of M restrict to charts for dM, and we get a smooth (k — 1)-
dimensional atlas for 0 M.

13.2.2 Theorems

Let us now explain the modifications that need to be made to the theory when
including manifolds with boundary. We will only state the results here, you
should read their proofs in 2.§1 of [GP10].

We can give the definitions of a smooth map between manifolds with boundary,
tangent bundles, and derivatives, as before. These behave with respect to the
boundary as follows: a smooth map f: M — N between manifolds with boundary
restricts to a smooth map df: 0M — N. At p e M, the tangent space T),0M is
a (k — 1)-dimensional linear subspace of T, M, and d,df = (d,f)|r,0n-

The pre-image theorem and Sard’s lemma generalize in the following manner:
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Theorem 13.2.7 (Pre-image theorem for manifolds with boundary). Let f: M —
N be a smooth map with M a manifold with boundary, N a manifold without
boundary, and Z < N a submanifold without boundary. If fANZ and 0fhNZ, then
f~YZ) = M is a manifold with boundary o(f~1(2)) = (8f)~'(Z). Moreover,
the codimension of f~1(Z) is equal to the codimension of Z and Tf~1(Z) =
df~Y(TZ).

Theorem 13.2.8 (Sard’s theorem for manifolds with boundary). For any smooth
map f: M — N with M a manifold with boundary and N a manifold without
boundary, the subset of points in N which are critical values of f or 0f has
measure 0.

13.3 The Brouwer fixed point theorem

The Brouwer fixed point theorem says that every continuous map F': D" — D"
has a fixed point. This is deduced from the theorem that there are no continuous
maps f: D™ — dD"™ which are the identity on 0dD".

We will prove a version of this result, which is stronger because it concerns
all manifolds with boundary, but weaker because it concerns only smooth maps.
The latter is however easily remedied by the use of certain smooth approximation
results. To prove our generalisation we use another fact, which is proven in
Appendix 2 of [GP10] or the Appendix of [Mil97].

Theorem 13.3.1 (Classification of 1-dimensional manifolds). Every compact
connected 1-dimensional manifold is diffeomorphic to either S* or [0,1].

Corollary 13.3.2. The boundary of every compact 1-dimensional manifold is an
even number of points.

Using this trivial observation, we prove Hirsch’s generalization of the Brouwer
fixed point theorem:

Theorem 13.3.3 (Hirsch). Let M be a compact manifold with boundary. Then
there is no smooth map M — 0M which is the identity on oM.

Proof. Suppose for the sake of contradiction that such an f: M — dM does
exist. By Sard’s theorem we can pick an p € dM which is a regular value of
both f and df. This means that f~!(p) = M is a 1-dimensional manifold with
boundary. It is closed in a compact space hence compact, and thus by Theorem
13.3.1 has an even number of boundary points. But of~!(p) = (3f)"*(p) = {p}
since df = idgys. This is a contradiction. O

Remark 13.3.4. One easily generalizes this proof to say that there is no smooth
map M — 0M which is injective on 0 M.

Let us deduce from this the Brouwer fixed point theorem for smooth maps:

Corollary 13.3.5 (Smooth Brouwer fixed point theorem). If F': D" — D" is a
smooth map, it has a fized point.
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Proof. For a proof by contradiction, we suppose that F' has no fixed points. Then

f: D" — oD"
x — intersection with 0D" of half-line starting at F'(z) through x

is a well-defined smooth function f: D™ — dD™ that is the identity on ¢D™. O

)

Figure 13.1 The map f in the proof of the Brouwer fixed point theorem.

FEzxzample 13.3.6. There is an anecdotal application of the Brouwer fixed point
theorem to physics. Trying to balance a pencil on a table, it seems intuitive that
there is an equilibrium point. You can of course prove this in an idealised setting,
but it seems hard if we use some realistic model of the forces acting upon and
within the pencil.

Suppose there is no equilibrium point, then the pencil would always fall with
eraser facing some direction. This gives a map from the upper hemisphere Si
to S!, which is clearly the identity on the boundary. The claim is that the
Brouwer fixed point theorem rules this out, so an equilibrium point must exist.
However, it is far from obvious that the described map is continuous (see the
section “Courant—Robbins Train” of [Stell]).

13.4 Problems

Problem 32 (Classification of 1-dimensional manifolds). Read Appendix 2
of [GP10] and the Appendix of [Mil56b]. Which proof of the classification of
1-dimensional smooth manifolds do you prefer, and why?
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Transverse maps are generic

Today we prove a result announced in earlier: the set of smooth maps f: M — N
transverse to Z < M is generic. As an application we deduce the tubular
neighbourhood theorem. This is 2.§3 of [GP10].

14.1 Transverse maps are generic
Recall the following definition:

Definition 14.1.1. A subset D of the set of all smooth maps M — N is
generic if for all fo: M — N we can find a smooth map H: M x R" — N with
H|prxqoy = fo so that for all € > 0 there exists an x € R” with [|z|| < € such that
Hlpry(ay € D.

The “perturbation” H: M x R" — N is a particular example of a family of
smooth maps as below, where S = R". This is just a change of perspective; we
think of F' not as a single map M x S — N but a collection of maps M — N
parametrized by S.

Definition 14.1.2. Let S be a smooth manifold, then a family of smooth maps
M — N indexed by S is a smooth map F: M x S — N.

Since the restriction of a smooth map to a submanifold is smooth, fs =
F|prx{sy is a smooth map for each s € S.

Theorem 14.1.3. Suppose that F': M x S — N is a family of smooth maps
M — N, where M may have boundary but S and N do not. Let Z < N be a
submanifold without boundary. If FANZ and 0F ANZ, then there is a dense set of
s € S such that fshZ and OfshZ.

As usual when applying Sard’s theorem, we will actually prove that the
complement of those s € S such that fshZ and JfshZ has measure zero.

Proof. Let W = f~%(Z) ¢ M x S, a submanifold with boundary oW = W n
(0M x S) by the improved preimage theorem. Thus we can ask for regular values
of the restriction 7|y : W — S of the projection M x S — S, as well as its
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restriction 7|aw : W — S to the boundary. Such common regular values are
dense by Sard’s theorem.

We claim that fshZ if and only if s is a regular value of 7|y, and similarly
0fshZ if and only if s is a regular value of 7|s. Let us only prove the first
equivalence, the second one being similar.

Let us first use the hypothesis that FhZ, at (p,s) e W < M x S mapping to
z € Z under F. Then the projections induce a linear isomorphism 7}, (M x S) =
T,M ®@T,S, and transversality exactly means that

dpo F(T,M ®T,S) + T.Z = T, N.

By the preimage theorem, we may describe T{, ,\W as (d(p’s)F)*l(TzZ) cT,M®
TsS. The derivative d, o7|w: T(p oW — TsS is the restriction of projection
T,M ®T,S — TS to this subspace.

We next want to show that d(p’s)ﬂw: Tp,syW — TS is surjective if and only
if dg, o F'(TyM) +T.Z = T, N. This is the linear-algebraic lemma following this
proof, applied with U = T,M, U' =TS,V =T.N, W =T.Z, T = d, o F.

Finally, observe that because d(, o F(Tp,M) = d,fs(T,M), the statement
dps)F(TpyM) + T,Z = T, N is true if and only if fshZ at 2. O

Lemma 14.1.4. If TA: U®U’' — V is a linear map of finite-dimensional vector
spaces, W < V such that AU®U') + W = V. Then m: A~Y(W) — U’ is
surjective if and only if A(U)+W =V.

Proof. For =; if mg: A7Y(W) — U’ is surjective, it admits a section s: U’ —
A=L(W). Then we have

Alu+u )+ W = A(u +u') + A(=s(u)) + W = A(u + v’ — s(u')),

and since ma(u + v’ — s(u’)) =0, u + v’ — s(u') € U.
For <, take v/ € U’ and note that because A(U) + W = V we can find
ue U and w € W such that A(v') = A(u) + w. Then v’ —u € A~L(W) and

mo(u' —u) = . O

We will now prove the maps transverse to Z are generic by showing that
for every fo: M — N there exists a smooth map F': M x R" — N such that
Flarxqoy = fo and which satisfies F'hZ and 0FhZ. To construct F' we shall
embed NNV into an Euclidean space R" using the weak Whitney embedding theorem,
and consider the rather uninteresting family

F:MxR — R"
(pvs) I fO(p) + s

This is obviously a submersion so transverse to the submanifold Z ¢ N < R", and
by the previous theorem there is a dense set of s € R” such that f, == F | Mx{s} 18
transverse to Z. The problem is now that f; does not map M into N any more.
To fix this, we shall use the following theorem to “project back into N”:
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Theorem 14.1.5 (Regular neighbourhood theorem). For every submanifold
N — R" without boundary, there exists an open neighbourhood U c R" of N with
a submersion wn: U — N that is the identity on N. Atne N c U, the linear
map dpm: T,R" = T,N @ T,N+ — T,,N is given by orthogonal projection onto
T,N.

Remark 14.1.6. In fact, if M is compact U can be obtained by picking a small
enough € > 0, letting U be the set of points of distance < € to IV and 7y be the
map sending x € U to the unique closest point in N (so implicitly we are saying
you can find an e > 0 such that this exists and is unique). This follows from
the proof of Theorem 14.2.4. For non-compact M, € is replaced by a smooth
positive-valued function.

We shall prove the regular neighbourhood theorem in Section 14.2, and first
finish the proof of genericity.

Theorem 14.1.7. Suppose M is a manifold possibly with boundary, N is a
manifold without boundary and Z < N is a submanifold without boundary. If
fo: M — N is a smooth map, then there exists an r = 0 and a smooth map
H: M xR" — N starting at fo so that for all e > 0 there exists an x € R" with
||| < € such that H|prx(ay s transverse to Z.

Proof. Embed N into a Euclidean space R" and identify N with its image in R".
Take U c R" and mx: U — N as in the regular neighbourhood theorem. Since
U < N is an open neighbourhood, we can find a smooth function e: N — (0, 0)
such that for each p’ € N and x € R” satisfying ||z|| < e(p/), p’ + x € U, see ?7.
Then we define the smooth map

F:MxR" — N

(.5 — o (o) + o) )

1+ [Islf?

By construction, F|yr. g0y = 7 © fo = fo because 7y is the identity on N.
Since 7y is a submersion, F' is a submersion if and only if the map M xR" — U
given by (p,s) — fo(p) + e(fo(p))w is. But when we fix p € M this is a
diffeomorphism of R" onto a little ball, so has surjective differential at each point
in M x R". The same argument shows that 0F: M x R” — N is a submersion.
Now that we have established that F' and J0F are submersions, they are clearly
transverse to Z and Theorem 14.1.3 gives the desired conclusion. O

Picking a point s € R” such that F'|;. sy hZ and 0F |sp (53 hZ, the homotopy
H: M x [0,1] - N given by (p,t) — F(p,ts) proves:

Corollary 14.1.8. Suppose M is a manifold possibly with boundary, N is a
manifold without boundary and Z < N is a submanifold without boundary. Then
any smooth map fo: M — N is homotopic to fi: M — N satisfying fir(hZ and
ofihZ.
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14.1.1 Isotoping submanifolds

In the introduction, we discussed how to deform embeddings. This is the notion
of isotopy, intuitively a one-parameter family of embeddings. Let us recall the
definition:

Definition 14.1.9. A homotopy H: M x [0,1] — N is an isotopy if M x [0,1] 3
(x,t) — (H(m,t),t) € N x [0,1] is an embedding.

This is implied by H being a smooth proper map such that H| Mx{t} is an
embedding for all ¢ € [0, 1], as then the map M x [0,1] — N x [0, 1] is a proper
injective immersion. Note that if M is compact, we may drop the hypothesis
that this map is proper.

Suppose we are given two submanifolds Y, Z ¢ M without boundary, with Y
compact. We can then consider the inclusion i: Y < M as a smooth map. By
Theorem 14.1.7 we can find a map F': Y x R" — M such that the set of s € R"
such that Fly, (4 : Y — M is transverse to Z, is dense.

Since the class of embeddings is stable when the domain is compact, we can
find € > 0 such that Fly,: Y — M is still an embedding if ||s|| < e. Take
such an s with H|y . hZ. Then the homotopy

H:Y x[0,1] — M
(y, 1) — F(y,ts)

is an isotopy of embeddings of Y into M from ¢ to an embedding transverse to
Z, a strengthening of Corollary 14.1.8.

Informally, the maps H |y tells us how to move submanifold Y to a
new position at which it is transverse to Z. If Y is r-dimensional and Z is
s-dimensional, satisfying r + s < k, then Y is transverse to Z if and only if
Y n Z = @. Thus we have shown that in these conditions any two submanifolds
can be made disjoint by moving one of them.

Ezample 14.1.10. Suppose we take S' = {(x,9,0) | 22 + y?} = R? and any
other embedding i: S' — R3. This gives us two submanifolds of R? which are
diffeomorphic to S'. They may very well be linked in a complicated way in R3.
However, if we increase the dimension by 1 they become unlinked. That is, we
claim that we can isotope i(S') < R* in the complement of S  R* so that it
becomes disjoint from the disk D? < R*. This follows by applying the above
observations with Y = i(S'), Z = D?\S' and N = R!\S!, as the dimensions of
Y and Z add up to 3 < 4.

14.2 The regular neighbourhood theorem

It remains to prove Theorem 14.1.5. This uses a new vector bundle associated to
a submanifold Z < M, the normal bundle. Over Z we have two vector bundles,
the trivial bundle T M|z and its subbundle T'Z.

Definition 14.2.1. The normal bundle N Z is the vector bundle over Z given
by TM|z/TZ.
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When M = R" and Z = N, this admits a more concrete definition. In that
case TR"|y = N x R" and comes with a preferred inner product on each fibre
(the restriction of usual Euclidean inner product). The orthogonal complements
(T,N)* assemble to a vector bundle TN~ over N, explicitly given by

{(p,v) e N xR" |v L T,N}.

Orthogonal projection gives a map TR"|y — TN 1 whose kernel is exactly T'N.
Thus there is an induced isomorphism

TR"|x/TN = TN+

of vector bundles over .

Example 14.2.2. Let us verify TN* is a vector bundle. Suppose we have a
local trivialization ¢: N "V =~ U nR¥ < R". For z € R¥, the bilinear
map (v,v") — {dz¢(v),dzp(v")) is an inner product on T,R". We can think of
this as a symmetric matrix A, whose entries vary smoothly with x as follows:
v+ At = {dp9p(v),dpd(v')). Every positive semidefinite symmetric matrix A has
a unique decomposition A = B!B with B again positive semidefinite, and the
entries of B depend smoothly on those of A. Thus we can identify TN+ with
the subbundle

{(z,B") |z e R¥, v e {0} x R¥ "} c (R¥ x R"),

visibly admitting a local trivialization.

Furthermore, it is clear from this description that the transitions between
local trivializations are smooth, so TN is a smooth vector bundle. In particular,
TN+ is a manifold and the projection map 7: TN+ — N is a submersion.

We now prove the regular neighbourhood theorem, which said that given a
N — R" without boundary, there exists an open neighbourhood U < R" of N
and a submersion mx: U — N that is the identity on N. Furthermore, the linear
map d,m: T,R" = T,N @ T,N L T, N is given by orthogonal projection onto
T,N.

Proof of Theorem 1/.1.5. Define the smooth map
h: TN+ — R"
(p,v) —> p + .

Because TN+ is r-dimensional, so is the tangent space Tipo)N L. As the manifold
TN* contains the submanifolds N x {0} and {p} x T, N1, which intersect only at
(p,0), T(p’O)NL contains their tangent spaces at (p,0), given by T, N and T,N*
respectively. This gives a linear map

1 1
T,N @ T,N* — T}, )TN*,

which we claim is an isomorphism. Since both sides have the same dimension, and
this map is an inclusion on each summand, it suffices to prove that 7, N and T), N L
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intersect only in {0}. This follows from the fact that the map d(, oym: T{p,0)N L
T,N is the identity on T, N and 0 on TpNL
With respect to this direct sum decomposition, the linear map

. 1 r
d(p,())h" T(p,O)TN I R

is given by sending the summand 7, N onto T,N < T,R" and the summand
TpNl to TpNL < T,R". In particular, it is bijective.

By the inverse function theorem, it is a local diffeomorphism near N. As it is
an embedding on N, it is injective on an open neighbourhood V' of N by Lemma
14.2.3 (take A = N, M = TN+, N = R") and hence gives a diffeomorphism
h:V — U for U := h(V) an open neighbourhood of N in R". Now set

Ay =moh ':U—V — N.

Since 7 is a composition of a diffeomorphism and a submersion, it is a submersion.
Since 7 and h are the identity on N, so is my. To prove the addendum, it remains
to observe that d, o)7: T(p70)TNl x> T,,NG—)TPNL — T, N is projection onto the
first summand. O

Lemma 14.2.3. If A < M is closed and f: M — N is a smooth map which is
a local diffeomorphism near A and injective on A, then f is injective near A.

Proof. We first this prove in the case that A is compact. For contradiction,
suppose there is pair of sequence of points p; € M, p, € M so that p; # p},
f(pi) = f(p}), which get arbitrarily close to A. By compactness of A, we may
assume they converge: p; — p € A and p, — p’ € A. Then by continuity f(p) =
f(@'), so p=p since f is injective on p. But since f is a local diffeomorphism
near p it is injective near p and hence p; = p/ for i large enough.

In the general case, take the subset D = {(p,p’) e M x M |p # p', f(p) =
f(")}. By assumption on A, it is disjoint from A x A. Its closure is contained in
the union of D with the diagonal, but the local diffeomorphism condition implies
that every point in the diagonal has an open neighbourhood disjoint from D.
Thus D is closed and its complement is open. By exhausting M with compact
subsets and applying the above argument, this open subset contains a product
neighbourhood W), , x W, , = M x M of each point (p,q) € A x A; by replacing
Wp.q with Wy, 0 Wé’p we may assume that W, , = W, for all (p,q) € A x A.
Then Up7 ¢ Wpa & Mis the desired open neighbourhood. O

14.2.1 The tubular neighbourhood theorem

We will now slightly generalize Theorem 14.1.5, replacing R” with an arbitrary
manifold and choosing a smaller but nicer neighbourhood:

Theorem 14.2.4 (Tubular neighbourhood theorem). For every submanifold
Z — N, there is an open neighbourhood W of Z in N and a diffeomorphism
¢: NZ —> W that is the identity on Z.
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Proof. Given an embedding N — R", let U, V and mn be as in the proof of the
regular neighbourhood theorem. We can then identify NZ with the orthogonal
complement T'Z+ of TZ in TN. The only thing we will use of this observation is
that the orthogonal projection map TN|z — NZ has a section.

Define the smooth map

h: NZ — R"
(p,v) — p+o.

and take W’ = h~1(V). The map my o h has bijective differential at the 0-section,
because by the chain rule it is the composition of dpﬁ: T,Z&NZ =~T,N — T,N,
which is the identity, and T,mn: T,R" = T,N @ T,N L T,N the projection
onto the first summand. It also is the identity on N. By the same argument
as before, we find an open neighbourhood W” of the 0-section in NZ on which
7y o h is an embedding. We can find a smooth function e: Z — (0, 00) such that

W= {(p.v) e NZ | |[ol] < elp)} = W,

where ||—|[ is the norm from the inner product on TZ+ < R”. The diffeomorphism
is given by
(b: Vg —> W
v
(p,v) — <p,6(p)> :
1+ o2
This completes the proof. O

14.2.2 Collars

In a manifold M with boundary dM, the boundary admits particularly nice open
neighbourhoods:

Definition 14.2.5. A collar of M is a open neighbourhood V' < M of ¢ M with
a diffeomorphism ¢: V' — dM x [0,1) that is the identity on dM.

Theorem 14.2.6. Every manifold with boundary admits a collar.
We will construct the two components V': [0,1) and V' — 0M independently.

Lemma 14.2.7. There exists a smooth map x: M — [0,00) such that
(i) x1(0) = OM and
(ii) for each p € OM there exists a v € T, M\T,0M with dx(v) # 0.

Proof. Pick charts ¢ : RFT1 x [0,0) © Uy — V, € M whose codomains cover
M. The local coordinates gives a smooth function

fa: Vo — [O, OO)
pr—m20 qbc_vl(p)a



118 Chapter 14  Transverse maps are generic

with 7 : R¥=1 x [0,00) — [0, 00) the projection onto the second coordinate.

Let us now pick a partition of unity subordinate to the open cover {V,}, given
by smooth functions A\y: Vo, — [0,1]. The function A, f, extends by zero to a
smooth function A\, fo: M — [0,00). Then the function

x: M — [0,0)
p—> Y Aafalp)

has the desired properties. We will leave the verification of this to the reader. [

Lemma 14.2.8. There exists an open neighbourhood U < M of 0M with a
smooth map r: V. — dM that is the identity on oM.

Proof. The weak Whitney embedding theorem also holds for manifolds with
boundary, so we may pick an embedding e: M — RY and consider M as a
submanifold of Euclidean space. We may then apply the regular neighbourhood
theorem, Theorem 14.1.5, to dM, resulting in an open neighbourhood U < RV
of 0M with a smooth map msps: U — 0M that is the identity on M. We then
have V :=U n M and r = map/|v - O

Proof of Theorem 1/.2.6. We may combine x|y and r to a smooth map
f=rxxlv:V— M x[0,00).

By construction, this is the identity and has bijective derivative on dM. By
the inverse function theorem, it is thus a local diffeomorphism near dM. As a
consequence of Lemma 14.2.3, it is injective onto some smaller open neighbourhood
V' of 0M. Picking a smooth function e: M — (0,00) such that {(q,t) €
OM x [0,0) | t € [0,€e(q))} = f(V'). Setting

U= "' ({(qt) € oM x [0,0) | £ € [0,e(q))})
¢ = flu

is the desired diffeomorphism. O

Collars are unique up to isotopy. They have great use in reducing questions
about manifolds with boundary to separate questions about the boundary and
the interior.

14.3 Problems

Problem 33 (Transversality and normal bundles). Let Y, Z < N be submanifolds.
Prove that Y7 if and only if for all pe Y n Z, N,Y n N, Z = {0}.

Problem 34 (Smooth ¢). Prove that N < R" is a submanifold and U < R" is
an open neighbourhood of N, there exists a smooth function e: N — (0,00) so
that p+x € U for pe N and = € R" with ||z|| < e(p). (Hint: prove this exists
locally in N and use a partition of unity.)
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Problem 35 (Collared embeddings). Use collars to prove that there exists an
embedding e: M — R x [0,00) such that e ! (RY x {0}) = oM.

Problem 36 (Smooth maps and submanifolds). Suppose that X < M is a
submanifold. Prove that a continuous map f: X — N is smooth if and only if it
extends to a smooth amp f: M — N.

Problem 37 (Smooth approximation). It is a consequence of the Stone- Weierstrass
approzimation theorem that for all open subsets U R, compact subsets K < U,

€ > 0, and continuous maps f: U — R, there exists a smooth map ¢g: U — R

such that |g(z) — f(z)| < e for all z € K.

(a) Prove that for each compact k-dimensional smooth manifold M, € > 0,
and continuous map f: M — R, there exists a smooth map g: M — R
such that |g(z) — f(x)| < e for all z € M.

(b) Is this result still true when we drop the assumption that M is compact?

Problem 38 (Gluing manifolds with boundary). Suppose that M, and M;
are d-dimensional smooth manifolds, and that we are given a diffeomorphism
p: 0My — 0M;. Use the existence of collars to produce a smooth structure on
the topological space My u, My such that the inclusions My — My v, M and
My — My v, My are smooth embeddings.
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Mod 2 intersection theory

In this lecture we use a slight technical strengthening of the theorem that
transverse maps are generic to develop mod 2 intersection theory; this constructs
invariants by counting transverse intersection points.

15.1 A strongly relative transversality theorem

Two lectures ago we proved that if M and N are manifolds without boundary, and
Z < M is a submanifold without boundary, then any smooth map fy: M — N
can be homotoped to a map fi: M — N such that fihZ.

Sometimes you already know that fy is transverse to Z on an open neigh-
bourhood U of closed subset C < M, and you do not want to modify fy near C.
In fact, you might want to control more precisely where you modify fy and fix
a closed subset D ¢ M (where we definitely want to modify fy) and an open
subset V' < M containing D\U (outside of which we definitely do not want to
modify fy). Many results in differential topology admit such refined forms, which
are referred to as strongly relative results.

Theorem 15.1.1 (Strongly relative transversality theorem). Suppose that M is
a compact manifold with boundary, N is a manifold without boundary, and Z is
a submanifold without boundary. Fix the following data:

- a smooth map fo: M — N,

- a closed subset C < M such that fohZ and 0fohZ on an open neighbour-
hood U of C,

- a closed subset D < M and open neighbourhood V< M containing D\U.

Then there is an open neighbourhood U' < M of C U D, as well as an r = 0 and
a smooth map F: M x R" — N with F|M><{0} = fo such that

(i) Flanvxgsy = folany for all s e R,
(ii) for each € > 0 there exists an s € R" such that F|ys, (s and 0F |y, s

are transverse to Z.

As preparation, we construct a smooth function which controls where we
manipulate fy:

120
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Figure 15.1 The data in Theorem 15.1.1. Eventually U’ will be an open neighbourhood of
CuDinside U uV.

Lemma 15.1.2. Suppose we are given closed subsets C;D < M, an open
neighbourhood U < M of C and an open neighbourhood V. M of D\U. Then
there exists a smooth function v: M — [0, 1] with the following properties:

- it has support in 'V,
- 15 0 on an open neitghbourhood of C, and

- is 1 on an open neighbourhood of D\U .

Proof. Take a partition of unity subordinate to V\C, U, and M\(C u D); we call
them ny\¢, nu and nyp (cup). The function ny\o: M — [0,1] is the desired 7.
By construction, it has support in VAC' < V. Both supp(ny) and supp(nan cup)y)
are closed subsets not containing D\U, so the complement of their union contains
an open neighbourhood of D\U; necessarily mnc = 1 there. Similarly, only U
contains C' so ny = 1 on C, and hence ny\¢ =0 on C. g

The proof is now a small variation on the proof that maps transverse to Z
are generic, using «y to control the size of deformations.

Proof of Theorem 15.1.1. Embed N into R" and take a regular neighbourhood
mn: U — N. We can find a smooth function e: N — (0, 00) such that for each
p' € N and x € R" satisfying ||z|| < e(p’) we have p’ + € U. Then we define the
smooth map

F:MxR" — N

(p,s) — 7N (fo(p) + v(p)e(fo(p))M‘lW) :
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By construction F|MX{0} = my o fo = fo, because wy is the identity on N.
Furthermore f5 = fo on the complement of V' := v~1((0,1]) = V.

When we fix p € V' we get a submersion, and the argument of the previous
lecture tells us that for a dense set of s € R", we have that fs and Jf, are transverse
to Z at p e v~ 1((0,1]). Furthermore, fo and 0fy were already transverse to Z at
p € U, and since an open neighbourhood W < U of C' is contained in M\V’, the
same is true for f; and 0fs at p € W. We conclude that fs and 0f, are transverse
to Z at p e V' U W. This is an open neighbourhood (D\U) u C. Finally, if
we take s small enough, the stability of transverse maps will guarantee fs is
transverse to Z an open neighbourhood W' of a closed subset D’ of D contained
in U and satisfying Cu D c V' oW u W' O

To apply this result, it is helpful to know that fy and Jfy are transverse to Z
on an open neighbourhood U of C' if and only if they are transverse to Z on C.
One direction is obvious, the other holds if Z is closed:

Lemma 15.1.3. If Z is closed and fo and dfy are transverse to Z on a closed
subset C' < M, then there exists an open neighbourhood U of C' such that fo and
0fo are transverse to Z.

The idea is essentially the same as the stability of maps transverse to C'.

Proof. We prove that such an open neighbourhood exists for each p € C. If
pé¢ fo_l(Z) then M\fO_I(Z) works because Z is closed. If p € fo_l(Z), pick a local
parametrization ¢: R¥ > U’ — V' ¢ N of Z near fo(z). If Z is codimension r,
Z V' = ¢({0} x R¥="). Then fp is transverse to Z n V' at p' if and only if the
derivative at p’ of m,. 0 ¢! o fy is surjective. Because surjective linear maps are
open, if this is true at p then it must be true for all p’ in an open neighbourhood

of p. O

Corollary 15.1.4. Suppose M, N, Z are all without boundary, M compact. If
fo, fi: M — N are homotopic and both transverse to Z, then there exists a
homotopy H: M x [0,1] — N from fo to fi which is transverse to Z.

Proof. Apply Theorem 15.1.1 with fy a given homotopy H: M x [0,1] —» N, C =
M x{0,1} and D = M x [0, 1]. The open neighbourhood U is provided by Lemma
15.1.3 and the open neighbourhood V' is an open subset of M x (0,1) containing
M x [0,1\U. Pick an s € R" such that F|y;.[01]x{s} and OF|prx[0,1]x{s} are
transverse to Z. Then F| Mx[0,1]x{s} 18 the desired homotopy H. O

15.2 Mod 2 intersection theory

Suppose that Y, Z < M are compact submanifolds and that dim(Y') + dim(Z) =
dim(M). f YMZ, then Y n Z is a compact 0-dimensional submanifold and hence
a finite number of points. If Y is not transverse to Z, we know that we can make
it so by a homotopy or even an isotopy. However, the number of points in the
intersection make depend on the way we make Y transverse to Z, see Figure
15.2. However, a bit of experimentation suggests that whenever we change the
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number of intersection points, we either add or remove two points; the number of
intersection points mod 2 might be independent of the transverse perturbation!
Let us prove this in a bit more generality:

Figure 15.2 Two transverse perturbations with a different number of intersection points.

Definition 15.2.1. Let Y be a compact manifold, M be a manifold, and Z ¢ M
be a submanifold, all without boundary and satisfying dim(Y) + dim(Z) =
dim(M). Let fo: Y — M be a smooth map, then the mod 2 intersection number
I (fo, Z) of fy with Z is defined as follows: take f; homotopic to fo with fihZ,
and set

I(fo.2) = #£7(2) (mod 2).

Notation 15.2.2. If fj is the inclusion of Y as a submanifold, we shall use the
notation I»(Y, Z) = Is(fo, Z).

Lemma 15.2.3. The number Is(fo, Z) € Z/2 is well-defined.

Proof. Suppose that f; and f] are two different smooth maps homotopic to fp
and transverse to Z. Since homotopy is an equivalence relation, f; is homotopic
to fi. Then Corollary 15.1.4 provides a homotopy H: Y x [0,1] — M from
f1 to f] which is transverse to Z. This means that H!(Z) is a 1-dimensional
submanifold of Y x [0, 1] with boundary

OH™(Z) = (0H)™'(Z) = (f7(2) x {0}) v ((f)7}(Z) x {0}).

It is compact because Y x [0, 1] is compact. Since #0H 1(Z) is even by the
classification of compact 1-dimensional manifolds, we see that

#IHZ)+ #(f)7H(2) =#0H T (Z) =0 (mod 2). 0

Example 15.2.4. If M = R™, then I3(f, Z) vanishes when dim(Y) > 0. To see
this, observe that M\Z is non-empty and open, and hence contains a ball. By
composing f with translation and scaling we can homotope f so that its image
lies in this little ball and hence disjoint from Z.

Ezxample 15.2.5. Let M be the Moebius strip, Y = Z the central circle. Then
I,(Y,Z) = 1 because it is easy to find a small perturbation of ¥ which makes it
intersect Z transversally in a single point.

Here are some basic properties of this invariant of smooth maps Y — M.
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Proposition 15.2.6. The mod 2 intersection number has the following properties:
(i) If f,g: Y — M are homotopic then Io(f, Z) = I2(g, Z).

(ii) If f:' Y — M is homotopic to a constant map and dim(Y') > 0, then
I(f, Z) = 0.

(iii) If Y = oW for a compact manifold W and f: OW — M extends to a
smooth map W — M then I7(f,Z) = 0.

(iv) If we have a pair of smooth maps f: X — Y, g: Y — M with X
compact, dim(X) + dim(Z) = dim(M), and g transverse to Z, then
L(f,97'(2)) = Ix(go f. Z).

Proof. Part (i) follows from the definitions and the fact that homotopy is an
equivalence relation. Part (ii) follows because such an f is homotopic to a map
disjoint from Z. Part (iii) follows from the fact that we may assume f transverse
to Z and then the extension can be also chosen transverse to Z. In this case
f71(Z) is the boundary of a compact 1-dimensional manifold and must be an
even number of points. Part (iv) follows by noting that we may assume that f is
transverse to g~ 1(Z) and then both intersection numbers count the same set. [

15.3 First applications of mod 2 intersection theory

We now give some easy applications of intersection theory, leaving more advanced
ones to the next lecture.

15.3.1 Contractible compact manifolds

Let’s start with an easy consequence. Recall that a manifold is contractible if its
identity is homotopic to a constant map.

Proposition 15.3.1. The point is the only contractible compact manifold (without
boundary).

Proof. Suppose Y is contractible but not a point. Then Proposition 15.2.6 (ii)
applied to id: Y — Y implies 1 = I»(id, {p}) = 0 for any p € Y, an obvious
contradiction. O

Remark 15.3.2. As the Whitehead manifold from the additional examples shows,
this is false without the compactness assumption.

15.3.2 The mod 2 degree of maps
When dim(Y) = dim(M) and M is connected, we can define:

Definition 15.3.3. The mod 2 degree degy(f) of a smooth map f: Y — M is
given by Is(f,{p}) for some p e M.

Lemma 15.3.4. This is well-defined.
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Proof. We claim that p — I3(f, {p}) is locally constant. Indeed, we may assume
that f is transverse to {p}. Then by the inverse function theorem and the fact
that Y is compact, there exists an open neighbourhood U of p such that f~1(U)
is a finite disjoint union |_|f.f:1 Vi with p|y, : Vi — U a diffeomorphism. This means
that the number of points in the pre-image of f is locally constant, hence so is
this number modulo 2. O

Ezample 15.3.5. The identity map idy;: M — M has degy(idys) = 1.

Ezxample 15.3.6. More generally, if ¢: Y — M is a diffeomorphism, then it is
transverse to all points in M and the pre-image consists of a single point, so

deg2(¢) =1

Ezample 15.3.7. If q: E — B is a covering map of degree d with B connected
and E compact, then degy(f) = d (mod 2).

We can translate the properties of Proposition 15.2.6 into properties for degs:

Proposition 15.3.8. Suppose Y is compact, dim(Y) = dim(M), and M is
connected, then the mod 2 degree has the following properties:

(i) If f,g: Y — M are homotopic then degy(f) = degy(g).

(ii) If f: Y — M is homotopic to a constant map and dim(Y) > 0 then
degy(f) = 0.

(iii) If Y = oW for a compact manifold W and f: OW — M extends to a
smooth map W — M then degy(f) = 0.

(iv) If we have a pair of smooth maps f: X -Y, g: Y — M with X and Y
compact, Y and M connected and dim(X) = dim(Y) = dim(M), then
degy(g o f) = degy(g) - degy(f).

Proof. Only (iv) is not obvious. By homotoping g we can make it transverse to
p € M, and by homotoping f we can make it transverse to g~'(p) = Y. Then
g o f is transverse to p and

degy(go f) =#(go f) ' (p)
=#"(g " (p))
= > #

q€g~1(p)
= #g ' (p) - degy(f)
= degy(g) - degy(f),

where we have used that all values # f~1(¢) (mod 2) are equal to degy(f) by the
argument used to prove that deg, is well-defined (this uses that Y is connected).
O
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15.3.3 Winding numbers

If M is compact manifold of dimension k and f: M — R**! is a smooth map,
then for z ¢ im(f) we can define a smooth map

wp,: M — Sk
f(z) -2
@) - 4]

and then let define the mod 2 winding number Wa(f,z) of f around z to be
degy(wy,,). It only depends on the connected component of R*+1\im(f) contain-
ing z.

If M = oW with W compact and f extends to a smooth map F: W — RFFT,
we can often compute Wa(f, z) in terms of F:

Proposition 15.3.9. Wa(f,z) = I1(F, z) (mod 2).

ONG
(%)

Proof. Tt suffices to prove that if z is a regular value of F' then Wa(f,z) =
#F~1(2). Because z is a regular value, we can find a small open disk U around
z avoiding f(0W), such that f~!(U) is a finite disjoint union | |_, Vi with
plv;: Vi — U a diffeomorphism, with r = #F~!(2). Then W = W\||_, Vi
is another compact manifold with boundary and F restricts to a smooth map
F = F’W W - Rk+1.

Since this avoids z, there is a smooth map

F:W—s*
F(x)—z
rr— —M——
|F(z) — 2]

and by Sard’s theorem we can find a p € Sk such that I and 0F are transverse
to p. Hence F~!(p) is one-dimensional compact submanifold on W, and its



15.4 Problems 127

boundary is an even number of points. This implies that
0=#0F '(p) (mod 2)

— ko) + Y, #uil, )
i=1

= Wa(f,2) + ), Wa(Flav;, 2).
=1

Thus we may as well compute each Wa(F|av;, 2).

Since F|ay; is a diffeomorphism, given by the composition of the inclusion
i: 0U — RF*! with a diffeomorphism, each of these is equal to Wa(i, 2). Since
w;,: 0U — S¥ is given by a composition of translation and scaling, it is a
diffeomorphism; by Example 15.3.6 Wa (i, z) = 1. We conclude that Wa(f,z) =r
(mod 2), as desired. O

15.4 Problems

Problem 39 (Spheres are not products). Let M and N be compact connected
smooth manifolds of dimension k£ and n — k respectively, and suppose that k& > 0
and n — k > 0. Fixing qo € N there is an inclusion i4,: M — M x N given by
p = (P q0)-
(a) Prove that if S™ is diffeomorphic to M x N then iy, is homotopic to a
constant map.

(b) Prove that S™ is not diffeomorphic to M x N using intersection theory.

Problem 40 (Bordism-invariance of intersection numbers). A bordism is a
compact manifold W with boundary dW divided into two submanifolds dyW
and 01 W . Suppose that we have a smooth map

F-W—M

and a smooth submanifold Z < M so that dim(Z) + dim(W) = dim(M) + 1.
Prove that Iso(F|syw, Z) = L2(Floww, Z).
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Two applications of mod 2 intersection theory

We continue with our discussion of mod 2 intersection theory and its applications.
This includes some applications from [Mat03] and Section 2.§5 of [GP10].

16.1 The Borsuk—Ulam theorem

Recall that if M is compact smooth manifold of dimension k and f: M — RF+!
is a smooth map, then for x ¢ im(f) we can define a smooth map

wy,: M — Sk
@) -z
@) =l

The mod 2 winding number Wa(f,z) of f around z is then degy(wy ). As an
application of mod 2 winding numbers we will prove the Borsuk—Ulam theorem.
Before doing so, let us start with an easier example of how conditions on a smooth
map constrain its winding number:

Proposition 16.1.1. If a smooth map f: S* — RFTI\{0} satisfies f(—z) = f(x),
then Wa(f,0) = 0.

Proof. We start with the observation that f is homotopic as a smooth map
Sk — RFI\{0} to £/]|f]]| by (p,t) — f/(1—t+t||f]]), and that this satisfies the
same symmetry condition. Hence, without loss of generality we are dealing with
a smooth map f: ¥ — S*. Then w 70 = f, and we are equivalently proving a
result about the degree of f. The symmetry condition implies that f factors as

gr L, gn

| A

RP"

Since ¢ is a double cover, degy(q) = 0 (mod 2), and we get degy(f) = degy(q) degy(f) =
0 as well. 0

Theorem 16.1.2 (Borsuk-Ulam). If a smooth map f: S* — R¥1\{0} satisfies
f(-.fE) = —f(l’), then W2(f’ 0) =1

128
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Proof. As above, without loss of generality we may assume we are dealing with a
smooth map f: S* — S* and we may use Wa(f,0) and deg,(f) interchangeably.
The proof is by induction over k, with the formal properties of the winding
number playing a major role in the induction step.

We start with the initial case kK = 0. Then f: S® — SO is either the identity
id: S - S% or —id. Both id and —id are diffeomorphisms and hence have degree
1.

For the induction step, we assume the result is true for £ — 1 and prove it
for k. We are given a smooth map f: S¥ — S¥ satisfying f(—x) = —f(z), and
define ¢ := f|gx—1 which also satisfies g(—z) = —g(x). By Sard’s theorem there
exists an a € int(S%), with S¥ = S* ~ [0,0) x R* the upper hemisphere, which
is a regular value of both f and ¢g. By symmetry —a is also a regular value of
both f and g. We can use this to rewrite degy(f):

dega(f) = 7 (a) = 5 (#/7(a) + #/ 7 (~0)).

To apply the induction hypothesis we want to go from S* to something
diffeomorphic to R¥. Let 7: RF*1 — g1 ~ R* by the orthogonal projection. That
gh{a, —a} means that the image of g is disjoint from a and —a and hence wo g
avoids 0. Since furthermore fh{a,—a}, 7o f| sk is transverse to 0 and we have

#(mo flg )™ (0) = #(flgt )™ (@) + #(Flot) () = (457 (a) + #F7 (~))

This means that degy(f) = #(7 o f|5ﬁ)_1(0)'
Now recall that by a previous proposition about computing winding numbers
using extension, with W = Sﬁ, F= f|5«ké and z = 0, we have that

#(m o flge) 7' (0) = Wa(m0g,0) (mod 2).
As Wy(mog,0) = degy(m o g) and since 7 is linear, o g(—z) = —m o g(z) so that
the inductive hypothesis applies and thus degy (7w o g) = 1. O
16.1.1 Applications of the Borsuk—Ulam theorem

In this section deduces several famous consequences of Theorem 16.1.2.

Corollary 16.1.3. If a smooth map f: S* — RF*I\{0} satisfies f(—x) = —f(z),
then f intersects every line through the origin at least once.

Proof. If the image of f does not intersect ¢, we compute that Wa(f,0) = 0 using
an element p € S¥ A ¢, contradicting Theorem 16.1.2. O

This corollary can be restated in a number of equivalent forms. We purpose-
fully are a bit whether the maps are smooth or not; by an application of the
Stone—Weierstrass approximation theorem the results for smooth maps imply
those for continuous maps.

Theorem 16.1.4. The following are equivalent:
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(i) If f: S¥ — RFI\{0} satisfies f(—x) = —f(x), then f intersects every
line through the origin at least once.

(ii) If g: S* — RF satisfies g(—x) = —g(x), then g has a zero.
(iii) Bvery h: S* — R¥ has an x such that h(x) = h(—x).
(iv) There is no F: S* — S*¥=1 satisfying F(—x) = —F(z).
(v) There is no G: D¥ — S¥=1 satisfying G(—x) = —G(x) for x € dDF.
Proof.
- We start with (i) = (ii). If g has no zero then

f: 8% — RFFN\ {0}
z — (9(2),0)

avoids the xy41-axis, contradicting (i).

- For (ii) = (i), if f avoids £ and 7: R¥*! — R¥ then taking g(x) = mo f(x)
would contradict (ii).

- For (ii) = (iii), take g(z) = h(z) — h(—2x).
- For (iii) = (ii), there is an x such that —g(z) = g(—z) = g(z) so g(x) = 0.
- For (ii) « (iv), we just normalize.

- For (iv) = (v), use that from such an G we could produce an F' by picking
a diffeomorphism ¢: S_’i — DF that is the identity on the boundary and
setting F(z) = G(¢(z)) for z € S¥ and F(z) = —G(¢(—x)) for = € int(S*).

- For (v) = (iv) use that from such an F' we could produce a G by taking
F\S;jro¢*1:Dk—>Sk*1. O

Ezample 16.1.5. Theorem 16.1.4 (v) gives another proof that there is no contin-
uous map D¥ — dD* which is the identity on 0D, a special case of Hirsch’s
generalisation of the Brouwer fixed point theorem.

Part (iii) of Theorem 16.1.4 has several famous geometric applications; see
[Mat03] for even more:

Corollary 16.1.6 (Lusternik—Schnirelmann). If Uy, ..., Uy is an open cover of
Sk then there is an i € {0,...,k} such that U; n (=U;) # @.

Here (—U;) is of course the set {z € S¥ | —z € U;}.
Proof. We first prove that if Cy, ..., C} is a cover of S* by closed sets then there
is an i such that C; n (—C;) # @. Consider the continuous function
g: Sk, RF
T ((d(l’, 01)7 s ,d(ZL’, Cn))

with d(—, —) the ordinary Euclidean metric on R¥*!. By Theorem 16.1.4 (iii)
there must be an z such that g(z) = g(—=z). If the ith entry of g(z) is 0, then
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z, —x € C;. If none of the entries of g(z) are 0, then z, —z ¢ | J;_; C; and hence
x,—x € Cpi1.

The version for open covers follows using the fact that a partition of unity
subordinate to an open cover Uy, ..., U, of S* such that all U; n (=U;) = @ for
all i, provides a closed cover C; := supp(n;) of S* by closed subsets with the same
property. U

U1 Us

Figure 16.1 A cover of S! by two open subsets. The open subset U; contains two antipodal
points.

Corollary 16.1.7 (Ham-Sandwich). Let My,..., M, be bounded measurable
subsets of R™ of positive measure. Then there exists an affine hyperplane h — R"

such that each of both of the half-spaces h* bounded by h we have u(M; N h*) =
w(M; nh™) forall 1 <i<n.

Proof. Without loss of generality Mj, ..., M, < Bi(0). For each 2 € S¥ we can

define a subspace h} when zpy1 # +1, b == {(v1,...,v) € RF | Y5 20, >
Zk+1}. Note that if @ = exy1 we have h) = & and that if = —ep; we have
hf = RF,

We define a function

g: Sk RF
w— (u(My o hy), .o w(My 0 ).

We will leave it to Theorem 3.1.1 in [Mat03] the proof that this is continuous.
By Theorem 16.1.4 (iii) there must be an x such that g(x) = g(—=x). Since hT, is
hy, this means that (u(My " hl), ..., u(Mg nhl)) = (w(My A hy), ..., u(Mg 0
hy). O

In other words, you can slice even an irregular sandwich with a slice of ham
and a slice of cheese, such that the bread, ham and cheese are all divided in half.
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Figure 16.2 There exists a half-plane which contains half of both the red and the blue figure
(this is probably not it).

16.2 The Jordan—Brouwer separation theorem

16.2.1 Its proof

One can also use the ideas behind mod 2 intersection theory to deduce the famous
Jordan-Brouwer separation theorem. Section 2.§5 of [GP10] deduces it from
winding numbers, but I think this direct proof is clearer.

Theorem 16.2.1. If Z < S" is a compact connected non-empty submanifold of
dimension n — 1, then S™\Z is a disjoint union of two connected open subsets,
each of which has closure a compact submanifold with boundary Z.

By removing a point from S™\Z, we reduce to the case R™\Z; in this case we
only get the second claim for one of the both components but since we could
have removed any point the same is true for the other component.

Ezample 16.2.2. In dimension 2 we are saying that a curve in the plane di-
vides it into two pieces. See https://www.maths.ed.ac.uk/~viranick/papers/
jordan-revised for some examples of complicated curves if you think this is
obviously true.

Proof of Theorem 16.2.1. Pick an xy € R™\Z. To simplify very end of the proof,
we will assume that z( lies outside some closed disk around the origin containing
the compact subset Z.

We claim that there is locally constant assignment d: R™\Z — 7Z/2, given at
x € R™\Z by picking a smooth path « from = to xy which is transverse to Z and
taking d(z) to be #7~1(Z) (mod 2). Let us prove that this is well-defined.

To show that such a +y exists, observe that for each x € R™\Z there is an open
ball B.(z) € R™\Z around x. We define a smooth map

F:[0,1] x B(z) — R"
(t,y) — ty + (1 — t)zo,


https://www.maths.ed.ac.uk/~v1ranick/papers/jordan-revised
https://www.maths.ed.ac.uk/~v1ranick/papers/jordan-revised
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which is visibly a submersion when restricted to fixed ¢ € [0, 1], so FhZ, 0FhZ
(in fact, 0F avoids Z all-together). By Theorem 14.1.3 there exists a dense set
of y € Be(z) such that F|[g1)x¢y3hZ. Now we let v be the concatenation of the
linear path from x to y and F|[0,1]X{y}.

We claim that #771(Z) is independent of the choice of . Given two choices
~,7, consider the map

G:(0,1) x [0,1] — R"
(t,8) — sy(t) + (1= s)7(1),

This is transverse to Z on an open neighbourhood of the closed subset
C = (0,€] x[0,1] Ul —¢1) x[0,1] U (0,1) x {0,1

so by the strongly relative transversality theorem, Theorem 15.1.1, there is a
homotopic map which coincides with G near C' and is tranverse to Z. Then
G~Y(Z) is a 1-dimensional submanifold, which is contained in some compact
subset of (0,1) x [0, 1], since G avoids Z on (0,€¢) x [0,1] u (1 —€',1) x [0,1] for
some ¢ > 0. Hence it is a compact 1-dimensional submanifold, and hence its
boundary contains an even number of points by Theorem 13.3.1. This implies
that the difference between #v~(Z) and #(7')~1(Z) is even.

o

Figure 16.3 Proving that d: R"\Z — Z/2 takes both values.

By construction, this function d is constant on connected components. To
see it takes both values, look at a chart exhibiting Z as a submanifold, i.e. a
diffeomorphism ¢: R* < U — V < R" such that ¢~ 1(Z n V) = ({0} x R*71) n
U. Suppose that d takes value 0 on say ¢(((—o0,0) x R*™1) A U). Then by
concatenating v with the image under ¢ of a straight line segment connecting a
point  in (—00,0) x R"! with a point 2’ in (0,00) x R"~! we see that d takes
value 1 on ¢(((0,00) x R* 1) ~n U). That is, crossing Z changes d by 1. We
conclude that R™\Z has at least 2 connected components.
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To show it has exactly two connected components we need to use that Z is
connected. For any fixed x € R"\Z, let V' < Z be the subset of points z € Z such
that any open neighbourhood U of 2z in R" contains a point which has a path
to x avoiding Z. This is closed and open by looking at charts exhibiting Z as a
submanifold, and is non-empty by looking at a point in Z closest to . Thus, V'
is union of connected components of Z and hence all of Z.

Now let us look at opposite sides of Z in a fixed chart; by the above argument,
each x € R™\Z can be connected to a point within this chart by a path avoiding
Z. This includes xy and so can be used to divide the points of R™\Z into two
path-components (possibly empty); those that connect to z¢ and those that do
not. Hence R™\Z has at most two connected components and hence exactly two,
given by d=1(0) and d~!(1) respectively.

To see that the closure of d~1(0) is a manifold with boundary we need to
find charts near boundary points. Note that for each local trivialization of Z,
exactly one of ¢(((—00,0) x R"™ 1) nU) and ¢(((0,0) x R*1) A U) lies in d~1(0),
say the latter, and then ¢]([0,00)an71) ~U) 18 the desired chart near the boundary.
The same argument applies to d—1(1).

Finally, any points x with ||z|| = ||x¢|| can be connected to xy by a path
avoiding Z, so the closure d~!(1) is bounded and hence compact. O

Let us reflect on the proof. What did we really use about R™? Only that it is
connected and simply-connected. That is, for the definition of d we only need to
be able connect x to zg by some path . To show it is well-defined, we need that
any two choices v and + are homotopic relative to their endpoints. Thus, the
same proof gives the following generalization of the Jordan-Brouwer separation
theorem:

Theorem 16.2.3. Suppose M is a simply-connected connected compact manifold
of dimension n and Z < M is a compact connected non-empty submanifold of
dimension n — 1, then M\Z is a disjoint union of two connected open subsets,
each of which has closure a compact submanifold with boundary Z .

16.2.2 The Schoenflies theorem

In particular, if i: S¥~1 < S* is a smooth embedding then i(S*~1) divides S*
into two connected components, and the closure of each of these is a compact
submanifold with boundary. What are these manifolds with boundary? Of course,
taking ¢ to be the standard inclusion we get two disks D*. Can other manifolds
appear? The answer is “no” in low dimensions:

Theorem 16.2.4 (Schoenflies, Alexander). If k < 3, for each embedding
i: S¥=1 < Sk the closures of both components of SK\S*~1 are diffeomorphic
to DF.

You can find a proof for k = 3 in [Hat07, Theorem 3.3], which you should be
able to adapt to k = 2 without much difficulty.

However, in high dimensions there can be. One of the successes of differential
topology is the determination of dimensions in which this can happen in terms
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of other well-studied objects in algebraic topology (the groups of exotic spheres).
In particular, in dimension < 140 we have [BHHM17]:

Theorem 16.2.5. If 5 < k < 140, for each embedding i: S*~' — S* the
closures of both components of S¥\S*¥~1 are diffeomorphic to D* if and only if
k=5,6,12,56,61.

There is one dimension remaining for £ < 140: k = 4. One of the big
remaining open questions of manifold theory asks about this case:

Conjecture 16.2.6 (Smooth Schoenflies conjecture in dimension 4). Given an
embeddingi: S* < S*, the closures of both components of S*\S? are diffeomorphic
to D*.

16.2.3 Codimension one knots

Just we called (isotopy classes of) embeddings of S' in S® are knots, we refer to
(isotopy classes of) embeddings S¥~" < S* as codimension r knots. The most
interesting case is, unsurprisingly, codimension 2. What about codimension 17

If for each embedding i: S¥~1 < S* the closure of one of the components of
Sk\Sk=1 are diffeomorphic to D¥, there exists only one embedding S*~! — S*
up to isotopy:

Theorem 16.2.7. If an embedding i: S¥~1 — Sk has the property that the
closure of one of the components of S¥\S*¥~! is diffeomorphic to D*, then i is
isotopic to the standard inclusion S¥—1 — Sk,

It will follow from:

Proposition 16.2.8. Every embedding S*~1 < R* which extends to an embed-
ding D* — RF¥ s isotopic to either the standard inclusion i, or i composed with
a reflection.

Proof. We prove that every embedding D* < RF is isotopic to one given by
applying invertible linear map A € GLj(R) to D*. The result follows from the
observation that the two different connected components of GLy(R) contain the
identity and a reflection respectively.

We claim that embeddings D* < RF up to isotopy are in bijection with
injective immersions R* < R* up to homotopy through injective immersions.
This bijection is given in one direction by the composing with the embedding
i: D¥ < RF, and in the other by composing with the injective immersion
h: RF < D¥ given by z — W It is easy to see that h o is isotopic to idpr,
and ¢ o h admits an homotopy through injective immersions to idpx.

Now apply Lemma 16.2.9, which classifies injective immersions R¥ < R* up
to homotopy through injective immersions. O

Lemma 16.2.9. Every injective immersion f: R¥ < RF is homotopic through
injective immersions to an invertible linear transformation.
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Proof sketch. Identify [0,1] with [1, 0] and take
H:R" x [1,00] — R"

(2.4) s 1. h(tz) ift < oo,
Doh(.’E) if t = o0.

To see that this is smooth at t = o0 apply Taylor’s theorem. O

We can now complete the argument:

Proof of Theorem 16.2.7. We may assume ey € S*\S*~! is not in the image of
the extension, and removing this point, we may as well work in R¥. The result
follows by observing that the embeddings S*~! < S* given by i and i composed
with a reflection are isotopic, as the action of GLg(R) on S™ extends to an action
of GLy+1(R) and there is an element of GLy(R) with determinant +1 which acts
on 7 by reflection. O

Thus Theorem 16.2.5 tells us the following about the existence of codimension
one knots.

Corollary 16.2.10. If4 # k <140 and k =0,1,2,3,5,6,12, 56,61, then every
embedding S*~1 «— S* is isotopic to the standard inclusion.

16.3 Problems

Problem 41. Use the Jordan—-Brouwer separation theorem to prove that if
M < R* is a compact codimension 1 submanifold, then its normal bundle N M
is trivial.

Problem 42. Adapt the proof of Lemma 16.2.9 to prove that every diffeomor-
phism of R is isotopic to an invertible linear transformation.



Chapter 17

Orientations and integral intersection theory

The next part of these lecture will be devoted defining de Rham cohomology,
developing computational tools for it, and drawing interesting topological conclu-
sions from it. A prerequisite for some of this material will be the notion of an
orientation. We define this today, and give a taste of Chapter 3 of [GP10], which
we will not cover in detail in the course.

Convention 17.0.1. All vector spaces are finite-dimensional and over R unless
mentioned otherwise.

17.1 What is an orientation on a manifold?

We start with an intuitive description of orientations, before giving rigorous
definitions:

an orientation of a manifold is “a smooth family of orientations of
each of the tangent spaces T, M.

An orientation on a vector space such as T, M specifies for each of its ordered
bases whether it is “positively oriented” or “negatively oriented,” with the
following requirement: if one ordered basis can be obtained from another by
applying an invertible matrix A to each of its vectors, then they are similarly
oriented if and only if det(A) > 0. Since GL,(R) has two path components, this
is equivalent to saying homotopic bases are similarly oriented and reflecting a
single basis vector changes the orientation of the basis.

That an orientation depends smoothly on p € M means that if you move a
positively oriented basis around M, it stays positive (and of course the same is
true for negatively oriented bases).

)

Ezxample 17.1.1. For the circle S', an orientation is a choice of “positive direction’
along the circle. There are two such choices: counterclockwise and clockwise.

Example 17.1.2. The real projective plane RP? admits no orientation. Suppose
it did, then starting with a basis e, es at some point, say positively oriented,
we can move it around RP? and return to ej, —es. This must simultaneously
be positively oriented (since moving a basis around shouldn’t change how it’s
oriented) and negatively oriented (since it is obtained from a positively oriented
by reflecting a basis vector). This gives a contradiction.

137
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Figure 17.1 Moving a basis around RP? can return it with opposite orientation.

You can find more examples in the following table:

orientable not orientable

spheres S" real projective spaces RP?" (n > 1)
surfaces of genus g > 1 Klein bottle

Lie groups

Lens spaces
Poincaré homology sphere
Complex projective spaces

Quaternionic projective spaces

K3 surface

Whitehead manifold

Ezample 17.1.3. An LCD display is made from a nematic crystal, consisting of
long thin filaments. These prefer to be aligned the same way, so locally such a
crystal has a order parameter given by a direction in R3. This is an element of
RP2, a non-orientable manifold.

17.2 A recollection of multilinear algebra

Linear algebra concerns not only the study of vector spaces and linear maps
between them, but also of multilinear maps with various properties. This is
closely related to the study of tensor products and variations thereof.

17.2.1 Tensor products

Definition 17.2.1. A bilinear map is a function b: V x V' — W which is linear
in each variable.

Definition 17.2.2. The tensor product V®V" is the quotient of the free R-vector
space on the set V' x V' whose basis elements we shall denote (v,v’), by the

'See http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf.
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Figure 17.2 An nematic crystal (from https://en.wikipedia.org/wiki/Liquid_crystal).

subspace spanned by the elements
((v1 + v2),v") — (v1,v") — (v2, '),

(v, (v1 +v3)) = (v, 01) = (v, v5),
(av, w) — a(v, w),
(v, aw) — a(v,w).
We will denote the equivalence class of (v, w) by v ® w.

Example 17.2.3. The tensor product R* ® R! has a basis given by e; ® 63- for
1<i<k 1<j<l

The relations are designed to make

bo: VxV — VeV

(v, 0) — v
bilinear. It is in fact the initial bilinear map:

Lemma 17.2.4. For every bilinear map b: V x V' — W there is a unique linear
map B: VRV — W such that b = 3 o by.

Proof. There is a unique linear map R[V x V'] - W given by (v,v’) — b(v,v").
Since b is bilinear this factors over V® V', determining a linear map f: VV’' —
W satisfying b(v,v") = B(v®v') = B(bo(v,v")). Since V. ® V' is generated by the
elements by(v,v’), this determines 8 uniquely. O

Remark 17.2.5. This universal property satisfied by the tensor product determines
it uniquely up to linear isomorphism.

There is a similar correspondence of multilinear maps V4 x --- x Vi —» W
with linear map V1 ® --- ® V, — W.


https://en.wikipedia.org/wiki/Liquid_crystal
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Example 17.2.6. The universal property tells us what tensor product of a single
or no vector spaces is. A multilinear map V' — W is just a linear map, so a
tensor product of a single vector space V is just V' again.

The empty product of sets is a point, because such a product receives a unique
map from every other set. A multilinear map from an empty product is hence a
map from a point to V', with no condition imposed, so just an element of V. This
is the same as a linear map R — V. Hence an empty tensor product is R itself.

17.2.2 Alternating multilinear maps

When all vector spaces V; in the domain of a multilinear map are the same V,
we can require additional symmetry properties. Of specific interest to us are the
alternating multilinear maps, though the story for symmetric multilinear maps is
similar:

Definition 17.2.7. An alternating multilinear map is a multilinear map w: V¥ —
W which satisfies w(vy(1), - - - Vo(k)) = (=D @Dw(vy,...,v) forallvy,..., o € V
and permutations o of {1,...,k}. Here €(0) € Z/2 is the sign of the permutation.

Example 17.2.8. The sign of a permutation is uniquely determined by demanding
it is a homomorphism and it sends a transposition to the unique non-identity
element of Z/2.

There is also an initial alternating multilinear map.

Definition 17.2.9. The kth exterior power AFV is the quotient of V& by the
subspace spanned by the elements

V(1) @+ Q Vg(k) — (—1)6(0)1)1 ®...®v, with o € Xy.
We will denote the image of v1 ® --- @ v by v1 A -+ A V.

Ezample 17.2.10. A’R"™ has a basis ¢; A ¢; for 1 <i < j < n. It is a well-known
mistake to think that every element of an exterior product is of the form v A vs.
This is not the case, e.g. e1 A ea + e3 A e4 can’t be written this way.

Example 17.2.11. A°V is the quotient of (V)®° = R by the trivial subspace, so is
equal to R.

The subspace in Definition 18.2.9 is designed to make

wo: VE— APV

(V1yev V) —> UL A -0 AU
alternating multilinear. This satisfies:

Lemma 17.2.12. For every alternating multilinear map w: V* — W there is a
unique linear map w: AFV — W such that w = w o wy.
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Remark 17.2.13. This universal property tells us that the map V®* — A*V corre-
sponding to a natural assignment of an alternating multilinear map w(b): V¥ —
W to each multilinear map b: V¥ — W. This is given by anti-symmetrizing:

1
w(b)(vl’ s 7Uk) = E Z b(”a(l)? .- 'ava(k))‘

O’EEk

The construction of A*V is natural in V: whenever we have a linear map
A:V — V' there is an alternating multilinear map

ka N Ak(vl)
(U1, o) —> A1) A -+ A A(vp),

which induces a unique linear map A¥(A): A*(V) — A¥(V’). This is explicitly
given by
AR (A) (1 A Avp) = A(vr) A - A Alwg).
From this formula or the universal property one easily deduces the following;:

Lemma 17.2.14.
. AR(BA) = AR(B)AR(4),
- A¥(id) = id.

17.2.3 The top exterior power and orientations

Let us take a closer look at the case V = R¥. Then AFRF has a basis with a
single element e; A -+ A e, i.e. it is one-dimensional.

Ezample 17.2.15. For k = 2, R? ® R? is spanned by e1 ®e1, e1 ® €2, €2 ® €1
and ez ® ea. In A%2(R?) some additional antisymmetry rules are imposed. These
for example say e; A e = —eg A e1. But they also say e; A e; = —ej; A €1 S0
e1 A ep = 0, and similarly es A ea = 0. Thus A?(R?) is indeed 1-dimensional
spanned by e; A es.

Thus for each linear map A: R¥ — R, the induced linear map A¥(A): A¥(RF) —
AF(R¥) is given by multiplication with a number, which for now we denote d(A).

a b
=10
we can compute d(A) by determining which multiple of e; A ez the element
A2(A)(e1 A eg) is equal to. The latter is given by

Example 17.2.16. For a matrix

A(er) A A(ez) = (aer + cea) A (bey + dez)
= abe; A e1 + adey A ey + cbes A e + cdeg A€o
= (ad — bc)ey A eg.

As the previous example shows, you are already familiar with the number

d(A).
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Lemma 17.2.17. d(A) = det(A).

Sketch of proof. There are two ways to prove this.

You could use that the determinant is uniquely determined a small number
of properties, namely that det(BA) = det(B)det(A) and its value on elementary
matrices, upper-diagonal matrices, and permutation matrices. Indeed, using
elementary matrices and permutation matrices you can row reduce all matrices
to upper-diagonal ones. You then just need to verify that d(BA) = d(B)d(A),
which follows from A¥(BA) = A*(B)A*(A), and that d takes the same value as
det on elementary matrices, upper-diagonal matrices and permutation matrices.

Alternatively, you could just compute A(e1) A--- A A(eg) directly. By linearity
in each entry and observing that those terms where a basis vector is repeated are
0, you get

k
Aler) A A Aleg) = Z (H Aia(i)) €x(1) N " N Eo(k)

o \i=1

k
=) ( (—1)6(0)141'0(1')) er A A e

=det(A)er A -+ A e

An invertible matrix det(A) is a composition of rotations and an upper-
diagonal matrix with positive entries on the diagonal if and only if its determinant
is positive. If the determinant is negative, then it is a composition of such matrices
with a reflection in a hyperplane. If we think intuitively of an orientation has a
notion of “handedness” (of “chirality” if you want a fancier term), then rotations
and upper-diagonal matrices with positive entries on the diagonal should preserve
this, but reflection should reverse this. This makes the following definition
reasonable:

Definition 17.2.18. An orientation of a finite-dimensional R-vector space V'
is a choice of a non-zero element of Adim(v)(V) up to scaling by a positive real
number.

This definition is set up so that an invertible linear map A preserves an
orientation if and only if det(A) > 0.

17.3 Orientations

17.3.1 Fiberwise constructions

We have already seen how natural constructions on vector spaces lead to natural
construction on vector bundles, by repeating this construction fiberwise:

We proved that these constructions produce vector bundles by going to local
trivializations, and then observing that the corresponding constructions on general
linear maps are continuous or even smooth in the entries.

Let us repeat this with the top exterior power:
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vector spaces vector bundles
direct sum V@V’ direct sum E @ E'
quotient V /V’ quotient E/E’

image im(A: V — V')  image im(G: E — E’) (if rank constant)
kernel ker(A: V' — V')  kernel ker(G: E — E’) (if rank constant)

Definition 17.3.1. Let p: £ — X be a vector bundle of dimension k. Then
its top exterior power A¥(p): A¥(E) — X is the vector bundle of dimension
1 given by | |, A*(E;). We topologize this as follows: for every local triv-
falizations ¢: p~1(U) = | |,y B — U x R* we define declare that the local
trivialization (A*(p)) ™1 (U) = |,y A¥(Ez) — U x A¥(RF) given by taking
(z,v) — (z,A*(1p,)(v)) is a homeomorphism.

The transition functions of A*(E) are given by the determinant of the transi-
tion functions of £. Thus A*(E) will be a smooth vector bundle if F is a smooth
vector bundle. Using this observation and similar ones for other exterior power
or tensor products we can extend our table as follows:

vector spaces vector bundles

top exterior power AU (V)(V)  top exterior power AY™(E)(E)

tensor product V @ V' tensor product £ ® E’
exterior power A"(V) exterior power A"(E)
symmetric power Sym’ (V') symmetric power Sym’ (E)
dual V* dual E*

17.3.2 Riemannian metrics

When thinking about smooth vector bundles it is sometimes helpful to have a
Riemannian metric around:

Definition 17.3.2. A Riemannian metric is a section g of (£ ® E)* such that
on each fiber g,: F, ® E; — R is a positive definite symmetric bilinear form.

Lemma 17.3.3. Every smooth vector bundle p: E — X admits a Riemannian
metric, and this is unique up to homotopy.

Proof. For each local trivialization ¢: p~'(U) — U x R* we can define on U the
pullback along ¢! of the standard Riemann metric: for v,v' € E,,

(™) gsta (v, 0') = gsta (V3" (v), 45 (V).

Now take a partition of unity subordinate to an open cover of X by open
subsets U of a local trivialization; n;: M — [0, 1] supported in U;. Then we
define

g = Zm (1) * gsta-
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This is positive define and symmetric since these properties are preserved by
convex linear combinations. For uniqueness, observe we can linearly interpolate
between any two Riemannian metric. O

The main application of this is:

Lemma 17.3.4. If £/ ¢ E is a subbundle, then there is another subbundle
E" ¢ E such that E' ® E” =~ E. This subbundle E" is isomorphic to E/E’.

Proof. Equip E with a Riemannian metric. Then we can take E” = (E')*, given
by fibers (E')L = (E.)*. To get the second part, we observe that the map of
vector bundles E — (E’)* given on fibers by orthogonal projection E, — (E'):
with kernel given by E’ and hence induces an isomorphism E/E’ — (E')t. O

17.3.3 Orientations of vector bundles
Recall that a map which picks a single element of each fiber is called a section:

Definition 17.3.5. A section of a smooth vector bundle p: £ — X is a smooth
map s: X — FE such that pos =idy.

Ezample 17.3.6. Every smooth vector bundle has a 0-section sg: X — FE picking
out the 0 in each fiber.

Example 17.3.7. A smooth section of T'M is also known as a smooth vector field.

When we have a section s: X — E of a smooth vector bundle and a smooth
function g: X — R, we can use fiberwise scalar multiplication to produce a new
section g - s.

Definition 17.3.8. An orientation of a smooth vector bundle p: £ — B is an
everywhere non-zero section s of AY™E)E up to the equivalence relation of
scalar multiplication by an everywhere positive smooth function.

Thus, an orientation on E is smooth choice of non-zero elements of each
AM(E) B up to scaling, that is, a smooth choice of orientation of each of vector
spaces F,.

Example 17.3.9. Trivial vector bundles always admit an orientation.

Ezxample 17.3.10. A much more interesting example is the Moebius strip, i.e. the
tautological bundle over RP'. We use the following straightforward observation:
every section s of a smooth vector bundle p: £ — B is homotopic to the 0-section.
Indeed, take H: B x [0,1] — E given by

(p,t) —> t- s(p).

Using this we prove that the tautological bundle v over RP! (the one whose total
space is the Moebius strip) does not admit an orientation. Let us identify RP!
with the 0-section. If this bundle did admit an orientation, there would be an
everywhere non-zero section s and we would have I(s, RP!) = 0. But we also
know that Io(s,RP') = I(RP!,RP!), and latter is 1 by exhibiting a particular
section transverse to the O-section. This gives a contradiction.



17.3  Orientations 145

A vector bundle E is said to be orientable if it admits an orientation.

Lemma 17.3.11. A vector bundle E is orientable if AY™E)E s isomorphic to
a trivial line bundle. Furthermore, an orientation is a trivialization of AW™(E) g
up to scalar multiplication by a smooth positive function.

Proof. Indeed, a representative s: X — AY™(E)E of an orientation furnishes an
isomorphism

X x R =5 Adm(B) g
(b,t) —> t - s(b).

Conversely, an isomorphism ¢: AdmE) ~ X xR gives an everywhere non-
vanishing section s: X — AY™E) by 2 ¢~ 1(z,1). O

If F is orientable, how many orientations does it admit? Given an orientation
represented by s, any other orientation s’ differs by scalar multiplication of s with
an everywhere non-zero smooth function f. If we multiply f with an everywhere
positive smooth function we get the same s’, so the orientations are given by the
set of everywhere non-zero smooth functions up to multiplication by everywhere
positive smooth function. In other words, for each connected component of X
we have to pick a choice of sign. We conclude that:

Lemma 17.3.12. Let mo(X) denote the set of connected components of X, then
if E is orientable the set of orientations is (non-canonically) given by the set of

functions
mo(B) — {£1}.

Given orientations for smooth vector bundles E, E’ over X, you can produce
a direct sum orientation on F @ E’. The observation you need is that there is a
natural isomorphism

Adim(E)E ® Adim(E’)E/ =, Adim(E)+dim(E’) (E @ E/)
(Ul A A Udim(E)) ® (Ull Ao A Uélim(E’)) U1 A A Ugim(B) A Ull VANKIEIVAN U:iim(E’)'
Thus trivializations of AU™(E) B and Adm(E) gy give a trivialization of Ad(E) B

AIE) B Conversely, if E = E'@E” with E and E’ oriented, the trivializations
of E and E’ give isomorphisms

B % R ~ Adlm(E/)+d1m(E/l) (El (’B E”) ~ Adll’n(E/)El ® Adim(E”)E” ~ Adim(E//)E”,

so an orientation of E”.

17.3.4 Orientations of manifolds

If M is a k-dimensional manifold, then T'M is a k-dimensional smooth vector
bundle M and hence AFTM is a 1-dimensional smooth vector bundle M, called
the orientation line bundle.

Definition 17.3.13. An orientation of M is an orientation of T'M.
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Remark 17.3.14. An orientation of M is equivalent to a choice of “oriented” atlas
inside its maximal atlas, where all transition functions are required to have total
derivatives with positive determinant.

Let us give two examples of manifolds that are orientable and one which is
not:

Example 17.3.15. If M = S', the tangent bundle is isomorphic to a trivial
bundle and since AY™E)E = F for any 1-dimensional vector bundle so is its top
exterior power. It hence admits exactly two orientations. These correspond to
the clockwise and counterclockwise directions of the circle.

Example 17.3.16. If M = %, we have that AT M = R, so the point admits exactly
two orientations. However, the one represented by 1 € R should obviously be our
preferred choice.

Ezample 17.3.17. We claim that RP? admits no orientation. If it did then so
would TR P2|gp1. This vector bundle is isomorphic to TRP! @ NRP! ~ R @,
with v the canonical bundle over RP!. This means its orientation line bundle
is A2 (R®~) = v and we proved above that v does not admit an everywhere
non-vanishing section, i.e. is not trivializable.

There are several constructions which produce new orientations on manifold
form old ones:

Ezample 17.3.18. Given a manifold M with orientation, we can produce another
orientation by multiplying a representative section s: M — A*TM with —1. This
is called reversing the orientation and we shall occasionally use the notion —M
for this.

Example 17.3.19. If M and N are manifolds with orientations, then we get a
direct sum orientation on M x N, as T, (M x N) = T,M @ T,y N.

To phrase this in terms of vector bundles, we need a generalization of the
restriction of vector bundles: given any map f: X’ — X we can pull back a
vector bundle p: £ — X to X’ by setting f*E = | |,y E(»). In the language
of vector bundles we have T(M x N) = nfTM @ n5TN.

FEzxzample 17.3.20. If Z < N is a submanifold and both N and Z are oriented,
then the isomorphism TN|z =~ NZ ® TZ shows that NZ also comes with an
orientation.

Ezxample 17.3.21. Suppose we have a smooth map f: M — N with M and N
oriented, and Z = M an oriented submanifold such that fhZ. Then f~(Z) is
a submanifold and its tangent bundle satisfies f*NZ @ Tf~1(Z) =~ TM|p-1(z).
Since both T'M | f-1(z) and f*NZ comes with orientations, we get an orientation
of Tf~Y(2).

17.3.5 Induced orientation on the boundary

If M is a manifold with boundary M, then its boundary M inherits an
orientation, canonically so once we fix a single convention. To do so, it is
convenient to pick a Riemannian metric on M, that is, on TM. Then the
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restriction T'M|sps inherits a Riemannian metric and thus splits as T0M @
(TOM)*, the latter being a line bundle.

From our discussion of collars, we know that there exist a smooth function
x: M — [0, 00) such that x~1(0) = 0M and for each p € 0M, d,x is non-vanishing
on some vector v € T, M\T,,0M. This vector v decomposes as a sum of a vector
v € T,0M and a vector v € (TpﬁM)L. Since  is constant on dM, vy is zero so
v] is non-zero. Hence the restriction d,y: (T,0M)*+ — R is non-zero.

We call a vector v € (T,0M )+ such that d,x(v) < 0 outward pointing. Such a
vector is unique up to scaling by a positive real number. In particular, there is a
canonical section n of (T'M|ap)* given at p € dM by the unique element n,, of
(T,,0M)* such that d,x(n,) = 1.

Every vector v € V provides a linear map v A —: A*¥1(V) — A¥(V). This
generalizes to a map of vector bundles

AR (TOM) —> AM(TM |on)

WrH—>nN AW

of vector bundles, by thinking of A*~1(T'0M) as a linear subspace of A*~1(T'M |5ar)
using the inclusion of TOM into TM|aps.

Lemma 17.3.22. If an orientation of M 1is represented by the section s of
AFT M, then there is a unique orientation of M which is represented by a section
5 of AF=YTOM satisfyingn A 5 = s.

Proof. For each p € 0M, fix a basis ey, ..., er—1 of T,0M. By adding n, we get a
basis of T,M. Then 5(p) is by definition ¢(p)-eq A - -+ A ex—1 for some ¢ € R, and
s(p) similarly is ¢(p) - np A €1 A -+ A ex—q for some ¢(p) € R. From the equation

np A (C(p)-e1 A Aep—1) =c(p)-np Aer A Aeg_

we read off ¢(p) = ¢(p), so § is uniquely determined by n and s.

Firstly s, up to multiplication by a positive smooth function, is independent
of the choice of representative s: if s changes by multiplying it with positive
smooth function, so does s.

Next, we have to verify the orientation is independent of the choice of Rie-
mannian metric ¢ and smooth function y. Modifying the latter just changes n
by scalar multiplication by a positive smooth function, and hence has the same
effect on 5. If we vary g, then n, gets replaced by n;, = an;, + Zf;ll a;e; with
a >0 so

ny, A((p)-er A Aeg_1) =a-ny A (E(p)- e A A ep_1),

and again § just changes by scalar multiplication by a positive smooth function.
O

Definition 17.3.23. If M is oriented, we shall consider dM as oriented by the
orientation produced in the previous lemma. We refer to this as the induced
orientation.
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Example 17.3.24. There is a preferred choice of orientation on [0, 1], namely using
1€ A'T,[0,1] = T,[0,1] = R. Then

00, 1] = {1} — {0},

where, for an oriented manifold N, —NN denotes the same manifold with opposite
orientation.
More generally, if M is oriented without boundary, then

o([0,1] x M) = M x {1} — M x {0}.

However, if we do d(M x [0,1]) we get (—1)3™M) (M x {1} — M x {0}). This is an
unfortunate clash of our conventions for orientations and notation for homotopies.
Example 17.3.25. Generalizing Example 18.3.21 to the case that M has boundary
and fhZ, 0f hZ we get that 0f ~1(Z) = (0f)~'(Z) comes with two orientations:
one as the boundary of an oriented manifold and one as the inverse image of an
oriented manifold. These are not equal but satisfy

of(2) = (=) (af)7N(2).
17.4 Integral intersection theory

Chapter 3 of [GP10] upgrades the mod 2 intersection theory to an integral version.
The main input is the observation that

0[0,1] = {1} — {0}

and the classification of compact 1-dimensional manifolds lead to the following
result:

Proposition 17.4.1. If M is a compact oriented 1-dimensional manifold, then
the number of positively-oriented points in OM is equal to the number of negatively-
oriented points.

So we can define intersection numbers with values in Z instead of Z/2:

Definition 17.4.2. Suppose that Y is a compact oriented manifold without
boundary, M is an oriented manifold and Z < M is an oriented submanifold
such that dim(Y") + dim(Z) = dim(M).

Let fo: Y — M be a smooth map. Then the intersection number I(fo, Z) is
defined as follows: take f; homotopic to fy and transverse to Z, and set

I(fo,2) = 2 orientation of p.
pefi'(2)

One proceeds as before, using Proposition 18.4.1 in place of the fact that
the number of points in the boundary of a compact 1-dimensional manifold is
even, to prove that I(fy, Z) is well-defined and establish its basic properties. You
can then easily define integral versions of the degree of a map and the winding
numbers, and use these to great effect.

Ezample 17.4.3. With these definitions in hand, the mod 2 linking numbers of
Section 77 generalize to integer linking numbers.
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17.5 Problems

Problem 43 (Codimension 1 submanifolds are orientable). Use the Jordan—
Brouwer separation theorem to prove that if M < R¥ is a compact codimension
1 submanifold, then it is orientable.

Problem 44. Define a degree deg(f) € Z of a smooth map f: M — N between
compact oriented smooth manifolds of the same dimension, which reduces to
deg,(f) modulo 2.

Problem 45. Use partitions of unity to prove that any vector v € T,M is the
value at z of some smooth vector field X on M.



Chapter 18

Orientations and integral intersection theory

The next part of these lectures will be devoted defining de Rham cohomology,
developing computational tools for it, and drawing interesting topological conclu-
sions from it. A prerequisite for some of this material will be the notion of an
orientation. We define this today, and give a taste of integral intersection theory,
which we will not cover in detail in the course.

Convention 18.0.1. All vector spaces are finite-dimensional and over R unless
mentioned otherwise.

18.1 What is an orientation on a manifold?

We start with an intuitive description of orientations, before giving rigorous
definitions:

an orientation of a manifold is “a smooth family of orientations of

each of the tangent spaces T, M.

An orientation on a vector space such as T, M specifies for each of its ordered
bases whether it is “positively oriented” or “negatively oriented,” with the follow-
ing requirement: if one ordered basis can be obtained from another by applying
an invertible matrix A to each of its vectors, then we say they are similarly
oriented if and only if det(A) > 0. Since GL,(R) has two path components, this
is equivalent to saying homotopic bases are similarly oriented and reflecting a
single basis vector changes the orientation of the basis. That an orientation
depends smoothly on p € M means that if you move a positively oriented basis
around M, it stays positive (and of course the same is true for negatively oriented
bases).

)

Ezxample 18.1.1. For the circle S', an orientation is a choice of “positive direction’
along the circle. There are two such choices: counterclockwise and clockwise.

Example 18.1.2. The real projective plane RP? admits no orientation. Suppose
it did, then starting with a basis e, es at some point, say positively oriented,
we can move it around RP? and return to ej, —es. This must simultaneously
be positively oriented (since moving a basis around should not change how it is
oriented) and negatively oriented (since it is obtained from a positively oriented
by reflecting a basis vector). This gives a contradiction.

150
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Example 18.1.3. An LCD display is made from a nematic crystal, consisting of
long thin filaments. These prefer to be aligned the same way, so locally such a
crystal has a order parameter given by a direction in R3. This is an element of
RP?, a non-orientable manifold. '

Figure 18.2 An nematic crystal (from https://en.wikipedia.org/wiki/Liquid_crystal).
You can find more examples in the following table:

18.2 A recollection of multilinear algebra

Linear algebra concerns not only the study of vector spaces and linear maps
between them, but also of multilinear maps with various properties. This is
closely related to the study of tensor products and variations thereof.

18.2.1 Tensor products

Definition 18.2.1. A bilinear map is a function b: V x V/ — W which is linear
in each variable.

'See http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters . pdf.


https://en.wikipedia.org/wiki/Liquid_crystal
http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf
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orientable not orientable

spheres S™ real projective spaces RP?" (n = 1)
surfaces of genus g > 1 Klein bottle

Lie groups

Lens spaces
Poincaré homology sphere
Complex projective spaces

Quaternionic projective spaces

K3 surface

Whitehead manifold

Definition 18.2.2. The tensor product V®W is the quotient of the free R-vector
space on the set V' x V' whose basis elements we shall denote (v,v’), by the
subspace spanned by the elements

((Ul + U2)7 vl) - (0170/) - ('UQ,'U,),

(v, (V] +v5)) = (v, 01) = (v,v),
(av,v") — a(v,v"),
(v,av") — a(v,v").
We will denote the equivalence class of (v,v") by v ®v'.
Ezample 18.2.3. The tensor product R¥ ® R¥ has a basis given by e¢; ® eg- for
1<i<k 1<j<k.

The relations are designed to make

bo: VW —VRV

(v,0") — v
bilinear. It is in fact the initial bilinear map:

Lemma 18.2.4. For every bilinear map b: V x V' — W there is a unique linear
map B: VRV’ — W such that b= 5o by.

Proof. There is a unique linear map R[V x V'] - W given by (v,v’) — b(v,v").
Since b is bilinear this factors over V® V', determining a linear map f: V@V’ —
W satisfying b(v,v") = B(v®v') = B(bo(v,v")). Since V.® V' is generated by the
elements by(v,v"), this determines 3 uniquely. O

Remark 18.2.5. This universal property satisfied by the tensor product determines
it uniquely up to linear isomorphism.

There is a similar one-to-one correspondence of multilinear maps Vi x --- x

Vi — W with linear map V1 ® ---® V), »> W.
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Example 18.2.6. The universal property tells us what tensor product of a single
or no vector spaces is. A multilinear map V' — W is just a linear map, so a
tensor product of a single vector space V is just V' again.

The empty product of sets is a point, because such a product receives a unique
map from every other set. A multilinear map from an empty product is hence a
map from a point to V', with no condition imposed, so just an element of V. This
is the same as a linear map R — V. Hence an empty tensor product is R itself.

18.2.2 Alternating multilinear maps

When all vector spaces V; in the domain of a multilinear map are the same V,
we can require additional symmetry properties. Of specific interest to us are the
alternating multilinear maps, though the story for symmetric multilinear maps is
similar:

Definition 18.2.7. An alternating multilinear map is a multilinear map w: V¢ —
W which satisfies w(vy(1), - - - Vo(k)) = (=D @Dw(vy,...,v) forallvy,..., o € V
and permutations o of {1,...,k}. Here €(0) € Z/2 is the sign of the permutation.

Example 18.2.8. The sign of a permutation is uniquely determined by demanding
it is a homomorphism and it sends a transposition to the unique non-identity
element of Z/2.

There is also an initial alternating multilinear map.

Definition 18.2.9. The kth exterior power AFV is the quotient of V& by the
subspace spanned by the elements

V(1) @+ Q Vg(k) — (—1)6(0)1)1 ®...®v, with o € Xy.
We will denote the image of v1 ® --- @ v by v1 A -+ A V.

Ezample 18.2.10. A?R"™ has a basis ¢; A ¢; for 1 <i < j < n. It is a well-known
mistake to think that every element of an exterior product is of the form v A vs.
This is not the case, e.g. e1 A ea + e3 A e4 can’t be written this way.

Example 18.2.11. A’V is the quotient of (V)®° = R by the trivial subspace, so is
equal to R.

The subspace in Definition 18.2.9 is designed to make

wo: VE— APV

(V1yev V) —> UL A -0 AU
alternating multilinear. This satisfies:

Lemma 18.2.12. For every alternating multilinear map w: V* — W there is a
unique linear map w: AFV — W such that w = w o wy.
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Remark 18.2.13. This universal property tells us that there is a map V& —
A*V corresponding to a natural assignment of an alternating multilinear map
w(b): VF — W to each multilinear map b: V¥ — W. It is given by anti-
symmetrizing:

w(b)(vl,...,vk) = Z b(vg(l),...,va(k)).

O’GEk

The construction of A*V is natural in V: whenever we have a linear map
A:V — V' there is an alternating multilinear map

VXk_)Akvl
(’U]_,. : 'avk) — A(U]_) ATRA A(vk‘)a

which induces a unique linear map A¥A: A¥V — A*¥V’. This is explicitly given
by
(A*A) (o1 A - A o) = A(vr) A - A Alwg).

From this formula or the universal property one easily deduces the following:

Lemma 18.2.14.
- A¥(BA) = (A*B)(AFA),
- ARid = id.

18.2.3 The top exterior power and orientations

Let us take a closer look at the case V = R¥. Then A*R* has a basis given by
the single element e; A - -+ A eg, so in particular is one-dimensional.

Ezample 18.2.15. For k = 2, R? ® R? is spanned by e1 ®e1, e1 ®e2, €2 Q €1
and ez ® ea. In A%2(R?) some additional antisymmetry rules are imposed. These
for example say e; A e = —es A e1. But they also say e; A eg = —ej; A €1 so
e1 A ep = 0, and similarly es A ea = 0. Thus A?(R?) is indeed 1-dimensional
spanned by e; A es.

Thus for each linear map A: R¥ — R¥, the induced linear map A¥(A): A*(RF) —
AF(R¥) is given by multiplication with a number, which for now we denote d(A).

Example 18.2.16. For a matrix

we can compute d(A) by determining which multiple of e; A ez the element
A2(A)(e1 A eg) is equal to. The latter is given by

A(er) n A(e2) = (aeq + cea) A (ber + deg)
= abe; A e1 + adey A eg + cbea A e1 + cdea A €9
= (ad — bc)ey A es.

As the previous example shows, you are already familiar with the number

d(A).
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Lemma 18.2.17. d(A) = det(A).

Sketch of proof. There are two ways to prove this.

You could use that the determinant is uniquely determined a small number
of properties, namely that det(BA) = det(B)det(A) and its value on elementary
matrices, upper-diagonal matrices, and permutation matrices. Indeed, using
elementary matrices and permutation matrices you can row reduce all matrices
to upper-diagonal ones. You then just need to verify that d(BA) = d(B)d(A),
which follows from A*¥(BA) = A¥(B)A*(A), and that d takes the same value as
det on elementary matrices, upper-diagonal matrices and permutation matrices.

Alternatively, you could just compute A(e1) A--- A A(eg) directly. By linearity
in each entry and observing that those terms where a basis vector is repeated are
0, you get

An invertible matrix det(A) is a composition of rotations and an upper-
diagonal matrix with positive entries on the diagonal if and only if its determinant
is positive. If the determinant is negative, then it is a composition of such a
matrix with a reflection in a hyperplane. If we think intuitively of an orientation
has a notion of “handedness” (of “chirality” if you want a fancier term), then
rotations and upper-diagonal matrices with positive entries on the diagonal
should preserve this, but reflection should reverse this. This makes the following
definition reasonable:

Definition 18.2.18. An orientation of a finite-dimensional R-vector space V'
is a choice of a non-zero element of A™V)V up to scaling by a positive real
number.

This definition is set up so that an invertible linear map A preserves an
orientation if and only if det(A) > 0.

18.3 Orientations

18.3.1 Fiberwise constructions

We have already seen how natural constructions on vector spaces lead to natural
construction on vector bundles, by repeating this construction fiberwise:

We proved that these constructions produce vector bundles by going to local
trivializations, and then observing that the corresponding constructions on general
linear maps are continuous or even smooth in the entries. Let us repeat this with
the top exterior power:



156 Chapter 18  Orientations and integral intersection theory

vector spaces vector bundles
direct sum V@V’ direct sum E @ E'
quotient V /V’ quotient E/E’

image im(A: V — V')  image im(G: E — E’) (if rank constant)
kernel ker(A: V' — V')  kernel ker(G: E — E’) (if rank constant)

Definition 18.3.1. Let p: £ — X be a vector bundle of dimension k. Then
its top exterior power A¥(p): AF(E) — X is the vector bundle of dimension
1 given by | |,y AF(E,). We topologise this as follows: for every local triv-
falizations ¢: p~1(U) = | |,y Bx — U x R* we define declare that the local
trivialization (A*(p)) ™1 (U) = |,y A¥(Ez) — U x A¥(RF) given by taking
(z,v) — (z,A*(1p,)(v)) is a homeomorphism.

The transition functions of A*(E) are given by the determinant of the transi-
tion functions of £. Thus A*(E) will be a smooth vector bundle if F is a smooth
vector bundle. Using this observation and similar ones for other exterior power
or tensor products we can extend our table as follows:

vector spaces vector bundles

top exterior power A (V)(V)  top exterior power AY™(E)(E)

tensor product V@ V' tensor product £ ® E’
exterior power A"(V) exterior power A"(E)
symmetric power Sym’ (V') symmetric power Sym’ (E)
dual V* dual E*

18.3.2 Riemannian metrics

When thinking about smooth vector bundles it is sometimes helpful to have a
Riemannian metric around:

Definition 18.3.2. A Riemannian metric is a section g of (£ ® E)* such that
on each fiber g,: F, ® F, — R is a positive definite symmetric bilinear form.

Lemma 18.3.3. Every smooth vector bundle p: E — X admits a Riemannian
metric, and this is unique up to homotopy.

Proof. For each local trivialization ¢: p~'(U) — U x R* we can define on U the
pullback along ¥~! of the standard Riemann metric: for v, v’ € E,,

(w_l)*gstd(vy ’U/) = gstd(wgzl(v)a 77/};1(@/))'

Now take a partition of unity subordinate to an open cover of X by open subsets
U of a local trivialization; n;: M — [0, 1] supported in U;. Then we define

g = Zm (1) * gsta-
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This is positive define and symmetric since these properties are preserved by
convex linear combinations. For uniqueness, observe we can linearly interpolate
between any two Riemannian metric. O

The main application of this is:

Lemma 18.3.4. If £/ — E is a subbundle, then there is another subbundle
E" ¢ E such that E' ® E” =~ E. This subbundle E" is isomorphic to E/E’.

Proof. Equip E with a Riemannian metric. Then we can take E” = (E')*, given
by fibres (E'): := (E.)*. To get the second part, we observe that the map of
vector bundles £ — (E’)* given on fibres by orthogonal projection E, — (E'):
with kernel given by E’ and hence induces an isomorphism E/E’ — (E')t. O

18.3.3 Orientations of vector bundles
Recall that a map which picks a single element of each fibre is called a section:

Definition 18.3.5. A section of a smooth vector bundle p: £ — X is a smooth
map s: X — FE such that pos =idy.

Ezample 18.3.6. Every smooth vector bundle has a 0-section sg: X — FE picking
out the 0 in each fibre.

Example 18.3.7. A smooth section of T'M is also known as a smooth vector field.

When we have a section s: X — E of a smooth vector bundle and a smooth
function g: X — R, we can use fiberwise scalar multiplication to produce a new
section g - s.

Definition 18.3.8. An orientation of a smooth vector bundle p: £ — B is an
everywhere non-zero section s of AY™E)E up to the equivalence relation of
scalar multiplication by an everywhere positive smooth function.

Thus, an orientation on E is smooth choice of non-zero elements of each
AM(E) B up to scaling, that is, a smooth choice of orientation of each of vector
spaces F,.

Example 18.3.9. Trivial vector bundles always admit an orientation.

Ezxample 18.3.10. A more interesting example is the Moebius strip, i.e. the
tautological bundle over RP'. We use the following straightforward observation:
every section s of a smooth vector bundle p: £ — B is homotopic to the 0-section.
Indeed, take H: B x [0,1] — E given by

(p,t) —> t- s(p).

Using this we prove that the tautological bundle v over RP! (the one whose total
space is the Moebius strip) does not admit an orientation. Let us identify RP!
with the 0-section. If this bundle did admit an orientation, there would be an
everywhere non-zero section s and we would have I(s, RP!) = 0. But we also
know that Io(s,RP') = I(RP!,RP!), and latter is 1 by exhibiting a particular
section transverse to the O-section. This gives a contradiction.
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A vector bundle E is said to be orientable if it admits an orientation.

Lemma 18.3.11. A vector bundle E is orientable if AY™E)E s isomorphic to
a trivial line bundle. Furthermore, an orientation is a trivialization of AW™(E) g
up to scalar multiplication by a smooth positive function.

Proof. Indeed, a representative s: X — AY™M(E) E of an orientation furnishes an
isomorphism

X xR - AmE g
(b,t) —> t - s(b).

Conversely, an isomorphism ¢: AU™(E) ~ X x R gives an everywhere non-
vanishing section s: X — AY™E) by 22— ¢~ (2, 1). O

If F is orientable, how many orientations does it admit? Given an orientation
represented by s, any other orientation s’ differs by scalar multiplication of s with
an everywhere non-zero smooth function f. If we multiply f with an everywhere
positive smooth function we get the same s’, so the orientations are given by the
set of everywhere non-zero smooth functions up to multiplication by everywhere
positive smooth function. In other words, for each connected component of X
we have to pick a choice of sign. We conclude that:

Lemma 18.3.12. Let mo(X) denote the set of connected components of X, then
if E is orientable the set of orientations is (non-canonically) given by the set of

functions
mo(B) — {£1}.

Given orientations for smooth vector bundles E, E' over X, you can produce
a direct sum orientation on F @ E’. The observation you need is that there is a
natural isomorphism

AGM(E) | @ Adim(B) g7 =, Adim(B)+dim(E') (| oy )

/ / ! /
(01 A=+ A Vdim(B)) @ (V1 A -+ A Vi () = VLA A Vdim(B) A V1A 0 A Ui (7)-

Thus trivializations of AU™(E) F and AM™(E) EY give a trivialization of A4m(E) g
Adim(E") g

Conversely, if E = E' @ E” with E and E’ oriented, the trivializations of F
and E’ give isomorphisms

B xR~ Adim(E’)+dim(E”) (E/ ® E//) ~ Adim(E/)E/ ® Adim(E”)E// ~ Adim(EH)E”,

so an orientation of E”.

18.3.4 Orientations of manifolds

If M is a k-dimensional manifold, then T'M is a k-dimensional smooth vector
bundle M and hence A¥TM is a 1-dimensional smooth vector bundle M, called
the orientation line bundle.



18.3  Orientations 159

Definition 18.3.13. An orientation of M is an orientation of T M.

Remark 18.3.14. An orientation of M is equivalent to a choice of “oriented” atlas
inside its maximal atlas, where all transition functions are required to have total
derivatives with positive determinant.

Let us give two examples of manifolds that are orientable and one which is
not:

Example 18.3.15. If M = S', the tangent bundle is isomorphic to a trivial
bundle and since AY™E)E = E for any 1-dimensional vector bundle so is its top
exterior power. It hence admits exactly two orientations. These correspond to
the clockwise and counterclockwise directions of the circle.

Example 18.3.16. If M = «, we have that AT M = R, so the point admits exactly
two orientations. However, the one represented by 1 € R should obviously be our
preferred choice.

Ezample 18.3.17. We claim that RP? admits no orientation. If it did then so
would TRP2|R p1. This vector bundle is isomorphic to TRP'@® NRP! ~R@~,
with 7 the canonical bundle over RP!. This means its orientation line bundle
is A2(R@®~) = v and we proved above that v does not admit an everywhere
non-vanishing section, i.e. is not trivializable.

There are several constructions which produce new orientations on manifold
form old ones:

Example 18.3.18. Given a manifold M with orientation, we can produce another
orientation by multiplying a representative section s: M — A*TM with —1. This
is called reversing the orientation and we shall occasionally use the notion —M
for this.

Ezample 18.3.19. If M and N are manifolds with orientations, then we get a
direct sum orientation on M x N, as T, ) (M x N) = T,M @ T,y N.

To phrase this in terms of vector bundles, we need a generalization of the
restriction of vector bundles: given any map f: X' — X we can pull back a
vector bundle p: £ — X to X’ by setting f*E = | |,y Ef(,). In the language
of vector bundles we have T'(M x N) = n{TM @ n3TN.

Example 18.3.20. If Z < N is a submanifold and both N and Z are oriented,
then the isomorphism T'N|; ~ NZ @ TZ shows that NZ also comes with an
orientation.

FEzxzample 18.3.21. Suppose we have a smooth map f: M — N with M and N
oriented, and Z < M an oriented submanifold such that fhZ. Then f~(Z) is
a submanifold and its tangent bundle satisfies f*NZ @ Tf~1(Z) = TM|;-1(z).
Since both T'M|s-1(z) and f*NZ comes with orientations, we get an orientation
of Tf~Y(Z2).

18.3.5 Induced orientation on the boundary

If M is a manifold with boundary 0dM, then its boundary M inherits an
orientation, canonically so once we fix a single convention. To do so, it is
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convenient to pick a Riemannian metric on M, that is, on TM. Then the
restriction T'M |sp; inherits a Riemannian metric and thus splits as TOM @
(TOM)*, the latter being a line bundle.

By Lemma 14.2.7, there exist a smooth function x: M — [0,0) such that
x 1(0) = 0M and for each p € M, d,x is non-vanishing on some vector v €
T,M\T,0M. This vector v decomposes as a sum of a vector vy € T,0M and a
vector v € (T,0M)*. Since x is constant on M, v, is zero so vy is non-zero.
Hence the restriction d,x: (T,0M)* — R is non-zero.

We call a vector v € (T,0M)* such that d,x(v) < 0 outward pointing. Such a
vector is unique up to scaling by a positive real number. In particular, there is a
canonical section n of (T'M|ay)* given at p € dM by the unique element n,, of
(T,,0M)* such that d,x(n,) = 1.

Every vector v € V provides a linear map v A —: A¥=1(V) — A¥(V). This
generalizes to a map of vector bundles

A=Y ToM) — AR(TM|s01)

WH—>NANW

of vector bundles, by thinking of A*~1(T'0M) as a linear subspace of A*~1(T'M|55/)
using the inclusion of T0M into T'M |aps.

Lemma 18.3.22. If an orientation of M 1is represented by the section s of
AFT M, then there is a unique orientation of M which is represented by a section
5 of N*=1TOM satisfying n A § = s.

Proof. For each p € 0M, fix a basis e, ..., er—1 of T,0M. By adding n, we get a
basis of T,M. Then 5(p) is by definition ¢(p) - e; A - -+ A eg—; for some ¢ € R, and
s(p) similarly is ¢(p) - np A e1 A -+ A ex—1 for some ¢(p) € R. From the equation

np A (C(p)-e1 A Aep—1) =c(p) np Aer A Aeg_

we read off ¢(p) = ¢(p), so s is uniquely determined by n and s.

Firstly s, up to multiplication by a positive smooth function, is independent
of the choice of representative s: if s changes by multiplying it with positive
smooth function, so does s.

Next, we have to verify the orientation is independent of the choice of Rie-
mannian metric g and smooth function y. Modifying the latter just changes n
by scalar multiplication by a positive smooth function, and hence has the same
effect on 5. If we vary g, then n, gets replaced by n;) = any + Zf;ll a;e; with
a > 0 so

ny A (E(p)-er A Aepo1) =a-ny A(E(P) e Ace A ep1),

and again § just changes by scalar multiplication by a positive smooth function.
O

Definition 18.3.23. If M is oriented, we shall consider dM as oriented by the
orientation produced in the previous lemma. We refer to this as the induced
orientation.
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Ezxample 18.3.24. There is a preferred choice of orientation on [0, 1], namely using
1€ A'T,[0,1] = T,[0,1] = R. Then

00, 1] = {1} — {0},

where, for an oriented manifold N, —NN denotes the same manifold with opposite
orientation.
More generally, if M is oriented without boundary, then

o([0,1] x M) = M x {1} — M x {0}.

However, if we do d(M x [0,1]) we get (—1)3™M) (M x {1} — M x {0}). This is an
unfortunate clash of our conventions for orientations and notation for homotopies.
Example 18.3.25. Generalizing Example 18.3.21 to the case that M has boundary
and fhZ, 0f hZ we get that 0f ~1(Z) = (0f)~'(Z) comes with two orientations:
one as the boundary of an oriented manifold and one as the inverse image of an
oriented manifold. These are not equal but satisfy

of(2) = (=) (af)7N(2).
18.4 Integral intersection theory

Chapter 3 of [GP10] upgrades the mod 2 intersection theory to an integral version.
The main input is the observation that

0[0,1] = {1} — {0}

and the classification of compact 1-dimensional manifolds lead to the following
result:

Proposition 18.4.1. If M is a compact oriented 1-dimensional manifold, then
the number of positively-oriented points in OM is equal to the number of negatively-
oriented points.

So we can define intersection numbers with values in Z instead of Z/2:

Definition 18.4.2. Suppose that Y is a compact oriented manifold without
boundary, M is an oriented manifold and Z < M is an oriented submanifold
such that dim(Y") + dim(Z) = dim(M).

Let fo: Y — M be a smooth map. Then the intersection number I(fo, Z) is
defined as follows: take f; homotopic to fy and transverse to Z, and set

I(fo,2) = 2 orientation of p.
pefi'(2)

One proceeds as before, using Proposition 18.4.1 in place of the fact that
the number of points in the boundary of a compact 1-dimensional manifold is
even, to prove that I(fy, Z) is well-defined and establish its basic properties. You
can then easily define integral versions of the degree of a map and the winding
numbers, and use these to great effect.

FEzample 18.4.3. With these definitions in hand, the mod 2 linking numbers of
Section 77 generalize to integer linking numbers.
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18.5 Problems

Problem 46 (Codimension 1 submanifolds are orientable). Use the Jordan—
Brouwer separation theorem to prove that if M < R¥ is a compact codimension
1 submanifold, then it is orientable.

Problem 47. Use partitions of unity to prove that any vector v € T,M is the
value at x of some smooth vector field X on M.



Chapter 19

Differential forms and integration

Today we define differential forms and one of their raisons-d’etre: integration.
This is Section 4.§4 of [GP10], but you should also take a look at Sections 4.§1-3
if you haven’t done so already.

19.1 Differential forms

We start with a discussion of differential forms, with a focus of forms of top
degree.

19.1.1 The definition of differential forms
The definition of 1-forms

Every smooth manifold has a tangent bundle T'M, which you are already familiar
with, and a cotangent bundle T*M. The fibers T M of the cotangent bundle,
called cotangent spaces, are the linear duals (7),M)* of the tangent spaces. If M
has dimension k, both are smooth vector bundles of dimension k.

Definition 19.1.1. A I-form on M is a smooth section of T*M.

We can produce a 1-form from a smooth function f: M — R. Recall that the
fibres T,,, M of the tangent bundle are derivations of germs (M, m) near m of
smooth functions M — R. In particular, these assign a number to each the germ
f of f. We get an element (df), of (T}, M)* by taking

df: TnM — R

X — X (7).

This produces an element of T,,M for each m, hence a section. To see it is
smooth we use charts:

Example 19.1.2. If ¢: R*¥ 5 U — V < M is a chart around p € M, its derivative
induces an isomorphism of T¢71(p)Rk with T,M. The former, one thinks of

as the R-vector space with basis given by partial derivatives %, ey % (this
is just alternative notation for the standard basis vector eq,...,ex, but now

163
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considered as elements of T¢_1(p)Rk ~ R¥). This in turn gives rise to a dual basis
dxq,...,dzxy of TI;"M . Thus every 1-form « can be written in local coordinates as

k
alx) = Z a;(x)dz;.
i—1

We saw above that any smooth function f: M — R gives rise to a 1-form df. In
terms of the above coordinates this is given by

i{i (P)dflfz'-

k
TyM 3 (df)p = ), =
=1

To see this, observe that (df), by construction evaluates on a%i to %(p).

Ezample 19.1.3. The 1-form —ydz + xdy on R? restricts to a 1-form on S' < R?
which is nowhere-vanishing.

The definition of p-forms

We extend the notion of a 1-form to a p-form as follows:
Definition 19.1.4. A p-form is a smooth section of APT™* M.

Example 19.1.5. As A°T*M = R, a smooth 0-form is a smooth function. As
AYT*M = T*M, this recovers the definition of a smooth 1-form given above.

Since the value at p € M of a smooth section of a smooth vector bundle E lie
in R-vector spaces I, so we can define addition of smooth sections by pointwise
addition. Similarly, we can scale a smooth section with any smooth real-valued
function. The result is either operation is again smooth section, making the set
I'(M, E) into a C*(M;R)-module. Since C*(M;R) contains R as the constant

functions, I'(M, E) is in particular an R-vector space.
Definition 19.1.6. QP (M) is the R-vector space I'(M, APT* M) of p-forms.

Definition 19.1.7. Q*(M) is the graded R-vector space of differential forms on
M, given by putting the p-forms QP(M) in degree p. When the degree plays no
role, we refer to a p-form as a differential form of degree p.

Recalling that M is k-dimensional, we see that APT*M = 0 if p > k, and
hence there are no non-zero differential forms of degree larger than the dimension
of M. In this lecture our main interest is the case p = k. Then A*T*M is
one-dimensional, and we shall refer to the k-forms as top forms.

Ezample 19.1.8. A chart ¢: R¥ 5 U — V < M induces a local trivialization of
TM. In turn, this gives a local trivializations of T*M and hence of APT*M. For
this we see that each p-form w € QP (V') can be written in local coordinates as

w(x) = Zaj(x)d:v[
T
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where for each index set I =1 <4 <... <1, <k, we write
dxy == dxi A+ Adxy,
and ay: U — R is a some smooth function. In particular, every top form can be
written in local coordinates as
w(x) =a(x)dxy A -+ A dayg
for a smooth function a: U — R.

Ezample 19.1.9. Recall that an orientation was an everywhere non-vanishing
section of A*T'M, up to scaling by everywhere positive function. Recall that
a Riemannian metric is a smooth family of non-degenerate bilinear forms on
TM, and always exists. Such a Riemannian metric gives an isomorphism of
TM and T*M by sending a vector v € T,M to the linear functional w — (w,v)
in Ty M. This isomorphism induces an isomorphism between the line bundles
AFTM and AFT*M, and hence an orientation is also the same as an everywhere
non-vanishing top form up to scaling.

19.1.2 The wedge product

We defined a wedge product
A QP(M) @ QI(M) — QPTI(M),

induced by the corresponding wedge product on the exterior powers of the fiber.
This has the following property:
Theorem 19.1.10. The wedge product makes Q*(M) into a graded-commutative
R-algebra. That is, the wedge product has the following properties:

(1) It is unital with unit given by the function that is constant 1.

(2) It is bilinear.

(3) It is associative.

(4) If w has degree p and p has degree q, then w A p has degree p + q and

wAp=(—1PlpAw

Remark 19.1.11. Observe that Q%(M) = C®(M;R), and the wedge product
QM) ® QP(M) — QP(M) is equal to the multiplication of the C®(M;R)-
module structure. Hence we can replace linearity by C*(M;R)-linearity.

We can use the wedge products to produce many top forms, e.g. by wedging
together k 1-forms as below:

Ezample 19.1.12. Given k smooth functions fi,..., fr: R¥ —> R, we can produce
a top form

dfv A - A dfy,
whose value in local coordinates is given by
of;
dfi n--- A d = det J
(@ ) = ot (2
If you don’t see how to do this computation, please ask about it in office hours
or sections.

>d.7j1/\~~/\d$k.
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19.1.3 Pullback of differential forms

One of the advantages of differential forms is that we can pull them back along
any smooth map, unlike vector fields, which can only be pushed forward along a
diffeomorphism:

Theorem 19.1.13. Each smooth map f: M — N induces a map f*: Q*(N) —
O*(M) of graded-commutative R-algebras by applying to p-forms the map AP(d, f)*
in each fiber. Pullback has the following properties:

(1) On functions (that is, 0-forms), f* is given by precomposition, f*g = gof.

(2) (go f)* = f*og* and (id)* = id.

(8) It commutes with wedge products:

fHwnp) = fHw) A f2p).
(4) It commutes with taking derivatives of functions:
frdg =d(f*g).

Ezample 19.1.14. Let’s compute some pullback in local coordinates. Suppose
f:RF 5 U -V < R¥ is a smooth map and recall that da} € Q'(V) is the dual
to the vector field % that is constant equal to e}. Then

7
i

k
ofi
Frde, = df*zl, = dfy N .
i=1
with f; the 7/th component of f.
A similar formula exists for p-forms, but we will focus on the case of top
forms. Suppose a p-form w € QP (V) is given by

w(@') = a(x')day A -+ A dly.

Since pullback commutes with wedge product, its pullback f*w € QP(V') must
given by

(f@)f*(dzy A - A daiy)
(f (@) f*(dah) Ao A f*(dag)

and above we saw how to compute each term f*(dz},) in terms of the partial
derivatives of f.

frw(z)

a
a

Given a submanifold X < M with inclusion denoted i: X — M, we can
restrict a p-form w € QP(M) to X:

Q*(M) 3w — i*w e QP(X).

If X is p-dimensional, this gives a top form on X.

Example 19.1.15. The restriction to S' = R? of the 1-form w = xdz + ydy is
identically 0. This is because that w is dg with g: R? — R given by %(:L’Q +42).
Hence i*w = i*dg = d(i*g) and since i*g constant equal to 1 its derivative
vanishes.
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19.2 Integration of differential forms

Our next goal is the integration of k-forms over k-dimensional manifolds. This
theory of integration has a number of features which may differ from what you
are used to:

(I) It is only defined for oriented manifolds.

(IT) Over a k-dimensional oriented manifold, you can only integrate top
forms (so only k-forms, not functions).

(IIT) We will only define integration of compactly-supported top forms.

19.2.1 Integration on R¥
First suppose that
w=a(x)dxy A+ A dxy,

is a top form on an open subset U < R*. Then, as the notation suggests, we
shall define

J wzf a(x)dxry A -+ Adxy ::f a(x)dry - - - dxy,
U U U

and to guarantee that the integral exist we assume a has compact support in
U. This is not really necessary as some integrals of functions without compact
support do converge, but it is the only case we shall use. For smooth compactly-
supported functions both the Riemann and Lebesgue integral exist and are equal,
so we don’t need to worry about the technical details too much.

Example 19.2.1. The order of the entries of dxq A -+ A dxj is important: if
U = int(D?) and w = dy A dz, then (ignoring the compact support requirement)

szf dy/\dx:—f dr A dy = —m.
U int(D?) int(D?)

How does the integral of a top form transform under a change of coordinates?
That is, suppose we have a diffeomorphism : U’ — U. Then on the one hand,
we have by definition of the integral that

Prw=| Y*al@)yP*dry A AP day
U’ U’
- J (aod)(@)dpy A= A diy
= f /(aoqp)(x') det <Zﬁf) dzy A -+ A dxl,

7

and recognizing the matrix that we are taking the determinant of as the total
derivative of ¢, we get

Prw = J (a o) (a")det(Dyp) day - - - da),. (19.1)
U/ !’

On the other hand, the change-of-variables formula from multivariable calculus
[DK04b, Theorem 6.6.1] says:
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Theorem 19.2.2. With notation as above,
J a(x)dxy -+ - dzy, = f (ao)(x') |det(Dyp)| da - - - dal. (19.2)
U /

Remark 19.2.3. To see that the absolute values signs belong in this formula,
observe that in the integral you use the values of a and the volumes of blocks,
without a sign.

That is, (19.1) and (19.2) could differ by a sign (or even worse if U has many
components) and to avoid this, we have to understand when the sign of det(D,/1))
is positive. This determinant also appears as the multiple of e; A -+ A e one
obtains when applying

AR(Dyp): AT U =R - (ey A -+~ nep) — AFTLU=R- (e A -+ A ep)

toe; A --- A er. We said that ¢ preserves orientation if this multiple is positive.
That is, we conclude the following:

Corollary 19.2.4. If w e QF(U) is a compactly-supported top form and 1): R¥ >
U — U c R* is an orientation-preserving diffeomorphism, then

Yrw = J w.
U U

19.2.2 Integration on manifolds

We shall define the integral of a compactly-supported top form w over an oriented
manifold M in several steps.

Theorem 19.2.5. There is a unique construction of an integral of top forms on
oriented k-dimensional manifolds with the following properties:

(1) If the manifold has an orientation-preserving diffeomorphism to an open
subset of R¥, it is the integral defined above (note that this is independent
of the choice of such diffeomorphism by Corollary 19.2.4).

(2) If w is supported in U < M then §,,w = §,w.
(3) It is linear.
Proof. Desiderata (1) and (2) imply that if w happens to be supported in the

image of an orientation-preserving chart ¢: R¥ > U — V < M (using the
standard orientation on U, inherited from R¥), we must define

fjom o

If M is oriented, we can find an open cover of M by charts ¢ : R¥ > U, —
Vo © M so that all transition functions are orientation-preserving. Now pick
a partition of unity 7, subordinate to the V,, and observe that w =} Nawa
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which is a finite sum because the support of w is compact. Thus desideratum (3)

forces us to define
w = NaWa,
J =X, e

which makes sense because it is a finite sum.

We need to verify that this is independent of the choice of open cover and
partition of unity. Take a second collection of charts ¢j;: RF U Vi M
and a subordinate partition of unity pb. Using the fact that )] 3 p}, =1 and the
sums are finite so may be interchanged, we get

Zal Jva ot = ; fva %(ZBJ plﬁw)
_ /
-33 jw Nl

and by symmetry this is also )] 3 SV[g p’ﬁw. O

Ezample 19.2.6. If —M denotes M with opposite orientation, then S_Mw =
— S w-

Ezample 19.2.7. If w is a p-form for p < k, we can’t integrate it over the
k-dimensional manifold M. However, we can integrate it over an oriented
submanifold X < M of dimension p:

fwzzf *w
X X

with ¢: X — M the inclusion.

Remark 19.2.8. From the construction in Theorem 19.2.5, we see that if you have
a preferred collection of {(U;, Vi, ¢)} of M such that  J; V; = M, you can use only
these charts in your construction of the integral.

Using this definition, Corollary 19.2.4 generalizes to manifolds:

Corollary 19.2.9. If f: M — N 1is an orientation-preserving diffeomorphism
and w e QF(N) is a compactly-supported top form, then

fM fro= JN .

This definition of the integral is useful for proving theorems, but hard to use
in practical computations. In practice one does the following. We start with two
observations: the above construction goes through for Riemann-integrable forms,
not just smooth ones, and for manifolds with boundary (or even corners).

Now suppose one has a finite collection of orientation-preserving embeddings
©;: R¥ o N; — M of submanifolds with boundary (or even corners), which only
intersect at their boundary. Then we can decompose a smooth w as a finite sum
of Riemann-integrable forms };; 1., v,)w with 1, y,) the indicator function of

©i(N;), and evaluate the integral as

fM “o ZZ: Li(m) Loumyw = le fNi Pl
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Ezample 19.2.10. This tells you that to compute the integral of a 2-form over S2,
you decompose S? into the two hemisphere, parametrize these by a disk, and you
take the sum of the values of the integral of the pullback of the 2-form to both
disks. In other words, it’s what you have been doing in multivariable calculus all
along.



Chapter 20

The exterior derivative and Stokes’ theorem

Stokes theorem is a generalization of the formula

1 af
——dz = f(1) — f(0).
Sz = f(1) = f0)
To state it, we first need to generalize the derivative of a function to differential
forms; the exterior derivative. The proof of Stokes’ theorem will then follow from

an easily proven version in charts. This material can be found in Sections 4.§5
and 4.§7 of [GP10].

20.1 The exterior derivative

As for the integral, we shall first define the exterior derivative on open subsets of
R* and then extend it to arbitrary smooth manifolds using charts. Suppose we
are given a p-form on an open subset U c R¥,

w= Zajdxj,
I

the sum ranging over all 1 <y < ... <ip < k and dxy = dwj; A~ Adx;,. Then
the exterior derivative is given by taking the ith partial derivative of each of the
coefficients and wedging with dx;:

odary
dw = ;; a—xidxi Adxg.

Some of the terms in this sum vanish, when ¢ is among the indexing set I.
More generally, signs appears when shuffling dz; into its standard position.

Ezample 20.1.1. If f: R3 > U — R is a smooth function, i.e. a 0-form, then its
exterior derivative is

df = a—fdxl + a—fdmg + a—fdxg.
8m1 8562 51’3

This coincides with the definition we used before. This is related to the gradient
of the function f.

171
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Ezample 20.1.2. If we have a 1-form on U < R3,
a = ai1dri + asdzrs + azdzxs,

then its exterior derivative is

oxr1 0x2 o0x3

+ <6612dm1 + @dmg + 2a2dl'3> A dxg

0 0 0
da = <a1dx1 + ﬂda@ + ald:):g) A dxq

61‘1 6.1‘2 T3
+ %dan + %dm + %dxg A dxg
al’l 8562 6903
. (9a2 (9(11 (3@3 (9&1 8a3 6a2
= (83:1 83:2) dx1 A dxy + (3371 &x3> dri A drg + (5132 61;3) dro A dxs.

This is related to the curl of the vector field with components (a1, as, as).

Ezample 20.1.3. If we have a 2-form on U < R3,
w = a1dxa A drg — asdxy A drs + azdxy A dxo,

then its exterior derivative is

dw — <6a1 I 6a2 I 6&3

— 4+ —)d d dxs.
63:1 61’2 61’3) TLA A2 A G

This is related to the divergence of the vector field with components (ai, az, as).

The exterior derivative has the following properties, and the following also
serves as a definition:

Theorem 20.1.4. The exterior derivative is the unique operation Q*(U) —
Q*TY(U) with the following properties:

(i) For smooth functions f € Q°(U), df = Zi?:l g—idaci.

(it) It is linear, d(w + v) = dw + dv.

(iii) It is a graded derivation for the wedge product, for a p-form w and a q-form
v, dwAv) =dw) Av+ (—1)Pw A d(v).

(iv) It is a differential, d(dw) = 0.

Proof. We first verify that the exterior derivative satisfies the above properties.
Property (i) is true by definition, and property (ii) follows from the fact that
partial derivatives are linear. Properties (iii) and (iv) are slightly harder; the
former is essentially the product rule and the latter the fact that partial derivatives
comimute.

By linearity of d and the fact that A distributes over finite sums, it suffices to
prove (iii) in the case that w = ardry and v = bydx ;. Then wAv = ajbydrr Adzy
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and we have that

dr; Adxp Adxy

3 001y dus ndry A dry + a3 L0 duy A dzy A d
L 5d$l Jaxr; N axry N\ ax gy aladxi Ty N axry N Axj

Oa 1)P oby
(_ 2dz; 5 dzi A dxl) A (bydxy) + (—1)Pardx A (Z A —Ldx; A de>
=d(w + (=1)Pw A d(v).

Similarly, it suffices to prove (iv) in the case that w = a;dz;. Since d(dx;) = 0
(we are only taking partial derivatives of constant functions), we can use (iii)
twice to write

d(d(aydxy)) = d(day) A dxy,
and hence it suffices to show that d(dar) = 0. But we have

kE k 2
0“a
d(dar) = Z Z 8:1:] dx; A dxj = Z ! (dx; A dxj + dxj A dx;) = 0.

I<ij<k aSUZaCC]

Here we have first used that partial derivatives of smooth functions commute,
and that dz; A dr; = 0 and dx; A dvj + dx; A dv; = dv; A dvj — dz; A dzj = 0.

The next goal is to prove uniqueness. Suppose that D: Q*(U) — Q**1(U)
satisfies the same property, then we must show that d = D. But if we try to
prove d and D coincide on a general p-form

w = Zafdmj,
I

then by (ii) it suffices to prove they coincide on aydzr. By (iii) it then suffices
to prove they coincide on a; and each dz;. By (i), they indeed coincide on a;.
For dx;, observe that dx; = d(z;) which equals D(xz;) by (i), so that by (iv)
d(dz;) = 0 and D(dx;) = D(D(z;)) = 0. O

The exterior derivative commutes with pullback:

Proposition 20.1.5. If g: U' — U is a smooth map between open subsets of
Euclidean spaces, then g*d = dg*.

When g is a diffeomorphism, there is an elegant proof by observing that
(g7 1)*dg* has the same properties as d, so by uniqueness of the exterior derivative
has to be equal to it.

Proof. Recall that ¢g* has the following properties: (i) g*df = d(f o g), (i’) it is
linear, (iii’) it commutes with wedge product. These formal properties imply the
proposition as follows: to prove that ¢g*d and dg* coincide on a general p-form

w = Ea[dl'[,
I
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by (ii) and (ii’) it suffices to prove they coincide on each aydz;. Then by (iii) and
(iii’) it suffices to prove they coincide on a; and each dxj. Property (i’) says they
coincide on ay. For dz;, we observe that g*d(dz;) = g*0 = 0 and to prove that the
other side also vanishes we write g*dx; = ¢g*d(x;) = dg so dg*dz; = d>g =0. O

Since d in particular commutes with pullback along a diffeomorphism, we can
extend to smooth manifolds of dimension k using charts. For w € QP(M), dw is
defined near a point in M by picking a chart ¢: R¥ 5 U — V < M and taking
(¢71)*dg*w. The previously established properties all generalize to manifolds,
as they can be verified in a chart. This theorem serves as the definition of the
exterior derivative.

Theorem 20.1.6. There is an operation d: Q*(—) — Q**1(=) on differential
forms on manifolds uniquely determined by the following properties:

(i) On smooth functions, i.e. 0-forms, it is the ordinary derivative.
(ii) It is linear.
(iii) It is a derivation for the wedge product.
(iv) It is a differential, d*> = 0.

(v) It commutes with pullbacks along smooth maps.

We also add one useful observation from the point of view of integration: if w
is compactly-supported so is dw. Letting 2% (—) denote the compactly-supported
forms, we can restrict d to an operation Qf(—) — QT!(—). Note that the
pullback of a compactly-supported form is not in general compactly-supported;
this requires the map to the proper as supp(g*w) = g~ !(supp(w)) and properness
is exactly the condition that the inverse image of a compact subset is compact.

20.2 Stokes’ theorem

Recall that last lecture we defined the integral of a compactly-supported top
form over an oriented manifold, using partitions of unity.

Theorem 20.2.1 (Stokes). Let w e Q~1(M) be a compactly-supported (k —1)-
form on an oriented smooth manifold M of dimension k with boundary oM,

then
J dw = J w.
M oM

In this theorem, we need dM to be oriented as well and to get this equation
to hold, we use our convention for the induced orientation on the boundary
(“outward-pointing first”).

Ezample 20.2.2. Let M = [0, 1] with its standard orientation. Then 0[0,1] =
{0,1}, where 1 has positive orientation and 0 has negative orientation. In this
case Stokes concerns O-forms, i.e. functions, and says
1 af
T | ar=| 1-10)-s10).
(0,1] a0,1]

Oax

a formula that should be quite familiar.
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In fact, our proof will use the above result as input, a basic result in
single-variable calculus. We also use Fubini’s theorem on successive integra-
tion, e.g. [DK04b, Theorem 6.4.5].

Proof. Pick an open cover of M by the codomains V,, of a collection of charts
bo: [0,00) x RF1 5 U, — V,, = M. Also pick a subordinate partition of unity
Na: M — [0,1]. Then w =} now, and this sum is finite because supp(w) is
compact. Since both § 7 and d are linear, we may thus assume that w is supported
in V. Then so is dw and we have

J dw :J ok dw and f w= drw.
M Ua oM Ua

Since ¢} commutes with d, we might as well replace ¢*w by w to simplify
notation and extend this by 0 to a compactly-supported (k — 1)-form on [0, c0) x
R*=1. We have thus reduced our task to proving Stokes theorem in the special
case M = [0,00) x RF-1,

Since both S[O’w)ka,l dw and S{o}kafl w are linear in w, it suffices to prove
this for w = adzy with I =1 < ... <i<...<k. Then dw = (—1)" 1 2%dz; A

oz,
-+« A dxg. There are two cases: (i) i =1, (ii) i > 1.

Let’s start with the latter. Then w restricts to 0 on dM (as it contains a dx;) so
we should get 0. Pick N sufficiently large so that supp(a;) < [0, N] x [N, NJ*~1,
then

f dw = (—l)i_I%dfcl A Adxg
[0,00) x RF—1 [0,N]x [~ N, N]k—1 z;
= J J a—adfvi dry
[0,N]x [N, NT+2 \ J[=n,n] Oi
= (a(z1,...,N,...,zx) —a(xy,...,—N,...,x)) dxs
[0,N] x [~ N,NT+—2

0= f w.
{0} xRE—1

Here we have used Fubini’s theorem, the fundamental theorem of analysis and
that a is supported in [0, N] x [N, N]¥~! so that both a(zy,...,N,...,z;) and
a(xi,...,—N,...,x1) are 0.

The former case is similar, but has a different outcome. Pick N as before,
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then

J dw:J 7dx1/\.../\dajk
[0,00) xRF—1 [0,N]x[—N,N]k—1 ox1

Il
T
=
=
=
v
u&%
ol
S~—
|
2
=
=
)
8
=
=
IS
8
~

= w.

Here we have used the same tools as before, as well as a(N,xzo,...,x;) = 0.
Our convention on the orientation of the boundary was chosen exactly so that
the signs cancel in the last step: in the “outward-pointing first convention”, a
basis (vg,...,vx) of Ti({0} x R¥~1) is positively oriented if (—e1,ve,...,vs) is,
that is (—e1) A va A -+ A vk equals e; A -+ - A ex up to scaling by a positive real
number. Hence the induced orientation on {0} x R¥~! as a boundary of the upper
half-plane is opposite to the usual orientation. O

We now give a number of applications.

20.2.1 Integrating pullbacks

Suppose that W is a oriented smooth manifold of dimension k with boundary oW
and f: W — M is a smooth map. Then if a compactly-supported (k — 1)-form
w satisfies dw = 0, we get that

f df*w = J f*(dw) =0,
w w
but applying Stokes’ formula we also get

fw A= oW frw

In particular, if W comes divided into a disjoint union i, W 1 0ot W we
may artificially reverse the orientation on 0j, W (so it is “inward pointing first”)

and get the formula
J frw — f ffw=0.
Oout W OinW

We will use the following consequence in the next lecture:

Corollary 20.2.3. If fy and f1 are homotopic smooth maps X — M with X of
compact dimension k and w € Q¥ (M) satisfies dw = 0, then

fre-f

for all compactly-supported k-forms w.
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Proof. Suppose W = X x [0,1], 0mW = X x {0}, doutW = X x {1}. Then we can
think of f: X x [0,1] — M as a homotopy from fo := f|x o} to f1 = flxx{1}-
The orientation on X x {0} and X x {1} are now equal (instead of opposite, if
we had taken the usual convention) and we get the equation

JX fl*w - LoutW f*w - Li,,W f*w - JX f;w

Thus the integral of the pullback along f of a closed form only depend on the
homotopy class of f. O

20.3 Classical integral theorems

We now explain how the multivariable calculus theorems you have learned are
special cases of Stokes’ theorem. This is significantly harder than one might
expect, because the classical version is harder to state precisely. In particular,
we have to make precise the notions of “line element,” “surface element,” and
“volume element.”

That is, we need to explain how to integrate continuous functions f: X — R
over a smooth submanifold X of Euclidean space. We will do following [DK04b,
Chapter 7]. As for integrals of differential forms, we can not just integrate in
charts due to the Jacobian term in the change-of-variables formula. To correct
for this, we need a density:

Definition 20.3.1. A density for a manifold M is an assignment to each chart
(U, Vi, #a) of M a continuous function p,: U, — R such that

pa(T) = pg(Pap(w))| det Dythagl.

We then define an integral of a continuous function f: M — R analogously
to the integral of differential forms. We pick a partition of unity n,: M — R
with respect of the codomains V,, of charts, and set

fM fap:=3; f (Gl ()@ -

Definition 20.3.1 gives, by the same argument as in proof of that theorem, that
this is well-defined (i.e. independent of 7,,).

If X < R” is a r-dimensional smooth submanifold, then there is a canonical
choice of density, the Fuclidean density: in this case we can make sense of the
total derivative of D¢, as a (k x r)-matrix, and set

p(2) == /det((Dyda)(Dyda))-

See [DK04b, Theorem 7.3.1] for a proof that this is a density.

The integrals of functions using “line elements,” “surface elements,” or “volume
elements” are exactly those with respect to the Euclidean density. We will now
identify integrals of differential forms as integrals of certain functions with respect
to the Euclidean density.
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Lemma 20.3.2. Suppose that M is a compact codimension 0 submanifold of
R* with boundary OM, and w € Q*(M). Define a smooth function f: M — R by
v(z) = f(z)dxy A -+ A dxg. We have

J W= f fdpeUCl.
M M

Lemma 20.3.3. Suppose that M is a compact codimension 0 submanifold of R*
with boundary OM, and w e Q*~1(M). Define a smooth vector field

ar(x)

w(x) = 3% (=) giday A - A dzi A -+ A dag. We have

f W= J ‘_/’ . ﬁdpeUd
oM oM

where 1 is the outward pointing unit normal vector field to OM.

Ezample 20.3.4 (Divergence theorem). Let w = adxo Adrs—bdxy Adrs+cdry Adxs
be a 2-form on R3 and M < R? a codimension 0 submanifold with boundary
OM with induced orientation from the standard orientation on R3. Then Stokes’

theorem says that
J dw = J w.
M oM

Using the above two lemma’s, we get

f div(V)dp™ = | V- idpel,
M oM

the classical statement of Gauss’ divergence theorem [DK04b, Theorem 7.8.5].
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De Rham cohomology

Today we introduce de Rham cohomology, a construction which we will study
for the next couple of lectures and is one of the basic constructions of algebraic
topology. It appears in Section 4.§6 of [GP10], but I also recommend you take a
look at the beginning of [BT82].

21.1 De Rham cohomology

21.1.1 Motivation from integration

Recall that Stokes’ theorem says that for oriented k-dimensional differentiable
manifolds M and compactly-supported (k — 1)-forms w on M, we have

J dwzf w.
M oM

Thus if M has no boundary, SM dw = 0 for any w. This means that when
computing SM w, its values only depend on w up to addition by dv. That
is, the possible values that can be obtained when integrating a k-form over a
k-dimensional compact oriented manifold M depend only on QF(M)/dQF—1(M).

One could ask a similar question about integrals over p-dimensional oriented
manifolds mapping to M: if X is such a manifold and f: X — M is a smooth
map, we are interested in the integral SX f*w. The argument above tells you that
these integrals only depend on QP(M)/dQ*~!(M): we take p-forms modulo those
that are exterior derivatives of (p — 1)-forms. A p-form of the latter type is said
to be ezact.

It seems reasonable to restrict to those p-forms w with the property if SX frw
only depends on the homotopy class of X. As discussed at the end of the previous
lecture, from Stokes’ theorem applied to SXX[O,l] H*dw with H: X x [0,1] > M
a homotopy from fy to fi, it follows that SX fiw = SX ffw if dw = 0, as then
0=, Hdw = §y fifw—{y fiw. If dw = 0 then w is said to be closed. Observe
that when w is a k-form then dw = 0 for degree reasons, so any top form is closed.

179
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21.1.2 De Rham cohomology

The previous discussion tells us that the following groups can be interpreted
as encoding “all possible values of homotopy-invariant integrals over manifolds
mapping to M.” However, you should not take this to be the only motivation.
As you will soon see, de Rham cohomology is a powerful invariant of smooth
manifolds and smooth maps between them.

Definition 21.1.1. Let M be a manifold. The de Rham cohomology groups
H*(M) are given by

- QP _5 Op+1 .
HP(M) = ker(d: QP(M) — QPTH(M))  closed p-forms

im(d: QP~1(M) — Q(M))  exact p-forms '

The elements of H*(M) are called cohomology classes and, as indicated, are
represented by closed forms up to exact forms; any two forms which differ by an
exact form are said to be cohomologous.

21.1.3 First properties of de Rham cohomology

Let us take a closer look at de Rham cohomology. Since QP (M) are R-vector
spaces, so are the cohomology groups HP(M). We will soon see these R-vector
spaces contain a lot of interesting topological information about M. Before going
into the properties that allow us to extract this information, we do a few basic
examples to get some initial intuition for de Rham cohomology:

Ezample 21.1.2 (Vanishing above dimension). If M has dimension k, there are
no p-forms for p > k and hence HP(M) vanishes for p > k.

Ezample 21.1.3 (H?). For p = 0, our definition gives that HO(M) = {f: M —
R | df = 0}. The condition df = 0 means that f is locally constant. Thus these
functions have to be constant on each component of M, and letting mo(M ) denote
the set of components of M we get that

HO(M) = R™OD)

the vector space of R-valued functions on the set my(M).

Example 21.1.4 (Disjoint unions). Suppose that M is a disjoint union of M;.
Then a p-form w on M is a just a collection of p-forms w; on each of the M;.
Then w is closed if and only if each w; is, and exact if and only if each w; is. We
conclude that
H*(M) = [ [ H*(M;).
(]

However, in practice M has finitely many components and the direct product
is finite. In this case the direct product may be replaced by the more familiar
direct sum.

Recall that we have defined a wedge product on differential forms, and
this has the property that if w € QP(M) and v € QI(M) then d(w A v) =
dw) Av+ (—1)Pw A d(v).
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Lemma 21.1.5. The wedge product induces a graded-commutative product on
H*(M). That is, H*(M) is a graded-commutative R-algebra.

Proof. Let w e QP(M) and v € Q%(M) represent cohomology classes. Then in
particular dw = 0 and dv = 0, and we see that

dlwArv)=dw) Av+ (—1)Pw A d(r) =040 =0.

Thus w A v represents a cohomology class. This is independent of the choice of
representatives, because if w — w’ = da, then

wAv—w Av=da) av=danrv)

and similarly in the second entry.
The properties of this induced product—unitality, associativity, and graded-
commutativity—follow from those of the wedge product. O

Ezample 21.1.6. The unit of the wedge product is the element of H°(M) represent
by the constant function M — R with value 1.

21.1.4 Cohomology as a functor

Recall that we can pull back differential forms along any smooth map: given
g: M — N we get g*: Q*(N) — Q*(M).

Lemma 21.1.7. The homomorphism g* induces a homomorphism of graded-
commutative R-algebras g*: H*(N) — H*(M) which satisfies (f o g)* = g* o f*
and (id)* = id.

Proof. We use that d commutes with g*, so ¢* must preserve the kernel and
image of d. Let’s check this is in detail for kernels: if w € QP(N) satisfies dw = 0,
then g*w € QP(M) satisfies

d(g*w) = g*(dw) = g*0 = 0.

The properties of pullback on cohomology follow from the corresponding properties
of pullback on forms. ]

It is appropriate at this point to mention the foundational framework used in
algebraic topology: category theory [Riel6]. A category C consists of a collection
of object ob(C) and a collection of morphisms mor(C). Each of these morphisms
has a source and a target, and two morphisms f and g can be composed to go f if
the target of the f is the source of g. This composition operations is associative,
and every object has an identity morphism which serves as a two-sided unit for
composition.

The standard way to picture a category is a collection of dots (objects) and
arrows between them (morphisms). One instance of such graphic representations
are the commutative diagrams we have been using (in the 40s people wrote down
the formulas, and it was difficult to parse statements).
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Example 21.1.8. The category of Top of topological spaces has objects given by
topological spaces, and morphisms given by continuous maps.

Example 21.1.9. The category Mfd of differentiable manifolds has objects given
by differentiable manifolds, and morphisms given by smooth maps.

Example 21.1.10. The category GrAlgg of graded-commutative R-algebras has
objects given by graded R-vector spaces with a graded-commutative product,
and morphisms given by grading-preserving homomorphisms.

An important application of categories is to express naturality of various con-
structions. For example, that they are compatible with composition is expressed
through the notion of a functor. A functor F': C — D is a pair of assignments
ob(F): ob(C) — ob(D) and mor(F'): mor(C) — mor(D), compatible with source,
target, identity and composition. The former two mean that if f is a morphism
from C to C’, then F(f) is a morphism from F(C) — F(C"), and the latter two
mean that F'(id) = id and F(fog) = F(f) o F(g).

Ezxample 21.1.11. There is a forgetful functor U: Mfd — Top sending each
differentiable manifold to its underlying topological spaces, and regarding each
smooth map as a continuous map.

It is not the case that cohomology is a functor H*: Mfd — GrAlgg; it would
need to satisfy (fog)« = fx 0 g« but instead we have (fog)s = g« o fi. This is no
problem, as we can formally change the direction of morphisms in Mfd by taking
the opposite category: Mfd°P has the same objects and morphisms, but source
and target are reversed. Then Lemma 21.1.7 says that de Rham cohomology is a
functor

H*: Mfd°? — GrAlgg.

As an application of this, we make the following observation, which we will
strengthen in the next lecture:

Lemma 21.1.12. If g: M — N is a diffeomorphism then g*: H*(N) — H*(M)

is an isomorphism.

Proof. The inverse g~ ': N — M induces a homomorphism (¢g~!)*: H*(M) —
H*(N). The fact that cohomology is a functor tells us that this satisfies g* o
(g7)* = (g1 o g)* = (id)* = id and similarly for the other composition. O

21.2 First examples

Let us start with a first few computations in de Rham cohomology, before we
develop the techniques that allow us to systematically compute the cohomology
of many smooth manifolds.

21.2.1 The real line

We already know that H(R) =~ R by Example 21.1.3 and that H*(R) = 0 for
* > 1 by Example 21.1.2, so the only remaining unknown cohomology group is
H'(R). Any element in it is represented by w € Q!(R) (satisfying dw = 0, but
this is true for any such w for degree reasons).
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Lemma 21.2.1. H(R) = 0.

Proof. We need to find an f such that w = df. Let us write w = a(x)dz with
a: R — R a smooth function, then

ffR— R

T — f a(y)dy

satisfies df (z) = g—ida: = a(z)dz. That is, every closed 1-form is exact. O

In the next lecture we will prove the Poincaré lemma, which says that for all
n=0
R if « =0,
0 otherwise.

H*(R") = {

21.2.2 The circle

For the circle S, we are in a somewhat similar situation as for the real line:
HY(SY) =R and H*(S') = 0 for * > 1, so only H!(S') remains unknown.

Lemma 21.2.2. H!(S!) =R.

First proof. Let us write w = a(f)df with a: S* — R a smooth function, then
the argument for the real line compels us to look at the function

f:10,27r] — R
6

0 —> a(e®)dg.

|, ateya0

This gives a smooth function on S! if and only if f(0) = f(27).

This gives an obstruction to implementing to proving that H!(S!) vanishes
along the lines of the proof for R. But instead of giving up, we should take
advantage of this and use the obstruction to define an invariant. That is, we can
attempt to construct a linear functional on H!(R) by taking

w: H'(S') — R

27
w = a(f)dd — JO a(e®)dg.

To check this is well-defined, we must verify it is independent of the representative
w of the cohomology class [w] € H*(R). As w is linear in w, so it suffices to show
that w(w) = 0 if w = df for a smooth function f: S* — R. This is true because
the integral is equal to f(2m) — f(0) = 0 by the fundamental theorem of calculus.

If w(w) = 0 then f(0) = f(27), and gives a smooth function S' — R which
we can use to show that w = df like we did for R. Hence the result follows once
we show that w is surjective. Since w is linear it suffices to prove that it takes
a single non-zero value, and when we evaluate on the 1-form w = df we get
w(dl) = 2. O
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Let’s give an alternative proof, which we will later generalize to the Mayer—
Vietoris exact sequence for cohomology.

Proof. Let U,V < S' be an open cover by two open intervals and consider the
following diagram

0 —— QO(S) —2 Q)@ QO(V) L QU AV) —— 0

J# o

0 —— QNSYH —1s QUU) @ QL(V) 25 QLU AV) —— 0
The left horizontal maps are induced by restrictions,

ig: QU(SYH — QUU) @ QO (V)
fr— (flu, fIv),

and similarly for 4;. The right horizontal maps are the difference of the restrictions,

Go: QU @Q(V) — QLU V)
(f,9) — flu~v —glunav,

and similarly for j.

We start with a I1-form w € Q!(S') representing a cohomology class [w],
and consider i(w) = (w|y,wly) € QYU) ® QL(V). Since w was closed, so are
both these restrictions. Since H'(U) and H'(V) vanish because both U and
V are diffeomorphic to R, both are exact. This gives us functions (Ay, A\y) €
QU)® (V).

Let us investigate to what extent

JoAs Av) = Avlvav — Avivav € QXU N V)

depends on the choices we made. We made two:
(a) the functions (Ay, Ay),

(b) a representative w of [w].

For (a), the functions Ay and Ay are unique up to the addition of constant
functions, i.e. closed 0-forms. Adding a constant to one of these changes jo (A, Ay)
by a constant.

For (b), a different representative is given by w + df with f € Q°(S'), and
picking this instead leads to replacing Ay by Ay + f|y and Ay by Ay + f|V, up
to constants. When we take jo(Ay + flu, Av + f|v) the terms f|y~y cancel out
and we get jo(Ay, Ay)

The conclusion is that the smooth function jo(Ay, Av) € QO(U n V) is inde-
pendent of the choice of representative w, and depends on Ay and Ay only up
to a constant. Since both w|y and wl|y are equal to w|y~y on U NV and the
exterior derivative is linear, we see that

d(j(Av, A\v)) = d(M\vlvav — Avivav) = wluav —w|u~y =0,



21.2  First examples 185

ie. j(Ay, Ay) is closed, or equivalently a locally constant function on U n V.
Under the identification as Examples 21.1.4 and 21.1.3, it represents an element

(ao,al) € HO(U N V) = RQ.

That is well-defined up the addition of a constant, means that we may replace
(agp,a1) by (ag + ¢, a1 + ¢). The elements of the form (c, ) are exactly those in
the image of HO(U) ® H°(V) under jo.

From this description, it follows that a; — ag € R is independent of the choice
of A\y and A\y; an invariant of the original cohomology class [w]. Thus we have
constructed a map

HY(UNV)

w: H(S5T) — im(j: H(U) @ HO(V) —» HO(U A V))

R.

lle

Suppose now that wW(w) = 0. Then ayp = a; and this means that though the
functions Ay and Ay needs not be equal on U NV, the difference Ay |y~v —Av|v~v
is constant. We can thus replace Ay by Ay — ag to get that A\y|v~v = Av]vav.
Hence we can glue them to obtain a function A on S!, which by construction
satisfies d\ = w.

This shows that H'(S!) is isomorphic to the image of w. To see that it is
surjective, as before we can evaluate on df. O

Remark 21.2.3. The construction of w depends on a choice of isomorphism of the
codomain with R. You can pick this such that w = w.

The previous proof amounts to the following: the maps 7 and j induce maps
on cohomology and using partitions of unity one can produce a diagonal map to
get the following diagram:

[» HY(SY) —— HY(U)® HY(V) —— HY (U V)

H(SY) —— HO(U)® HO(V) —— H(U A V) j

This diagram has the special property that it is exzact: the kernel of each map is
the image of the previous one. Filling in what we already know, we get

? HY(SYY —— HY (U)o HY(V)=0 —— H{UNV)=0

HY(SY =R —— HOU) @ H(V) =R - HOU A V) = R? J

with starred map given by (a,b) — (a — b,a — b). This proves that H!(S1), the
kernel of the map to H*(U)® H' (V) = 0, is the image of the map H°(U n V) =
R? — H'(S') whose kernel is exactly the 1-dimensional subspace spanned by
e1 + eg. Hence H'(S1) =~ R.
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What the above proof does, is construct explicitly the identification

HY(SY) = ker(HY(SY) - HY(U)® HY(V))

wl;
HY(UANV)

m(j: HO(U)@® HY(V) - HO(U nV)) R

le

21.3 Problems

Problem 48. Verify that w(df) # 0.

Problem 49 (Compactly-supported cohomology). Recall that Q2(M) denotes
the compactly-supported p-forms. Since the exterior derivative d preserves the
condition that forms have compact support, there is also a compactly-supported
variation of de Rham cohomology which is occasionally useful:

Definition 21.3.1. The compactly-supported de Rham cohomology groups H} (M)
are given by
 ker(d: QB(M) — QM)

HeM) = or T D) = Q2 ()

(a) Compute HX(R).
(b) Compute H*(S'). (Hint: this should require no work.)

Problem 50 (Extension by zero). Prove that if i: U — M is the inclusion of an
open subset, the extension of forms by zero induces a map

HE(U) — HZ (M)
on compactly-supported cohomology.

Problem 51 (An infinitely-punctured plane). Prove that H'(C\Z) is not finite-
dimensional.

Problem 52 (Transfer maps). Let M be a smooth manifold with a smooth free
action of a finite group G, with agy: M — M denoting the action of the elements
g € G. Recall that M /G can be given the structure of a smooth manifold such
that quotient map ¢: M — M /G is a local diffeomorphism.

(a) Let Q*(M)% < Q*(M) be the subspace given by those differential forms
that satisfy (ag)*w = w for all g € G; the invariant forms. Prove that
Q*(M)% is a cochain complex with differential given by exterior derivative,
and prove that it is isomorphic as a cochain complex to Q*(M/G).

(b) Show that the map

1
Q*(M) QW H——> E Z(ag)*w
Gl =2

gives a map of cochain complexes Q*(M) — Q*(M)%. The induced map
on cohomology is called the transfer map.
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(c) What is the composition Q*(M)% — Q*(M) — Q*(M)%? Show that the
pullback map ¢*: H*(M/G) — H*(M) is injective.

(d) Let S3/I* be the Poincare homology sphere. Prove that H*(S3/I*) ~
H*(S3).

(e) Explain how to obtain H*(RP?3) from the above results without doing
any additional computation.
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The Poincaré lemma

Last lecture we introduced de Rham cohomology, and today we prove the Poincaré
lemma. This is proven in [GP10, Section 4.§6] and [BT82, Section 4].

22.1 The Poincaré lemma

The Poincaré lemma computes the cohomology of R™. It is the backbone of all
further computations of cohomology groups.
22.1.1 The Poincaré lemma on R"
In the previous chapter we defined a functor
H*(—): Mfd°® — GrAlgg,

sending a manifold M to the graded-commutative R-algebra H*(M) of de Rham
cohomology groups

~ ker(d: QP(M) — QP*1(M))  closed p-forms

im(d: QP~1(M) - QP(M))  exact p-forms
It sends a smooth map f: M — N to the homomorphism f*: H*(N) — H*(M)
induced by pullback of differential forms.

We also computed H*(S') and H*(R), obtaining the following computation
in the latter case

HP(M) :

R if*=0
H*(R) = )
0 otherwise.
Our immediate goal is to extend this computation to R", by induction over
n. A more precise statement uses the projection
TR xR — R™!
(x, t) — T,
as well as the map s, for tp € R,
st R S R R

x —> (x,tp).

188
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These satisfy m o 54, = idgn—1. It is of course not true that s;, o 7 is the identity;
it is given by (x,t) — (x,tp). Nonetheless, on cohomology we have:

Theorem 22.1.1 (Poincaré lemma). For each tg € R, the map sf, : H*(R"™! x
R) — H*(R"Y) is an isomorphism with inverse T*.

By induction over n, starting with the case n = 0 where R® = * (so in
particular, we reprove the case n = 1), one can use this to prove:

Corollary 22.1.2. We have that

R if==0,
0 otherwise.

H*(R") = {

Proof of Theorem 22.1.1. Let us shorten s, to s for the sake of brevity. Above
we observed that o s = id so that we get s* o m* = id* = id on H*(R"!). Tt is
of course not true that s o m = id. However, we will still prove that the induced
maps on de Rham cohomology satisfy 7% o s* = id on H*(R"~! x R).

To do so, we will prove that there is a map K: Q*(R"! x R) — Q* 1(R"~! x
R) satisfying

id — 7% o s* = (=1)P 1 (dK — Kd). (22.1)

This tells us that on closed forms in Q*(R"~! x R), id and 7* o s* differ by an
exact form, and hence give the same cohomology class.

To define K, we use coordinates (x1,...,2,_1,t) on R"~! x R observe that
every p-form in R x R®~! can be uniquely written as a linear combination of
p-forms of the following forms:

(i) ar(z,t)dzr with |I| = p,
(ii) aj(z,t)dzy A dt and |J| =p— 1.

The map K will be linear, so it is uniquely determined by demanding it satisfies

t

K(aj(xz,t)dxy) =0 and K(aj(z,t)deyadt)(z,t) = <£ aJ(ac,s)ds> dxy.

0

We verify that (—1)P~1(dK — Kd) = id — n* o s*. First we do so for forms of
type (i). On such forms we have that 7* o s*(ar(x,t)dxr) = as(x,to)dzy, so that

(id — 7* 0 s¥)(as(z, t)dxy) = (a(z,t) — a(x, to))dx;.
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On the other hand, we have at (z,t)

(—1)P~Y(dK — Kd)(as(z,t)dz;

)
dar(x,t) 6@1(96 t)
= (—1)PK | LentY G G
(-1) ( o dt/\dac1+; o dr; A dxg
(—1)PK <(9a1(x, )dt A d:l:[>
ot
= <6al(x,t)d$ /\dt>
ot

= (ar(z,t) —ar(z,tg))dz;.

We conclude that (22.1) holds on forms of type (i).
For forms of type (ii), we observe that 7* o s*(as(z,t)dx s A dt) = 0 because
s*dt = 0, so that

(id = 7* 0 s*)(ay(z, t)dxy A dt) = ay(z,t)dxy A dt.

On the other hand, for (—1)P"1(dK — Kd)(a (z,t)dz; A dt) we do two separate
computations

Kd(aj(z,t)dzy A dt) = K <8a(§t)dt Adzg A dt+ 2 M

dr; Andxy A dt)

n—1
= Z K (Wda:i Adx g /\dt)

i=1 0
n—1 t

= f st) dx; A dxg.
i=1 \Jio 0z

K (a (2, )dzy A di) = d L " )ds> dxj>

0
6S§0 ay(s,x)ds
B ot

=ay(z,t)dt A dzy+ Z <J st) dx; A dzy
to

i=1 0

= (=P tay(z,t)dey A dt + Kd(ay(z,t)dey A dt).

8St0 aj(x,s)ds

oz dr; A dxy

thd:vJ—i-Z

Hence (—1)P~YdK — Kd)(aj(x,t)dx; A dt) = aj(x,t)dzy A dt, so (22.1) also
holds on forms of type (ii). O

Remark 22.1.3. A map such as K is called a cochain homotopy, and (22.1) says
that id and 7* o s* are cochain homotopic.
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22.1.2 The Poincaré lemma on manifolds

The proof of Theorem 22.1.1 goes through without any modification when we
replace R"~! by any open subset U < R”~!. We can do even better:

Corollary 22.1.4. For eachtg € R and smooth manifold M, the map sf : H*(M x
R) — H*(M) is an isomorphism with inverse 7*.

Proof. We can describe the types (i) and (ii) in a coordinate-invariant manner:
(i) are those of the form f(z,t)m*w, (ii) are those of the form f(z,t)7*(w) A dt.
Since the cotangent bundle of M x R is isomorphic to 7*(T*M) @ ¢, every form
on M x R can be written uniquely as a linear combination of forms of type (i)
and (ii). Now the proof given above goes through with the modification that
R"~! is replaced by M. O

Ezxample 22.1.5. The previous corollary proves that open annulus A has the same
cohomology as S', as it is diffeomorphic to S x R.

22.2 Homotopy invariance

22.2.1 Homotopy invariance for de Rham cohomology

Corollary 22.1.4 says that 7* has as its inverse sf for any to. Since inverses
are unique, this means that the maps sy : H*(M x R) — H*(M) are all equal.
Recall that fy, f1: M — N are homotopic if there is a map H: M x R — N such
that H|yrxqop = fo and H|prcq1y = f1, then this has the following important
consequence.

Theorem 22.2.1 (Homotopy invariance). If fo, fi: M — N are homotopic
smooth maps, then f§ = f{: H*(N) - H*(M).

Proof. We can find a homotopy of the form H: M xR — N. We can then factor
fi,i=0,1as
i

M~ MxR 25N,
and obtain equations
f§ =s50H" =sfoH* = ff. O]

Recall that we proved that every diffeomorphism induces an isomorphism on
cohomology, that is, every smooth map with an inverse does. It actually suffices
that f has an inverse up to homotopy.

Corollary 22.2.2. If f: M — N is a homotopy equivalence, then f*: H*(N) —
H*(M) is an isomorphism.

Example 22.2.3. If M is a Moebius strip, then the inclusion S' «— M is a
homotopy equivalence (the homotopy inverse is the bundle projection). Thus
H*(M) =~ H*(S1).
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More generally, if E' is the total space of a smooth vector bundle over M, then
H*(E) =~ H*(M). This is a generalization of Corollary 22.1.4; that corollary can
be interpreted as saying that the total spaces of 1-dimensional trivial bundles
have the same cohomology as their 0-section.

Remark 22.2.4. At this point you can extend cohomology to a large class of spaces
in a rather artificial manner. For example, if K is built by gluing together finitely
many simplices (i.e. vertices, edges, triangles, tetrahedra, etc.), it has an embed-
ding into a sufficiently large Euclidean space with a small open neighbourhood
U that is unique up to homotopy equivalence. Thus setting H*(K) := H*(U)
gives a well-defined notion of cohomology for such spaces K. However, algebraic
topology provides an elegant definition of cohomology (with real coefficients) for
any topological space. It is then a theorem that this coincides with de Rham
cohomology when evaluated on a manifold; de Rham’s theorem.

22.2.2 Applications
Contractible manifolds

Recall that there exists contractible manifolds M which are not homeomorphic
to FEuclidean space, such as the Whitehead manifold. Nonetheless, the homotopy
invariance of de Rham cohomology implies these have the same cohomology as

Euclidean spaces:
R if x =
(M) { if x =0,

0 otherwise.

The interior of a manifold with boundary

If M is a manifold with boundary dM, then we saw that there is an interior
collar p: 0M x [0,1) — M.

Lemma 22.2.5. The inclusion int(M) < M is a homotopy equivalence.

Proof. The homotopy inverse h is given in terms of the collar as

_Jp if p ¢ im(p),
"v) {p(xm(t)) it p = ple. 1)

where 1: [0,1] — [0,1] is an embedding that is the identity near 1 and has image
given by [1/2,1]. Intuitively, we push the manifold into itself a bit using the

collar. We leave it to reader to convince themselves that i o g and g o ¢ are
homotopic to the identity. O

The homotopy invariance of cohomology then gives us:

Corollary 22.2.6. H*(M) ~ H*(int(M)).
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Brouwer fixed point theorem

Observe that int(D?) is diffeomorphic to R? by z + z/(1+||z||?). By the previous
corollary we obtain H'(D?) =~ H!'(R?) = 0. Let us use this to give another proof
of the Brouwer fixed point theorem for D?. Recall that this follows from the
following “no-retraction” theorem:

Corollary 22.2.7. There exists no smooth retraction r: 0D? — D?.

Proof. If such an r did exist, we would have a commutative diagram

oD? id oD?

and applying the contravariant functor H'(—) turns this into a commutative
diagram

1 2\ ~ 1 2\ ~
H'(0D*) =R = H (0D*) =R
HY(D?*) =0
which is obviously impossible: the identity on R does not factor over 0. 0

22.3 Two further tricks

For later use, I will give two further tricks to compute two particular de Rham
cohomology groups. For now, the reader should take this as an opportunity to
get familiar with de Rham cohomology.

22.3.1 Top degree

Suppose that M is a compact oriented k-dimensional manifold. That M is
oriented means that the top exterior power A*T*M has an everywhere non-
vanishing section w. Thus writing w as adx; A --- A dxy, in a chart the function
a is always non-vanishing. We intend to integrate this over M. To do so, we
must use charts compatible with the orientation; in that case a must be positive.
Hence, when computing §,, w, we get a finite sum of non-negative numbers, at
least one of which is positive and hence SMw > 0. Now recall that integration of
forms over M gives a linear functional H*(M) — R, so that we have just shown
the following:

Proposition 22.3.1. Suppose that M is a compact oriented manifold of dimen-
sion k, then dim H*(M) > 1.

We will later prove that its dimension is exactly 1 under the additional
hypothesis that M is connected.

Ezample 22.3.2. For any sphere S™, we have that dim H"(S™) > 1. Later we will
prove it is exactly 1-dimensional.
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22.3.2 Degree one

In the homework, you have proven that if v: S — M is a smooth map then
§g1 7 has the following properties: (i) if o is exact it is zero, (ii) if o is closed it
only depends on the homotopy class of y. Furthermore, you have seen (iii) given
a closed «, if M connected and the integrals Ssl v*a vanish for all y, then « is
exact.

If M is connected and we pick a base point py € M, we can define 71 (M, pp)
to be the set of based homotopy classes of loops in M; this is the fundamental
group of M at py. Part (i) and (ii) say there is a map

h: (M, po) — (H'Y(M))*

T— | Y'a
Sl
and part (iii) says that the span of the image of h is all of (H'(M))* (at least
if it is finite-dimensional, otherwise it is dense). We did not discuss the group
structure of 71 (M, po), but if you know this you will realize h is a homomorphism.
It is called the Hurewicz homomorphism.

Proposition 22.3.3. If M is simply-connected, then H'(M) = 0.

Example 22.3.4. We used Sard’s lemma to prove that S™ is simply-connected if
n = 2, and hence H'(S™) = 0.

Remark 22.3.5. The Hurewicz homomorphism factors over 71 (M, pg)** @R. When
M is compact and connected, the resulting homomorphism 71 (M, py)® @ R —
(HY(M))* is in fact an isomorphism. Thus you can compute H'(M) knowing
the fundamental group.

22.4 Problems

Problem 53 (The Poincaré lemma for compactly-supported cohomology). Read
pages 37-39 of [BT82] about the Poincaré lemma for compactly-supported coho-
mology. This says in particular that

R if x =n,

0 otherwise.

HE(R) = {

Explain why this shows that compactly-supported cohomology is not homotopy-
invariant.
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The Mayer—Vietoris theorem

Last lecture we proved the Poincaré lemma, which computes the cohomology
of R™. To exploit that computation, we now prove a “patching theorem” for
de Rham cohomology. It is a generalization of the second proof we gave of
H'(S') = R. This is proven in Section 4.§6 of [GP10] and Section 2 of [BT82].

23.1 Some homological algebra

Recall that de Rham cohomology of M was constructed from the sequence of
R-vector spaces

C— QPN M) S P(M) -5 QP (M) —> -

by taking the kernel of d modulo the image of d.

This is an example of the cohomology of a cochain complex of R-vector spaces.
I will drop the R from now on. Let me point out that the fact that we’re working
with vector spaces plays no role in the arguments that follow; we can replace
vector spaces by abelian groups, or modules over any ring.

Definition 23.1.1. A cochain complex C* is a collection of vector spaces with
linear maps between them

s ert dop A optl

satisfying d> = 0. This equation implies im(d: CP~! — CP) is a subset of
ker(d: CP — CP*1), and hence it makes sense to define the cohomology groups
H*(C*) as

ker(d: CP — CP+1)
HP(C*) := )

() im(d: Cr~1 — CP)

Definition 23.1.2. A homomorphism of cochain complexes f: B* — C* is a
collection of linear maps f,: B? — CP such that df, = f,11d. This condition
implies that f induces a map on cohomology.

195
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23.1.1 Short exact sequences of cochain complexes

A long exact sequence is a sequence of vector spaces

such that the kernel of each map is the image of the previous one. In other words,
it is a cochain complex whose cohomology vanishes at each point.
A short exact sequence is a sequence of vector spaces

0—A-B-1.0c—0

such that the kernel of each map is the image of the previous one. That is, it is
just a long exact sequence in which all but three groups vanish. Conretely having
a short exact sequence means the following;:

- Since the kernel of i is the image of 0 — A, i is injective.

- Since the image of j is the kernel of the C' — 0, j surjective.

- The kernel of j is the image of .
Ezxample 23.1.3. Having a short exact sequence is quite useful. For example,
suppose you want to compute what a particular vector spaces A is isomorphic to,
and you know it fits into a short exact sequence

0-HR-, 4R

Then R is the kernel of a surjective map A — R, and thus A must be 2-
dimensional.

A short exact sequence of cochain complexes is a sequence of cochain complexes
0— A* —B* — (C*"—0
such that each sequence
0— AP — B — (C? — 0

is a short exact sequence. The following result relates the cohomology groups
H*(A*), H*(B*), and H*(C*).

Theorem 23.1.4. If 0 »> A* - B* — C* — 0 is a short exact sequence of
cochain complezes then there exist homomorphisms 6: HP(C*) — HPL(A*) such
that

f Hp+1<A*) I Herl(B*) ...

- —— HP(B*) —— HP(C*¥) J
is a long exact sequence.

The homomorphisms § are called boundary maps, and will be constructed
explicitly.
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Proof. We start with construction of the homomorphism §: HP(C*) — HPTL(A*).
To do so, consider the commutative diagram

Tp+2 Ip+2
0 — APT2 P22, pp+2 PR opt2 4

[ | |

ipt+1 Jp+1
0 —— Aptl 22, pptl 22, ortl 4 0

|

0 Ap ", pr ", cp 0.

Let [z] € HP(C*) be represented by x € CP, then since j,: BP — CP is surjective
there exists a lift y € BP. This satisfies jp41(dy) = djp(y) = de = 0. Thus
dy € BP*! in the kernel of Jp+1 and hence in the image of i1, so there exists a
lift z e AP,

We want to set d[z] = [z]. To show that this makes sense, we need to
first check that dz = 0. Since iy42 is injective, we might as well check that
ip+2(dz) = 0. But ip12(dz) = d(ip+1(2)) = d(dy) = 0.

Next we need to prove that [z] is independent of the three choices we made:

(a) the choice of representative x € CP of [z],

(b) the choice of lift y € BP of x, and

(c) the choice of lift z € AP*! of d(y).

The last of these, (c), in fact involved no choice at all. The element z is unique
because iy is injective. For (b), any other choice of lift y differs by an element
ip(w), which changes dy to d(y + ip(w)) = dy + iy (dw) which has lift to AP*T!
given by z + dw, and hence gives rise to the same cohomology class [z]. Finally,
for (a), any other representative of z differs by du for u e CP~1. We may lift u
to v € BP~! and then choose to lift of z + du to y + dv (we have already shown
that the end result is independent of the choice of lift). Then d(y + dv) = dy, so
the resulting class [z] is the same as before.

Let us only check exactness at the term HP(C*), leaving the other cases for
the reader. We need to prove that if §([z]) = 0 then [z] is in the image of HP(B¥).
Indeed, if 6([x]) = 0 then z = da for some a € AP. Then diy(a) = ip+1(2) = dy,
so y—ip(a) € BP is closed. Furthermore j,(y—ip(a)) = jp(y) = x since j,oi, = 0,
so [z] is the image of [y —i,(a)]. O
Remark 23.1.5. A proof as above is hard to read. You should draw the diagram
and pencil in were all of the elements discussed live and are mapped. This is
called diagram-chasing.

23.2 The Mayer—Vietoris theorem

Let M be a manifold, and U,V < M be open subsets covering M. Then the
maps induced by restriction give rise to a pair of maps

P(M) — U)o (V)

W (W|an|V)’
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QU)W (V) — QP(U A V)

(wa V) I W|UﬁV - V|UmV~

The composition of these two maps is visibly 0, and in fact the following is
true:

Lemma 23.2.1. The following is a short exact sequence of cochain complezes
0— Q*(M) — Q*(U)®Q*(V) — Q*(UnV) — 0.

Proof. Exactness at QP(M) amounts to the observation that a form on M is
uniquely determined by its restrictions to U and V. Exactness at QP(U) @ QP(V)
amounts to the observation that a pair of forms w on U and v on V' can be glued
to a form on M if and only if w|y~yv = v|y~y.

It is exactness at QP(U n V') that is the hardest; we must show that every
form on U NV is a difference of forms on U and V. The problem is that a
naive extension by 0 of w € QP(U n V) to U or V will not be smooth. To
get around this, we will “cut off” w appropriately before extending by 0. Let
pu,pv: M — [0,1] be a partition of unity subordinate to the open cover U, V.
Then pyw can be extended by 0 to give a smooth p-form py@w on U, and similarly
puw can be extended by 0 to give a smooth p-form pyw on V. Then we can
write w as pyw — (—pyw), which exhibits w as being in the image of the map
QPU)DWPV) - QU NV). O

Corollary 23.2.2 (Mayer—Vietoris). There is a long exact sequence

F HPY (M) —— HPY(U) @ HPHH(V) ———— -

+——— HP(U)® HP(V) ——— HP(UNV) J
In the Mayer—Vietoris long exact sequence, the left horizontal maps
HP(M) — H?(U) @ H(V)

are given by pullback along the inclusion U < M and V < M. Similarly, the
right horizontal maps

HP(U)@ HP(V) — HP(U A V)

are the difference of the pullback along the inclusion U "'V < U and the pullback
along the inclusion U n V — V. Finally, the boundary maps can be described
rather explicitly; given [w] € HP(U n V'), one observes that d(pyw) and d(—prw)
coincide on U n V' and hence glue to a well-defined (p + 1)-form on M. It will in
fact be supported in U n V.
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23.3 Applications

As an application of Mayer—Vietoris, we will now compute the cohomology of
three basic examples of smooth manifolds. The guidelines for its use are as
follows: you need to know the cohomology of three out of the following four
manifolds: M, U, V, and U n V. Since we don’t know many examples yet, these
often tend to be contractible or are provided by an inductive hypothesis.

23.3.1 The cohomology groups of spheres
We start with spheres S™.
Theorem 23.3.1. The cohomology of S™, n = 1, is given by

R if+=0,n,
0 otherwise.

H*(S™) = {

Proof. The proof will be induction over n, the initial case n = 1 having been
completed two lectures ago. We can cover S™ = {(zg,...,zy) | Y27 = 1} by two
slightly enlarged hemispheres:

Ui=8"n{zxeR" |z, > —€},

Vi=8S"n{zeR" |z, <}
Then U 2R, V 2R" and U nV = S"~! x R. Thus we get that both U and V/
have non-zero cohomology groups only in degree 0, while homotopy invariance
says H*(U n'V) = H*(S"!) which we know by the inductive hypothesis.

There are several cases for Mayer—Vietoris when we want to compute HP(S™).
Let us start with assume that p > 1. In this case we have

f HP(S") — HPU)®HP(V) =0 — 5 ...

D)@ EW) 0 — (s

because p — 1, p # 0. By exactness, we conclude that the pictured boundary map
is an isomorphism, and thus

Hp_l(Sn_1> _ Hp(Sn)

is an isomorphism as long as p > 1.
To deal with p = 0,1, we inspect the relevant part of the long exact sequence:

[% HY(S") —— H' (U oH(V)=0 ——— -+

HO(S") —— HOU)® HO(V) = R2 —*, go(sn-1) — R J

Recalling the construction of the Mayer—Vietoris sequence the map (x) is given by
the difference of the restrictions, so by R? 5 (z,y) — x —y € R. This is surjective
with kernel R. From this we see that H°(S") = R and H'(S") = 0. O
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23.3.2 The cohomology groups of punctured Euclidean spaces

We have computed H*(R") already—it mostly vanishes—and H*(R™\{0}) follows
from the previous computation since R™\{0} =~ S"! x R—it has the same
cohomology as S"~!. What happens if you remove more points? It is easy for
n = 1, as then removing points just disconnects R into some disjoint union of
copies of R.

Theorem 23.3.2. Let X be a finite subset of R™, n = 2, then

R if * =0,
H*(RMX) = { RXT jfse =n—1,
0 otherwise.

Proof. The proof is by induction over the cardinality » of X. The initial case
r = 1 has been done above. For the induction step, we fix some x € X and cover
R™ by U = R"\{z} and V = R™\(X\{z}). Their intersection U n V is R™\ X.

We will not give the full Mayer—Vietoris sequence, but skip to the interesting
part around degree p = n — 1:

F H"(R") = 0

F H* ' (R") =0 — H" ' (U)@H" (V) =RORX — H" (U V) =R j

J

where we applied the inductive hypothesis to U and V respectively. We conclude
that H" (R\X) =~ RXI. O

23.3.3 The cohomology groups of CP"

Recall the complex projective plane CP™ is given by the quotient of the scaling
action on non-zero vectors in C™:

(C"*h{o})/C*.
That is, an element [zg : --- : 2z,] € CP" is described by an (n + 1)-tuple
(20,...,2n) of complex numbers, not all zero, up to scaling. Since CP! is

diffeomorphic to S?, we already know its cohomology from Theorem 23.3.1.
What happens for CP™, n > 27

Theorem 23.3.3. The cohomology of CP™, n > 1, is given by

R if 0 < = < 2n is even,

0 otherwise.

H*(CP") = {
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Proof. The proof is by induction over n, the initial case n = 1 having been done
before.

Let U < CP" be the open subset consisting of those [z : ... : 2, ] satisfying
|20/ + ... +]2n—1]? > |2n|?®. By scaling the last coordinate by 1 —t with ¢ € [0, 1],
this deformation retracts onto CP" 1. Let V' < CP™ be the open subset consisting
of those [zp : - -+ : 2] with z, # 0. By scaling the first n coordinates by (1 —t)
with ¢ € [0, 1], this is seen to be contractible. Then U n V' is the open subset of
those [20 : ... : 2z,] with 2, # 0 and |20|> + ... + |24]? > |2n+1]?. Such elements
are uniquely represented by elements of the form [wg : ... : wy—1 : 1] with
lwol? + ... + |wy_1]?> > 1. This deformation retracts onto the subspace with
lwo|? + ... + |wp_1]? = 2, which gives a sphere S?"~1.

We will not give the full Mayer—Vietoris sequence, but skip to the interesting
part around degree p = 2n — 1:

[» H?"(CP") ——— H*(U)® H**(V) =0

e Y U)o H™ Y (V)20 —— H L (UNV)=R J

In particular we get that H*(CP") = H*(CP" 1) for * < 2n and H?"(CP")
R.

0o

Multiplicative structures

Above we computed H*(S™), H*(R™\X), and H*(CP") as graded R-vector
spaces. However, we actually know that these cohomology groups are a graded-
commutative algebra. In the former two cases, this algebra structure is uniquely
determined by the fact that it is compatible with the grading and that H° is
generated by a unit; in both cases all products not involving a multiple of the
unit vanish:

H*(S") = Rlzal/(a7,),

n

the free polynomial ring on a generator x,, of degree n, modulo the ideal generated
by 2. Similarly,

H*®R\X) =R [\ |2 e X] /@D | 2,0 € X),

n—1 n—1

(z)

.1 of degree n — 1, one for each element of X.

with a collection of generators y
However, the algebra structure on H*(CP"™) can not be determined this way.
Once we establish Poincaré duality, we can prove that as an algebra

H*(CP") = Raa]/(25™),

with x5 a generator in H?(CP").
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23.3.4 More examples

If you want to practice your proficiency with the Mayer—Vietoris sequence you
can prove—at least additively— the following results (the convention is that a
subscript on a generator denotes its degree).

FEzxample 23.3.4. Recall the quaternionic projective plane HP". Its cohomology
is given by
H*(HP") = Rlya]/(y5 ™).

Here are some computations that require more advanced techniques than we
have discussed so far:

Example 23.3.5. Let U(2) be the Lie group of (2 x 2)-matrices with complex
entries which are unitary, i.e. AT = A. Its cohomology is given by

H*(U(2)) = Rle, cs]/(cf, c3).

Example 23.3.6. Recall the K3-manifold. Its cohomology is given by

R if « =0,
0 if «=1,
sy - | =2
0 if « =3,
if %« =4,
0 otherwise.

The multiplicative structure is determined by the bilinear map H?(K3) x
H?(K3) — H*(K3) =~ R. In a suitable basis, it is given by the symmetric

matrix
—id1g O
0 idg |

Remark 23.3.7. In fact, the Sullivan—Barge theorem tells you that the only
restrictions on realizing a given finitely-generated graded-commutative R-algebra
H* with H' = 0 as the cohomology of a manifold are (i) it satisfies Poincare
duality, and (ii) if the dimension is 4n it admits Pontryagin classes satisfying the
congruences of the Hirzebruch signature theorem [FOT08, Theorem 3.2].

23.4 Problems

Problem 54 (Long exact sequence of a pair). Suppose that M < N is a smooth
submanifold.
(a) Show that the differential of Q*(NN) restricts to one on ker[Q*(N) —
Q*(M)],
We define the relative cohomology H*(N, M) as that of the cochain complex
ker[Q*(N) — Q*(M)].
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(b) Prove that there is a long exact sequence

[» HP*Y(N, M) —— HPYY(N)@® HP* (M) —— -

. HP(N,M)® HP(N) — HP(M) j

This is known as the long exact sequence of a pair.

Problem 55 (Relative and compact-supported cohomology). Suppose that M
is a compact manifold with boundary dM. Prove there is an isomorphism

H*(M,0M) = H*(M\3(M)).

Problem 56 (The compactly-supported cohomology of the Moebius strip). Let
M be the open Moebius strip. Use the Poincaré lemma and Mayer—Vietoris for
compactly-supported cohomology to compute H}(M).

Problem 57 (Cohomology of compact oriented surfaces). Recall that ¥, denote
a genus g surface. Use Mayer—Vietoris to compute H*(3,).
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Qualitative applications of Mayer—Vietoris

So far we have only used Mayer—Vietoris to compute the cohomology of specific
manifolds. Today we will use it to prove finite-dimensionality of de Rham
cohomology and Poincaré duality. This is proven in of [BT82, Section 5].

24.1 De Rham cohomology is finite-dimensional

Suppose that M is a compact manifold, then we can find a finite cover by
contractible subsets: take some collection of charts ¢o: RF 2 Uy — V, ¢ M
which cover M, write each U, as a union of open balls, and apply compactness.
Using a trick from Riemannian geometry you can in fact do better and find a
good cover in the following sense:

Definition 24.1.1. A finite open cover Uy, --- , U, of a topological space is good
if for each non-empty subset I < {1,...,r}, the open subset Ur := (.., U; is
either empty or diffeomorphic to R".

Definition 24.1.2. A smooth manifold M is said to be of finite type if it admits
a good open cover.

In particular, you can take I = {i} to see that each Uj; is contractible.

FEzxample 24.1.3. A circle is of finite type; it has a good open cover by three
intervals. More generally, a k-sphere is a finite type; it has a good open cover by
k + 2 open subsets, by taking neighborhoods of the k-simplices in the boundary
OAFF! of a standard (k + 1)-simplex A* (the convex hull of the basis vectors
€o, ..., eps1 in R¥+2) For example, A3 is the tetrahedron and slightly expanding
the four faces of a tetrahedron gives a good open cover of S2.

Remark 24.1.4. Definition 24.1.1 is slightly non-standard, chosen to simplify the
proof of Poincaré duality. It is more common to define a good open cover to have
Ur which are either empty or contractible. The minimal numbers of elements in
a such good open cover is called the covering type [KW16]. Karoubi and Weibel
used Mayer—Vietoris to prove that the k-sphere has no good open cover by < k42
open subsets. You can prove this yourself, see Problem 58. Covering type has
been largely unstudied and many open questions surrounding it; apparently the
covering type of the Klein bottle is not known!

204
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The following is proven in in [BT82, Theorem 5.1]:

Proposition 24.1.5. Every compact manifold M is of finite type, i.e. admits a
good open cover. Moreover, every open cover has a refinement to a good open
cover.

Theorem 24.1.6. If M is of finite type, H*(M) is finite-dimensional.
Corollary 24.1.7. If M is compact, H*(M) is finite-dimensional.

Proof of Theorem 24.1.6. First observe that since HP(M) = 0 for p > k, the
dimension of M, it suffices to prove that each HP(M) is finite-dimensional.

We prove the result by induction over the number r of open subsets in a
good open cover. In the initial case r = 1, M = U; and U; is contractible, so
by the homotopy invariance of de Rham cohomology HY(M) = R and all other
cohomology groups vanish.

For the induction step, suppose that M has a good open cover with r open
subsets Uy, ...,U,. Then M can be covered by two open subsets U := U; and
V = Ji_, Ui. Then U is contractible, V has a good open cover by r — 1 open
subsets (namely Us,...,U,), and U n V has a good open cover by r — 1 open
subsets (namely Uy n Uy, ...,U; n U,). Now consider the Mayer—Vietoris long
exact sequence

F HP(M) —— HP(U)® HP(V)

e BN U)Y® HPY(V) —— HP Y (UNV) =R j

We deduce from it that for each p > 0, HP(M) has a surjection onto a subspace of
HP(U) @ HP(V) with kernel a subspace of HP~Y(U n V). Both HP(U) ® HP(V)
and HP~1(U n V) are finite-dimensional by the inductive hypothesis, and hence
so are these subspaces. This in turn implies HP(M) is finite-dimensional. O

Remark 24.1.8. In fact, you can bound the dimension of H*(M) in terms of r as
dim H*(M) < 2.

Some non-compact manifolds are of finite type, e.g. those which are the interior
of a compact manifold with boundary. However, H*(M) is not finite-dimensional
for a general non-compact manifold M.

Remark 24.1.9. Here is an alternative method to constructing a counterexample;
suppose we have open subsets Uy < Us < --- of M such that | J; U; = M, then it
is a fact that H* (M) always surjects onto lim; H*(U;). In fact, when all H*(U;)
are finite-dimensional this is an isomorphism. This follows from the Milnor
sequence and the observation that inverse systems of finite-dimensional vector
spaces are Mittag-Leffler. It is easy to construct examples of U; where all maps
H*(U;) - H*(U;—1) surjective and the dimension increases, in which case the
limit will be infinite-dimensional.
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24.2 Poincaré duality

The following is a whirlwind tour of Poincaré duality, both its proof and applica-
tions.

24.2.1 Statement and proof

Recall that a bilinear form V' x W — R is non-degenerate if (i) (v, w) = 0 for all
w € W if and only if v = 0, and (ii) {v,w) = 0 for all v € V' if and only if w = 0.
Note that (i) says V' — W* is injective, and (ii) that W — V* is injective. By
counting dimensions, one proves the following lemma:

Lemma 24.2.1. Suppose that V is finite-dimensional, then the following are
equivalent:

1. the bilinear form V x W — R is non-degenerate,
2. V. — W* is an isomorphism,
3. W — V* is an isomorphism.

Under these conditions W is also finite-dimensional.

Recall that H*(M) denotes the compactly-supported de Rham cohomology,
defined using compactly-supported forms instead of arbitrary forms.

Theorem 24.2.2 (Poincaré duality). If M is oriented of dimension k and of
finite type, then the bilinear map

(=, =): HP(M) x H*P(M) — R
(. [v]) — JM“’ v

is non-degenerate.

As the compactly-supported cohomology of a compact manifold coincides
with the ordinary cohomology, we get the following, making good on a promise
from a previous lecture:

Corollary 24.2.3. If M is compact oriented of dimension k with empty bound-
ary, then there is an isomorphism HP(M) = H*P(M). In particular, if M is
connected, H*(M) = R.

It is easy to deduce more consequences. Recalling that if M is simply-
connected then H'(M) = 0, we conclude that:

Corollary 24.2.4. If M is a compact oriented manifold of dimension k and
simply-connected, then HF=1(M) = 0.

Using the isomorphism H*(M,0M) =~ H}(M\0M), one may deduce from
Theorem 24.2.2 also a variant for manifolds with boundary.

Corollary 24.2.5 (Poincaré—Lefschetz duality). If M is compact oriented of
dimension k with boundary OM, then HP(M) =~ H*P(M,oM).
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24.2.2 The proof of Poincaré duality

Before we start the proof we give a fundamental example:

Example 24.2.6. We know that H*(R*) is non-zero except for * = 0, in which
case it is R generated by the class [1] represented by the constant function with
value 1. Similarly, H(R¥) is non-zero except for * = k by the Poincaré lemma
for compactly-supported cohomology, in which case it is R generated by the class
[A(z)dz1 A - - dxg] represented by any compactly-supported k-form A(z) - dxy A

- A dzy, with A: R¥ — R a compactly-supported smooth function satisfying
Spr A(@)day - -da, = 1. Then the computation {[1],[A(z)dz1 A ---dxy]) =
Sgr A(@)dzy - - - dxj, = 1 exhibits the bilinear form as being non-degenerate.

Proof of Theorem 24.2.2. Since the cohomology groups of a manifold of finite
type are finite-dimensional, it suffices to prove that the slightly-modified map
(we have added a sign)

par: HP (M) — (H7P(M))*

WM(VHe(p)JMwy»

is an isomorphism. Here, €(p) = 1 if p=0,1 (mod 4) and €(p) = —1if p=2,3
(mod 4). The proof will be by induction over the number of elements r in the
finite good cover Uy, ...,U,. The initial case r = 1 has been done in Example
24.2.6.

For the induction step, we write M as the union of the two open subsets
U=UiandV =Usu---uU,.. Eachof U, V and U n'V is oriented with a good
open cover with either 1 or r — 1 elements, and thus the inductive hypothesis
applies to them.

There are Mayer-Vietoris long exact sequences in cohomology and compactly-
supported cohomology, the latter being reversed in direction with the maps not
induced by pullback but by extension by 0:

- — HP(M) — HP(U)® H?(V) — H?(U V) — HTY(M) — - --
and
e HY(M) «— HZ(U) @ HE(V) «— HE(U V) «— HZTH (M) «— -
The latter may be dualized to a long exact sequence
C— HY(M)* — HE(U)*@HE(V)* — HE(U A V)" — HETH(M)* — -

We can now write down integration maps from the long exact sequence
for cohomology to this dual of the one for compactly-supported cohomology, a
representative part of which is given by

H?(M) —— HP(U)® H?(V) —— HP(U n V) —2— HPYL(M)

J{PM J{pu@pv J{pUmV J{PM

HEP(M)* — HEP(U)* @ HEP(V)* — HEP(U A V)* —5 HEPH (M)



208 Chapter 24  Qualitative applications of Mayer—Vietoris

We claim this diagram commutes. This is easy to see in the left two squares.
For example, for the leftmost one it amounts to verifying that for each pair
(vu, vy) of compactly-supported (k — p)-forms and each p-form w on M, we have
that

(0 @ v )l ly) (7)) = ) | ol m s +elp) | ol no
= €(p) jMw A (v +vy)

= () (@) (0, ),

where in the last two lines we use the convention to denote the extension-by-zero
of vy and vy to M be the same symbols.

It is the right square that is harder, as it involves boundary maps. For a
(p+ 1)-form w on U n V, recall that dw is given by picking a partition of unity
nu,nv: M — [0,1] subordinate to U,V and taking the (p + 1)-form dw given
by d(nyw) = —d(nyw). Similarly, the boundary map on compactly-supported
cohomology sends a (k —p — 1)-form v to d(nyv) = —d(nyv). Then we compute

pu(Ow) (y) =e(p+ 1)J 0w AV

M

—p ) fUdeww) A

—p+ 1) jwaU) Awly A,

where the second step uses that d is a derivation and w is closed. We can in turn
write this as

— (~1)Pe(p+1) waw A d(nw) A v

— (C1)Pe(p+1) wa A (d() A v

— (“1)Pe(p+ 1) wa A d(nyv)

=(—1)Pe(p+1) JMw A OV

— (=1)e(p + De()pn () (ov).

Now we observe that there are two cases: if p is even then €(p + 1) = €(p), and if
p is odd then €(p + 1) = —e(p), so this is exactly pas(w)(0v).

Thus we have a commutative diagram of long exact sequences with two-thirds
of the vertical maps isomorphisms

H?(M) —— HP(U)® H?(V) —— HP(U " V) —— HPL(M)

J{PM ;J{pu@pv J{PU(\V %J{PM

HEP(M)* — HEPU) @ HEP(V)* — HEP(U N V)* — HEPZH(M)*
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It follows from Lemma 24.2.7 that the pj; must also be an isomorphism. O

The following is a standard result in homological algebra (there is a much
more general version):

Lemma 24.2.7 (5-lemma). If in a commutative diagrams of vector spaces

Ay

Ay Ay As As
lfl lf2 lfa lle lfs
B B Bs Bs

By

all vertical maps except f3 are known to be isomorphisms, then fs must also be
an isomorphism.

Proof. We shall prove that fs is injective, leaving the proof that it is surjective to
the reader. Suppose that f3(z) = 0, then in particular its image in By vanishes.
Since f, is an isomorphism, the image of = in A4 must also vanish. By exactness,
this means that x is the image of some y € Ay. We know that fa(y) is mapped
to 0 in Bs, so by exactness fa(y) is the image of some z € By. Since f; and fo
are isomorphisms, this means that there is some w € A; which maps to y € As.
The element  must vanish, being in the image of a composition of two maps in
an exact sequence, which is the zero map by exactness. ]

24.2.3 Multiplicative structure of the cohomology of CP"

In the previous lecture we computed H*(CP™) additively; it is R in degrees
#* = 21 for 0 < ¢ < n and vanishes otherwise. We now explain how to obtain the
algebra structure.

Proposition 24.2.8. As a graded-commutative R-algebra, H* (CP™) = R[xzs]/(z5 ™).

Proof. We prove this by induction over n, the case n = 1 being obvious as
H*(CPY) = R[x2]/(23) for degree reasons. (Alternatively, you can use that CP!
is diffeomorphic to S2.)

During the Mayer—Vietoris computation of the additive structure of H*(CP"™)
we learned that the inclusion CP"~! <> CP" induces an isomorphism on de Rham
cohomology in degrees * < 2n. Thus H?(CP") is generated by xb for i < n,
and it remains to prove that =% is non-zero, as then it necessarily generates the
1-dimensional group H?"(CP"). But that 2% is non-zero follows from Poincaré
duality: there must exist a class y in H?(CP") such that y - 25~ € H>"~2(CP")
is a non-zero element of H?*(CP") otherwise 3! would be the pairing as
being non-degenerate. But y must be a non-zero multiple of x2 and hence
xo - xy L #£0. O

The multiplicative structure of cohomology groups can be used to prove
results which can not be proven if you just know the additive structure. For
example, the additive structure of H*(CP"™) does not rule out that there may exist
smooth maps S?" — CP"™ — §?" whose composition is the identity. However,
the multiplicative structure does:
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Corollary 24.2.9. Ifn > 2, there is no smooth map S** — CP™ of non-zero
degree.

Proof. Such a map would need to be non-zero on H?", but since the map
H*(CP") = Rlaa]/(z5T!) — H*(S?") = Rly2n]/(¥3,) is a homomorphism, the
value on the generator 2 of H?"(CP") is the nth power of the value on the
generator of zo of H2(CP™). But this is necessarily 0. O

24.3 Problems

Problem 58 (Bounds on non-zero cohomology groups). Suppose that M has
a good open cover by r subsets. Prove that the largest p such that HP(M) # 0
must be < r — 2. (Hint: induct over 7).

Problem 59 (Strengthening the 5-lemma). How much can you weaken the
assumptions on f1, fo, f1, f5 in Lemma 24.2.7 such that the conclusion still holds?

Problem 60 (The Kiinneth theorem). In this problem you will use the techniques
of this chapter to prove the Kiinneth theorem. Let M, N be smooth manifolds.

(a) Prove that given two cochain complexes C* and D*,

(C* @DV = @ CFoD  da®y) - de) @y + (-)z@dy)

k+l=p
is again a cochain complex. (The sign is another instance of the Koszul
sign rule.)

(b) Prove that the map

[2]®[y] — [z @]

is well-defined and an isomorphism.

(¢) Let m: M x N — M and my: M x N — N be the projections. Show

that

QM) @Q*(N) — Q*(M x N) (24.1)
wv— 7} (w) A (V) '

is a map of cochain complexes.
Now suppose that N is of finite type.

(d) Prove that by induction over the number of elements in a good open
cover that map (24.1) induces an isomorphism

H*(M)® H*(N) = H*(M x N).

(e) Compute H*(T").
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The Thom isomorphism

We continue our discussion of Mayer—Vietoris and Poincaré duality with an
intermediate form: the Thom isomorphism for a vector bundle, where one takes
compact support only in the fibre direction.

25.1 Vertically compactly-supported cohomology

Let m: E — M be a d-dimensional smooth vector bundle over a k-dimensional
smooth manifold M. Then it makes sense to consider those differential forms w on
M so that supp(w) nm 1 (K) is compact for all K = M compact. This is preserved
by the exterior derivative, so the subspaces of vertically compactly-supported
p-forms assemble to a cochain complex

Qe (E).

To study these, we need another operation: integration along the fibre. Suppose
that £ = R¥ x R? then any p-form w € H*(R* x R?) is a sum of terms of two types:
(I) f(x,t)dzer A dty for |[J| =d (so dty = dty A --- Adtg)), (II) f(x,t)dzr A dty
for |.J| < d. If we assume that f has compact support in the R-direction for
each z € R¥, then we can define

(fpa f(z, t)dt)dxy if |J| =d,

0 else.

T (f(z, t)dxr A dty) = {

This obviously generalises to the case where R* is replaced by open subset U < R¥,
and then using local trivialisations to the case that E is the total space of an
oriented vector bundle; the orientations are necessary to define integration. We
will leave the details to you. The result is a linear map

T QF(E) — Q*4(M)
called integration along the fibre.
Lemma 25.1.1. We have that med = dmy.
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Proof. Since two forms on M are equal if they are equal locally, we may pick a
local trivialisation and assume E = R¥ x R?. The proof is now essentially that
of the Poincaré lemma. We first verify this on forms of type (I):

k
mad (f(x,t)dzy A dty) = T4 (Z afa(i’w

i=1
= ( Wdt) dz; A dzxy
R4 axl
_ 0 (fga f(a, t)dt)
N 6:@
=dmy (f(z,t)dx; A dty).

dr; A dxg A dtJ>

dx; A dxg

We next observe that it both sides clearly send a form of type (II) to zero unless
|J|=d—1,ie dty=dt; A--- Adt; A--- A dty. In this case we use in the first
equality that only the term that takes a partial derivative with respect to t;
survives 7y

0f(x,t)
ot;

rad (f (2, )y A dby) = ( it~ dey A dtj> p

where the last equality is obtained by using Fubini’s theorem to first integrate the
t;-coordinate, and that the result is zero by the fundamental theorem of algebra
combined with the f(x,t) having compact support in the ¢;-direction when fixing
the remaining coordinates. O

Thus there is an induced map on vertically compactly-supported cohomology:
Tt HE(E) — H*4(M).
It has the following property

Proposition 25.1.2 (Projection formula). Suppose that m: E — M is an oriented
vector bundle of dimension d. Then for w e QP(M) and v € Q4(E) we have

T (THw A V) = w A Ty

Proof. Since two forms on M are equal if they are equal locally, we may pick a
local trivialisation and assume E = RF x R?. If v is of type (II) then the left
side vanishes by definition, and so does the right side since 7*w A v is also of
type (II). If v = f(x,t)dzs A dty is of type (I) and w = g(x)dzxp then 7w A v is
g(x) f(x,t)dxp A dry A dty and we see that

a(7w A V) = (fRd g(x) f(x,t)dtJ> dep A deg
~g@er ~ ([ rte0aie)

=W A Tgl.
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25.2 The Thom isomorphism

The proof of the Poincaré lemma in compactly-supported cohomology gives that:

Theorem 25.2.1. The map
To: HE(RF x RY) — H*~4(RF)
s an isomorphism.

For U ¢ M write Eyy = 71 (U). It is easy to see that the sequence of chain
complexes

0 — Q. (Ey) — Qi (Ev) @ Q. (Bv) — Qo(Eyav) — 0

is short exact, so we get a Mayer—Vietoris long exact sequence for vertically
compactly-supported cohomology. These are the necessary ingredients for:

Theorem 25.2.2 (Thom). If E — M is an oriented vector bundle of dimension
d and M is of finite type, then the map

mot Hi(B) — H*(0)
is an isomorphism.

Proof. The proof is once more by induction over the number of elements in a
good open cover of M; we may assume that the vector bundle trivialises over
the elements in the good open cover. This can be proven either by showing that
any open cover contains a good open cover, or by proving that vector bundles
over R¥ are always trivialisable. The initial case is covered by the Poincaré
lemma above so it remains to do the induction step. As usual we set U = Uy and
V =U; u---u U, and it suffices by the five-lemma to prove that there is a map
of long exact sequences

= Hy(Ey) — Hy(By) @ Hy(BEv) — H(Eynv) — HIF(Ey) — -

M U Vv UnVvV M
J/TK'* lw* Dy lw* J/W*

c = HYM) — HY U)o HYV) — H* U V) — HH (M) - -

and it is easy to see that the left and middle square commute, but for the right
square we need to verify that fibre integration commutes with the connecting
homomorphisms:

wMow = 7V YV (n*dny A wluay) = dnp A Y wlpay = orl Y (W)

where the middle equation uses the projection formula. O

In particular, corresponding to 1 € H(M) there is a vertically compactly-
supported cohomology class [Th(m)] € HZ (E). A vertically compactly-supported
representative d-form Th(w) has the property that its integral over each fibre
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equals 1, and this property determines it uniquely up to exterior derivatives of
vertically compactly-supported (d — 1)-forms. Note that there is a map

H* (M) — H}.(E)
[w] — [7*w A Th(n)]

Corollary 25.2.3. This map s inverse to .
Proof. We simply compute
(7w A Th(m)) = w A mTh(7) = w,

using that 7, Th(mr) = 1. O
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Cech cohomology

We will now generalise the Mayer—Vietoris principle to a combinatorial method
to compute de Rham cohomology: the Cech complex. This is also explained in
[BT82, Section 8|.

26.1 Double cochain complexes

Recall a cochain complex is given by a collection of N-indexed R-vector spaces
C* with differentials d: C* — C**1 satisfying d* = 0:

cdLcord ozl

A double complex is N%-indexed and consequently has differentials going in two
independent directions:

Definition 26.1.1. A double cochain complez is a collection of N2-indexed R-
vector spaces C** with horizontal differential d: C** — C**1* and vertical
differential §: C** — C***+1 satisfying d> = 0, 62 = 0, and 6d = dd. It looks
like:

o 4
002 4, 2 d 22 d
o o
ool 4, 011 4, 721 d,
I )
000 4, ~10 d, »20 d,
The hypothesis that d and § commute allows us to extract three functor

cochain complex from a double cochain complex. The first is given by by
summing along diagonals:

Definition 26.1.2. The total cochain complez Tot*(C**) of a double cochain
complex C** has entries given by

Tot?(C**) = @ C* for pe N,
i+j=p

215
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and differential D: Tot?(C**) — TotP™1(C**) given on the term C* by d +
(—=1)%6.

The sign in the definition of D is necessary: on C*/ we have
D? = d? + (—1)'ds + (—=1)"16d — 6% = 0,

and without the sign the middle terms would not have cancelled and the result
would be dd + dd = 2dd instead.

Example 26.1.3. An element in Tot™(C**) is given by a collection a = (a; ;)i+j—p
of elements a; ; € C™ and this is in the kernel of D if and only if

. 5&0@ = O,
- daj—1j; = (—=1)"6a; j_1 for all i + j = p+ 1 with 4,5 > 0,
-~ dapo = 0.

The second is the vertical edge. As for a double cochain complex d and §
commute, the latter restricts for each row C*P to a map

§: C71P = ker(d: COP — CYP) — C71PFL = ker(d: COPHL — CLPt)

which still satisfies 62 = 0: the result is another cochain complex C~1*.

The third is the horizontal edge. As for the vertical edge, we can use the
columns to extract a cochain complex C*~1 with entries CP~! := ker(§: CP¥ —
CP-1) and differential the restriction of d.

By construction, the inclusions induce a map of cochain complexes
C™h* — Tot*(C*¥).
The following is once more a diagram chase and best followed on paper.

Theorem 26.1.4. Suppose that the extended cochain complex of the columns

0 b A, 0p O lp O
is exact for all p = 0. Then the inclusion C~%* — Tot*(C**) induces an
isomorphism on cohomology.

Proof. We first prove that it is surjective. Suppose that a = (ai;)i+j—p €
Tot?(C**) is in the kernel of D. We claim up to the image of D, we can replace
a by a' satisfying a; ; = 0 for i > 0: then daj,; = 0 and da;, 5 = 0, so it is the
image of a cohomology class in HP(C~1*) we are done. This is done inductively:
suppose that a;; = 0 for ¢ > r with r > 0 then we have that da,,—, = 0, so
by the hypothesis there exists an b,_1,—, € CT—1P=" g0 that dbr—1 p—r = Qrp—r.
Considering b,_1,—, as an element of Totp_l(C*’*) we consider

/
a =a—Db._1p .

It has the analogous property with r replaced r — 1 as we have killed the (r,p —r)-
term at the cost of replacing the (r — 1,p + r — 1)-term with ap—1 p4r—1 —
(_1)T_15br71,p+r71-
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We next prove that it is injective. Suppose that x € C~1P is in the kernel of §
and that there exists a b € Tot?~}(C**) so that z = Db. We claim that up to the
image of D, we can replace b by b’ satisfying b, ; = 0 for j > 0: then dbj,, | = =
and dby, ,_; = 0, so x represents the zero cohomology class in H? (C~1*). This
is similarly done inductively in a similar manner and we leave the proof to the
reader. O

There is similarly an inclusion of cochain complexes
C* 7L Tot* (C*%)
and if the extended cochain complex of the rows
() — Pl e o0 A pl _d

is exact for all p = 0, then the inclusion C*~! — Tot*(C**) induces an isomor-
phism on cohomology. Let us combine these two facts:

Corollary 26.1.5. Suppose that the extended cochain complexes of the columns
and rows

S0 b A, 0p S slp O

S 0 — Pl A0 op0 4 opl 4

are exact for all p = 0. Then H*(C~1*) =~ H*(C*~1).

26.2 The Cech-to-de Rham complex

We will now apply these ideas to give a variant of the Mayer—Vietoris principle
for an arbitrary open cover rather than an open cover by two open subsets.
We say “principle” here because we stay shy of extracting the analogue of the
Mayer—Vietoris long exact sequence, which would require a digression into spectral
sequences.

26.2.1 The Cech-to-de Rham complex

Let U be an open cover a smooth manifold M. For each finite collection o =
{ap,...,ap} of indices we can form the intersection

Uag,.oap = Uag N - N Uy, © M.

P

Note that there is an inclusion Uyy,....a, < Ug,,...,5, When {Bo, ..., Bp} S {ao, ..., ap}.

Definition 26.2.1. The Cech-to-de Rham complez C*(U,Q*) is the double
cochain complex with entries given by

(w)a07-~~7aq =
Cq(ua Qp) = (w)ao,...,aq (_1>U(w)a0(0),‘..,ag(q) c H QP(UQ),
for all o € Sq+1 |o|=g+1



218 Chapter 26 Cech cohomology

with horizontal differential d given by

(dw)ao,...,aq = d(wao,...,aq)

and the vertical differential § given by

Notation 26.2.2. From now on, we will often drop the restrictions (—)|u,,
to simplify the notation.

Remark 26.2.3. There are two variations of the Cech-to-de Rham double cochain
complex which give isomorphic cohomology groups: (i) you can remove the
anti-symmetry condition, (ii) you can order the indexing set of the open cover U
and only take the terms (w)ag<-.-<ay-

This is well-defined: d clearly preserves the anti-symmetry condition in the
definition of C*(U, Q*) and ¢ does by a straightforward computation.

Ezample 26.2.4. If U has two elements U and V, then C*(U, Q*) is given by

i i i

0 0 0
il dl dl

PUAV) 2= QUAV) —2= RUAV) L -
dl di di

QUU) x QO(V) -5 QHU) x QH(V) -5 Q2(U) x Q2(V) L -+

with vertical maps given by (w,v) — w|y~v — v|u~v. Here we implicitly identify
the subgroup of the form (w, —w) € QYU N V) x QYV A U) with QYU n V).

Let us verify the claim made in the definition:
Lemma 26.2.5. C*(U,Q*) is a double cochain complex.

Proof. Tt is clear that d?> = 0 (since the exterior derivative is a differential)
and that dé = dd (since the exterior derivative commutes with pullback, here
appearing in the guise of restriction). It remains to see that 62 = 0, which follows
form

q
(52w)ao,...,aq = Z (_1)1(55‘))@0,---,&7“ ,0q

=0
= Z (_1)i(_1)j_1(5wa0 ----- Q.0 aq)
0<i<j<q
Y (1Y (g i)
0<y<i<q

and noting that a given pair of omissions appears twice with opposite sign. [
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26.2.2 A generalised Mayer—Vietoris principle

On the one hand, to give a p-form on M is the same as giving p-forms on each of
the U, that agree on the overlaps U,<g. Thus we have that restriction induces
an isomorphism

QP (M) = C~H(U, QP) := ker(5: CO(U, QP) — CL(U, Q9)),

and the restriction of the horizontal differential d of C*(U, 2*) to these kernels
corresponds under this isomorphism to the exterior derivative of p-forms on M.
To make use of this, we need to the following:

Lemma 26.2.6. The extended cochain complex of the columns
— 0 — 7N, ) — C%(U, P) — C*(U, OP) —
is exact for all p = 0.

Proof. To prove that any (w) € C9(U, 2P) that lies in kernel of § also lies in the
image of d, we pick a partition of unity 7, subordinate to the open cover U and
consider v € C?1(U, QP) given by

(v) Qp,...,Q _27701 Q,Q0,.-+,0g—1

which is well-defined as a locally finite sum of p-forms. The hypothesis that
(0w) = 0 implies that

q
_ z+1 N _
(5‘*’)047040,-‘.,% = Oto, e Z 04040,---7061'7---7% = 0.

Using this we check that

q
(5V)a07~--,aq = Z(V)a(),...,ai,...aq
i=0
q .
= Z(_I)ZZna(w)a,ao,...,ai,...aq
i=0 o
= Zna(w)aﬂ’“waq = (w)a07"'7aq'
«
This proves that (w) is in the image of 4. O]

Theorem 26.2.7 (Generalised Mayer—Vietoris principle). For any open cover U
of a smooth manifold M, the restriction map

Q* (M) — C*(U, Q%)
induces an isomorphism on cohomology.

To obtain the Mayer—Vietoris theorem from this we need to perform some
further manipulations: filter the double cochain complex to extract a Mayer—
Vietoris spectral sequence that for an open cover by two open subsets degenerates
to the Mayer—Vietoris long exact sequence. We will not do this here, but it may

serve as motivation to learn about spectral sequences, e.g. from [BT82, Chapter
I11].
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26.2.3 The Cech complex

On the other hand, the smooth functions in Q°(K) that lie in the kernel of the
exterior derivative are exactly those that are locally constant. Denote locally
constant R-valued functions on U by R(U), so that assigning to each component
the value of a locally function on it, we get an isomorphism

R(U) = R™Y.

The inclusion of locally constant functions induces an isomorphism

(f)oao,...,aq =

l—[|a|:q+1 R(Uao,...,aq) - (f)ao,...,aq (_1)0(f)a0(0>,...,a0(q)
for all o € Sy41

CIU, Q1) == ker(d: CI(U, Q%) — CI(U,Q))

and the vertical differential ¢ restricts to it. The resulting cochain complex is
quite combinatorial, as it only depends on the sets of path components of the
intersections of elements of the open cover. We will give it a name:

Definition 26.2.8. The Cech complex CV'{"((M ;R) of an open cover U of a smooth
manifold M has entries given by

. (f)ozo,...,aq =
Cﬁ(M,K) = (f)ao,...7aq (_1)J(f)ao(0),...,aa(q) < H K(Ua07...,o¢p)
for all 0 € Sy41 la]=p+1

with differential given by (6f)ag,....a, = ’Lq=0(_1>i(f)ao,...,&i,...,aq‘Uao AAAAA wq- We
will write

H(M;R) == H*(C(M;R)).

It is not true in general that the extended rows are exact, but this is the
case if each Uyy<...<q, 18 a disjoint union of contractible components, by our
computation of the de Rham cohomology of contractible manifolds:

Lemma 26.2.9. Suppose each Uag,....a, 1S a disjoint union of contractible com-
ponents. Then the extended cochain complexes of the columns

00— YUY — CY U, Q%) — CUU, Q) — -
are exact for all ¢ = 0.

Corollary 26.2.10. For an open cover U of a smooth manifold M as in
Lemma 26.2.9, the inclusion map

Ci(M;R) — C*(U, QF)

induces an isomorphism on cohomology.
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Combining this with Theorem 26.2.7 we get:

Theorem 26.2.11. For an open cover U of a smooth manifold M as in Lemma 26.2.9,
there is an isomorphism Hy(M;R) =~ H}p(M).

By the existence of good open covers, for compact M there always exist
open covers U so that the intersections Uy, ... q, are not merely disjoint union of
contractible components but in fact either empty or diffeomorphic to R%. By the
above theorem, the cohomology of M is determined only by the combinatorics of
the inclusions between components of these intersections.

26.3 Cech cohomology of (pre)sheaves

We end with a discussion of a general setting for the construction of Cech
cohomology. The construction of the Cech complex only requires that (i) we can
assign to each open subset U of M a R-vector space F(U), (ii) for an inclusions
U < V we have a restriction map

res);: F(V) — F(U)

so that for an pair of inclusion U € V € W we have

res|! ores); = res} .

This is conveniently encoded in terms of category theory. Let Open(M) be the
category whose objects are open subsets U € M and a unique morphism U — V'
when U < V| then the objects F' we just described are the same as:

Definition 26.3.1. A presheaf on M is a functor
F': Open(M)°? — Vectg.
Ezxzample 26.3.2. There is a presheaf R: Open(M) — Vectg which assigns to U

the R-vector space of locally constant R-valued functions.

Ezample 26.3.3. For each p = 0 there is a presheaf Q7: Open(M) — Vectr which
assigns to U the R-vector space of ¢g-forms on U.

This is all the data we need to define the Cech cochain complex:

Definition 26.3.4. Let F': Open(M) — Vectr be a presheaf and U be an open
cover. Then the Cech cochain complex

. (S)a07"'7aq =
Cﬁ(M;F) = (8)a07'~~7aq (_1)U(s)ao(0)7"'7ao'(q) < H F(Uao,m,ap)
for all 0 € Sy41 |a|=p+1

with differential given by (98)ag,....a, = g:o(_l)i(8)0407~~-,ai7---706q‘Uao _____ ag- We will
write

H{(M;F) .= H*(Ci(M; F)).
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Remark 26.3.5. There are two variations of the Cech cochain complex which give
isomorphic cohomology groups: (i) you can remove the anti-symmetry condition,
(ii) you can order the indexing set of the open cover U and only take the terms
(5)a0<---<aq .

Both the aforementioned examples of presheaves have the property that given
elements f, € F(U,) whose restrictions to F'(U, n Uy ) agree, we can uniquely
glue these to an f € F(U) where U = u,U,. A presheaf with such a gluing
property is called a sheaf:

Definition 26.3.6. A presheaf F': Open(M)°? — Vecty is a sheaf if for each
open cover U of U the following is exact

0— FU)— [[FUs) — ] FUsnUw).

acA (o, )EA?

Here the first map takes f to the collection with a-term given by resga (f) and
the second map takes a collection (fa)aca to the collection with (a, a/)-term

. U/
given by rengmUa/ (fa) — resynu, (for)
Proposition 26.3.7. If F' is a sheaf then restrictions induces an isomorphism
F(M) = HJ(M; F).

However, as we have seen in the example of the sheaf of locally constructions
functions R, in general the higher Cech cohomology groups need not vanish and
contain interesting information about F', M, and the open cover U.
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Secondary applications of de Rham
cohomology

Today we give two applications of de Rham cohomology, which establish non-
triviality of geometric constructions by arguments of a “secondary” nature. That
is, they exploit that when the cohomology class of a differential form vanishes it
does so for a reason, namely that it is the exterior derivative of some other form.

27.1 Poincaré duals of submanifolds and intersection theory

Every closed oriented submanifold X < M of dimension p gives rise to a linear
functional

px: H{(M) — R
[w]»—»L{w.

By the Poincaré duality isomorphism (HP(M))* =~ H* P(M) there is a closed
(k — p)-form nxcpr such that SM Nxcm A w = ix(w). Its cohomology class
[nxcar] € HF=P(M) is the Poincaré dual to X.

Similarly, if X is compact, we can integrate any p-form over it and use
the Poincaré duality isomorphism (HP(M))* =~ H*"P(M) to get a compactly-
supported supported cohomology class [n5c ;] € HEP(M): the compactly sup-
ported Poincaré dual to X.

Our philosophy requires that there be preferred representatives of these
Poincaré dual cohomology classes, and there are. Note that if we have oriented
vector bundle 7: F — B over an oriented manifold, the total space F admits
a natural orientation using the decomposition T'E = ker(dr) @ 7*T' B and with
this choice the Fubini theorem implies {5 ms(—) = {5

Lemma 27.1.1. For a d-dimensional oriented vector bundle m: E — X over a
compact oriented manifold X, we have that [n5.p] = [Th(nr)].

223
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Proof. Since the inclusion 7: X — X is a homotopy equivalence with homotopy
inverse 7, we have that w — n*1*w = dr. Let us now compute

JEw A Th(r) = fE(W*L*w +dr) A Th(m)

= | 7w A Th(n)
74 (7 1*w A Th(n))
t*w A mTh(r)

—f Gw
X

where the second equation uses Stokes’ theorem as dr A Th(w) = d(7 A Th(n))
and the fourth equation the projection formula. O

Il

This tells us that preferred representatives n$_,, of the compactly-supported
Poincaré dual of X is given by extension-by-zero of a representative of the Thom
class Th(w) for 7: NX — X the normal bundle using a tubular neighbourhood
NX —> M.

We will now give a result summarising how two important constructions
cohomology classes can be interpreted geometrically for Poincaré duals. This
can be proven by appropriate choices of representatives, and for a proof and
details about orientations see [BT82, p. 69]. As we make compactness hypotheses
throughout, we can drop the sub- and superscripts c.

Proposition 27.1.2. Let M be a compact smooth manifold.

(i) If X, Y < M are compact oriented submanifolds that intersect transversally,
then we can find representatives nxcyr, Nycm, ond Nx~ycm SO that nxci A
NYcM = NXAYcM-

(ii) If X < M is a compact oriented submanifold and f: N — M is a smooth
map transverse to X then we can find representatives nxcny and ny-1(x)cn

s0 that f*nxcy = Np-1(x)eN-

If a compact submanifold X < M is the boundary of a compact submanifold
with boundary W < M then we have that

px([w]) = fxw - wa= fwdw 0

where the last equation uses that w is closed. The philosophy of this lecture that
is we can take advantage of reasons a cohomology class of a form is zero. For
nxcy this is the existence of W. If one tries to construct a Thom class for the
normal bundle of W < M we can do so at the interior of W but needs to make
modification near the boundary, and the result is a ny < with the property that
dnwenr = nxcep- This certifies that [nxcas] = 0 but contains more information:
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Proposition 27.1.3. Let M be a compact smooth manifold, W < M be a
compact submanifold with boundary OW = X, and Y < M a smooth submanifold
disjoint from X and transverse to W. Then there exists choices of forms nxcu,
nweM, Nycm, and nwaycm so that

(i) nxcm = dnxcw,

(it) Mwem A NyeM = MwWay -

27.2 The Hopf invariant

Recall that CP? is diffeomorphic to S? and was defined as the quotient (C2—0)/C*.
Instead, we use only elements of norm 1 and give an equivalent definition as the
quotient
eC?||z| =1)
CP! ~ {z
U(1) ’

or in other words, as a quotient of S3 by a free action of S'. The quotient map
is a smooth map

h: 83 — §2
that we call the Hopf fibration. Since all fibres are circles, this gives a way of
writing S3 as a union of S'’s. We claim that this map is not null-homotopic,
which we will prove by constructing an invariant of smooth maps f: §??~! — §7
and evaluating it for the Hopf fibration. Not only will its definition use a choice
of reason that a form represents the zero cohomology class, but its evaluation
will use the Poincaré dual forms of the previous section.

Figure 27.1 Some fibers of the Hopf fibration pictured in R* = S? (from [Fra07]).

Pick an n-form w € Q"(S™) so that {g,w = 1. Since H"(S*"~1) = 0, there
exists an (n — 1)-form v so that dv = f*w.
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Definition 27.2.1. The Hopf-invariant of f is

H(f):= ngn—1 vAdveR.

Lemma 27.2.2.
(i) H(f) vanishes when n is odd.

(i1) H(f) is independent of the choice of w and v.
(iii) H(f) only depends on the homotopy class of f.

Proof. For the computations below it is helpful to observe that if a, b are p-forms
then a A db = db A a since at least one of a and db is in even degree.
For (i), note that for odd n we have

dvav)y=dvav+ (-1)"YWwadv=dvrv+vady=2vnAdy

which integrates to zero by Stokes’ theorem.

For (ii) we first prove independence of choice of w. If we replace w by
W' = w +du the (n — 1)-form v/ = v + f*p satisfies dv/ = dv + df*u = f*w’ and
we compute

Vady —vadv=w+ ffu) adv+ ffu)—vade

= ffundy+ ffu)+ @+ ffu) Adf*p

=d(f*urv)+ f*(u A dp)
d

where the last equation uses that pu A du is a (2n — 1)-form on an n-sphere and
hence vanishes. By Stokes’ theorem this integrates to zero. To prove independence
of v, if d(v + p) = w then dp = 0 and we compute that

w+p)ndlv+p)—vadv=padv=dpnv)

which integrates to zero by Stokes’ theorem.

For (iii) if H: S™ x R — S ! is the homotopy then by homotopy invariance
of de Rham cohomology we can find ¥ € Q7(5?"~! x R) so that d = H*w. By
Stokes theorem we have

H(R) = Hf) = | d( ~ dp) =0,
S2n—1x[0,1]
since d(V A dV) = dU A dV = F*(w A w) = 0 since w A w is a 2n-form on an
n-sphere. ]

Example 27.2.3. If f: S3 — S$? is null-homotopic then H(f) = 0. To see this,
note that by (iii) we may as well assume that f is constant and then f*w = 0 so
we can take v = 0.

There is also the following useful variant of (ii), breaking the symmetry in
the definition of the Hopf invariant.
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Lemma 27.2.4. If we choose v and V' so that f*w = dv and f*w' = dv' with
W' —w = du, then

H(f)= f vAadY.
S2n—1
Proof. Consider

vAadY —vAadv=v A frdu

(1) (v A f7) — (<1l A i
() A ) — (<) A )
(—1)"Ld A o)

where the last equality uses that w A p is a (2n — 1)-form on an n-spheres and
hence vanishes, and the last term integrates to zero by Stokes. O

It is possible to prove the following by a direct computation of integrals [BT82,
p. 235-238] but it is more easily done using Poincaré duals:

Theorem 27.2.5. If f: S% — S? is the Hopf fibration, then H(f) = 1.

Proof. Note since [w] = [nycs2] we may assume f*w = 7;-1(,)cgs for a fibre
f~1(p) = S of the Hopf fibration. This fibre bounds a 2-disc D in S3 so we
may assume 77153 = dnNpcgs and can take v = np-gs. Doing the same for
a nearby point p’ we can take dv’ = 1y-1(p)gs and noting that this is transverse
to D intersecting it in a single point * € S3, with positive orientation had we
kept track of orientations, we have

H(f) ZJ NDcs3 A Tf=1(p)cs3 = f Necgs = 1. O
S3 g3

By precomposing or postcomposing with self-maps of S3 or S? of arbitrary
degree, we see that the Hopf invariant takes all integer values and we get:

Corollary 27.2.6. There are infinitely many homotopy classes of maps S — S2.

27.3 Massey products

A second example of secondary invariants are Massey products. Suppose that we
have closed forms w, v, u on M so that [w A v] =0 = [v A p]. That is, we have
wAv=daand v A u=dS. If we take the element

r=wA B+ (D)o p
then it satisfies
de = (—D)“wrvap+ (-D)¥wAavap=0

and hence represents a cohomology class. It is independent of choices once we
pass to a certain quotient:
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Lemma 27.3.1. The class

H\w\+IV|+|uI*1(M)

o T T 0 + BRREEIG) A

is independent of choice of a and B, as well as of representatives w, v,y of the
cohomology class [w], [v], [1]-

Proof. We first show that it is independent of the choice of 3, and the proof
that is independent of the choice of « is analogous. If df’ = v A v = df8 then
d(B" — B) = 0 and we see that

waAB +(D¥aap—waB—(=D)anp=wn (g -8

is a representative of [w] A [#" — ] and goes to zero in the quotient.

We next prove that it is independent of the representative w of [w], and the
proof that is independent of the choices of v and p is analogous. If w and w’ both
represent [w] then w’ — w = dp and we may take o’ = o + p A v and we have

W AB+(DaAp—waB— (D) Ap= (=) AB+ (=) (a—a) A p
—dpr B+ (-DNa—d)rp
—dpn B~ (~Dlulp A v Ap
=d(p A B).0

Definition 27.3.2. We call [z] the Massey product of [w], [v], [] and denote it

by
H|w|+|l/\+|u|*1(M)

[w] ~ HPFRL(A) + HFT(M) A [u]

(] W] [p]) €

The following example is due to Morita [?, Example 3.24], of a non-trivial
Massey product in a so-called nilmanifold:

FEzample 27.3.3. We consider the Lie group

1
N = 0 z,y,z € R } < GL3(R).
0

o = 8
— N

This is easily seen to be a smooth manifold of dimension 3, and it has a subgroup
I' © N of those matrices where x,y, z are integers. This acts freely and properly
on N, so the quotient M = N /T is also a smooth manifold of dimension 3. The
forms dz, dy and dy + xdz on N are I'-invariant so descend to unique 1-forms «,
B, and v on M. It turns out that H'(M) is 2-dimensional generated by [a] and
[B] and H?(M) is also 2-dimensional generated by [a A 7] and [a A 7].

It is of course true that & A @ = 0 and we have that a A § = dvy. Thus we
can form the Massey product

_ H*(M)
{e],[a], 8] [a] A HY(M) + HY(M) A [B]

— H*(M)

and it is represented by a A 7y so non-zero.
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Flows along vector fields

Even though we are now familiar with de Rham cohomology, a question remains:
what is its geometric significance? For the remainder of these notes, our goal is
to connect Morse theory to de Rham cohomology. Today we start the technical
preparations. This material can be found in Section 1.4 of [Wall6].

28.1 Flows along vector fields

When we do Morse theory on a smooth manifold M in the next lectures, we will
deform subsets of M by flowing them along the gradient vector field of a Morse
function f: M — R (to define the gradient we will need to pick a Riemannian
metric). Thus, we have to define flows along vector fields on manifolds: as usual,
we take a known result on open subsets of R¥ and extend it to k-dimensional
manifolds using charts.

28.1.1 Flows on R*

The result we use is the existence and uniqueness theorem for solutions to ordinary
differential equations, cf. [Wall6, Theorem 1.4.1]:

Theorem 28.1.1. Let U < R* be open, K < U be compact, and X a smooth
vector field on U. Then there exists an € > 0, an open neighbourhood U' < U of
K, and a unique smooth map ¥: U' x (—e,e) — U such that

d
a\ll(x,t) = X(P(x,t)) and U(z,0) = x.

Let us restate this using the following notion:

Definition 28.1.2. An integral curve for X through z, is a smooth map
v: (—€,€) — U such that v(0) = = and %’y(t) = X(v(t)).

Theorem 28.1.1 says that integral curves exist, are unique, and depend
smoothly on the initial condition. For ¢ € (—¢,¢€), let us denote by 14 the map
x — W(x,t). We call ¥ the flow and ; the flow for time t, and it has the
following properties:

229
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Proposition 28.1.3. ¢y = id and ¥1(Ys(x)) = Vsii(x) whenever both are
defined.

Proof. The first property is clear. The second property uses that ¥ is unique. The
map ¢t — ¥(z,s+1) at t = 0 is equal to g(z, s) and has derivative %\I/(x, s+t) =
X(¥(x,s +t)). That is, it has the properties uniquely defining W(z',t) with
a' = ¥(x,s). Thus we see that

Usie() = U(w,s + 1) = W(W(z,5),1) = by (¥5(2)). =

You can recover the vector field X from the flow ¥ as the derivative of ¥(—,t)
with respect to t at ¢t = 0.

28.1.2 Flows on manifolds

To extend these results to smooth manifolds, we study the behaviour of solutions
to ordinary differential equations under diffeomorphisms. Given a diffeomorphism
¢: RF 5 U — V < R¥, we can push forward X along ¢ to get a vector field ¢,X
on V. In fact, the pushforward of vector fields is defined on arbitrary manifolds,

and is given by using the applying derivative of the diffeomorphism to the vector
field:

Definition 28.1.4. If ¢: M — N is a diffeomorphism and X is a vector field on
M, then the pushforward of X along ¢ is given by

X (p) = dy1) 0 [X (0™ ()]

For open subsets of Euclidean space the derivative is given by total derivative
and we have

$+X = Dy-1()¢ [X (¢~ (2))] -
On the one hand we can apply Theorem 28.1.1 to ¢.X on V using the compact
K' := ¢(K). The result is a solution ¥': V' x (—¢,¢') — V to the differential
equation

%‘I//(:r’,t):mDC(\II'(:U/,t)) and  U(2/,0) = . (28.1)

On the other hand we can transport the solution ¥ to X using ¢:
U p(U") x (—€,6) — V
(a'8) — ¢(L(¢™" (a"),1)).

I claim that this is a solution to (28.1). To prove this, observe it satisfies

U (2',0) = p(¥ (¢ (2),0)) = p(¢ ' (2)) = 2/,
and that we can use the chain rule to deduce that

d d -1
V(@) = Dysr@) 0@ [dt‘l’(@f) (90/)775)]

= Dy @ [X(T (6 (2), 1))]
= (g X) (V" (2, 1)).
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By uniqueness, any other solution of (28.1) has to coincide on ¥”(x,t) on the
intersection of their domain of definition: hence ¥’ = ¥ on (¢(U’) n V') x
(— min(e, €'), min(e, €')).

We will use this result to extend the technique of flowing along vector fields
to manifolds.

Theorem 28.1.5. Let M be a smooth manifold and X be a wvector field on
M. Then there exists a smooth map n: M — R~g and a unique smooth map
U: {(p,t)e M xR | |t| <n(p)} = M such that

%\Il(p,t) = X(¥(p,t)) and U(p,0) = p. (28.2)
Proof. We can find a collection of charts ¢o: R¥ o U, — Vi, € M and compact
subsets K, < V,, such that the K, cover M.

Every point p € M lies in some compact subset K, of M. We can push forward
the restriction X|y, to U, along ¢! and apply Theorem 28.1.1 to the resulting
vector field (¢;')«X. This gives us a smooth map Vo : U/, X (—€q, €0) — Us
with U/, an open neighbourhood of ¢ 1(K,). As above, we get a solution ¥,
to (28.2) on an open neighbourhood of K, x (—¢q, €4), by setting its value on
(p,t) € Ko X (—€q,€q) to be

Ua(p,t) == da(Ta(dy' (p).1).

We must check that combining these local solutions to (28.2) give rise to a
well-defined smooth map W. That is, if p e K, n K3, then we should have

Sa(Ta(dy'(0),1) = $5(Ts((¢5) " (p), 1)

as long as t is small enough so that both are defined. This is guaranteed by
the previous discussion applied to the diffeomorphism (qﬁg)_l 0 ¢t ¢t (Vo 0
Vi) — (¢5) (Vo 0 V3); pushing forward the vector field (¢5').X along this
diffeomorphism gives (qsgl)*x.

The result is a solution to (28.2) defined on an open neighbourhood V' of
M x {0} in M xR. Such an open subset always contains one of the type mentioned
in the theorem. O

Remark 28.1.6. This proof is one the places where it is important that manifolds
are Hausdorff: on the line with doubled origin the flow along % exists but is not
unique (you have to decide which of the origins to go into). This Hausdorffness
assumption is hidden in the proof: it is used to see that K, n Kz is compact.

As in the local case, we can define ¥ (p) = ¥(p,t) for (p,t) € V. This satisfies
do(p) = p and Y (Ys(p)) = ¥s41(p) as long as both are defined, and one can
recover X from the flow by taking the derivative of ¥(—,t) with respect to t at
t=0.

What can we say about the domain of definition? By uniqueness any two
solutions to (28.2) agree on the overlap of their domain of definitions, so by
combining these we can extend the domain. In particular, there is a solution
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with maximal domain of definition. However, even for a solution with maximal
domain, ¢t — W(p,t) might still only be defined on some proper open interval
(ap,bp) < R with a, < 0 and b, > 0:

Ezample 28.1.7. Let M = R\{0} and X = a%. Then the maximal domain of
definition of ¥ is given by those (z,t) € R x R such that t > z if z < 0, t < x if

t<axifz>0.

However, this can only occur if the integral curve through p leaves all compact
subsets of M eventually. Lemma 1.4.3 of [Wall6] says:

Lemma 28.1.8. Suppose ¥ has mazimal domain and fix p € M. Either b, = o
or the map V(p,—): [0,b,) — M is proper. Similarly, either a, = —oo or the
map ¥(p,—): (ap,0] = M is proper.

Corollary 28.1.9. Suppose M is compact. If a solution to (28.2) has maximal
domain then its domain is M x R.

Proof. As M is compact, no map [0,b,) — M or (a,,0] — M is proper. O

Remark 28.1.10. When M is compact, this corollary implies there is a one-to-one
correspondence between 1-parameter groups of diffeomorphisms and smooth
vector fields.

There are other conditions under which the maximal domain is all of M x R,
e.g. if X is compactly-supported or more generally, if X coincides outside of a
compact subset with a vector field Y whose maximal domain is M x R.

28.2 Isotopy extension

We will now give the first of several important applications of flows along vector
fields, a very important geometric tool called isotopy extension.

28.2.1 The isotopy extension theorem

It is based on the following idea: if you imagine your smooth manifold M as
being made from a stretchy fabric, then you can use your finger to move one
point p € M to some other point p’ € M and deform the rest of the manifold
along to produce a diffeomorphism M — M which moves p to p'.

In other words, imagining M as being made out of a stretchy fabric suggests
than any isotopy of embeddings = — M (starting at the map with value p and
ending at the map with value p’) can be extended to an isotopy of diffeomorphisms
M — M. An isotopy of diffeomorphisms is also called an ambient isotopy,
suggesting the following interpretation: you do not just move the objects in
question but also their surrounding environment.

The isotopy extension theorem says that an isotopy extends to an ambient
isotopy under mild assumptions.

Theorem 28.2.1 (Isotopy extension). Suppose that M and X smooth manifolds
without boundary, and that X is compact. Then for any isotopy of embeddings
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R2

Figure 28.1 The end result of pushing the origin to the red point, depicted by its effect on
vertical lines in R2. The dashed line gives the boundary of the support.

er: X x [0,1] > M can be extended to an isotopy of diffeomorphisms, in the
following sense: there exists a family of diffeomorphisms ¢r: M x [0,1] — M
satisfying ¢g = id and ¢¢ o ey = e;. Furthermore, each ¢, will be compactly-
supported (that is, equal to the identity outside a compact subset).

Proof. Let us define e: X x[0,1] — M xR by e(p,t) = e;(p). The smooth vector
field on X x [0, 1] given by % can be pushed forward along the embedding e to
obtain a vector field X on e(X x [0,1]) € M x [0,1]. Suppose we could extend
this to a vector field X’ on all of M x R. Then I claim that if we flow along X’
for time ¢ with initial condition (eg(p),0), we end up at (e;(p),t). To see this, we
must prove that

t— (er(p),t)

is an integral curve for X’. To see this, takes its derivative with respect to ¢ and
apply the chain rule

G0 = e | G0 0| = o] 00| - Xewo.

In other words, flowing ey with image in M x {0} along X’ for time ¢ produces
e; with image in M x {t}. We can try to produce ¢; by flowing the identity map
of M x {0} along X for time ¢. There are two problems:

(i) the flow may not exist,
(ii) it is not necessarily the case that the flow sends M x {0} to M x {t}.
Problem (ii) is solved by extending X not just to any smooth vector field X’

on M x R, but one that projects to % under dm for m: M x R — R. If so, we
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get the differential equation

% (o i(p,s)) = dm o X' (Yu(p, s)) = gt’
and the initial condition 7 o ¢y (p, s) = s guarantees that m o ¥ (p, s) = s + t.

If we make sure that X’ is equal to % outside of a compact set, this will solve
problem (i). It guarantees that the flow exists, because X’ coincides outside of
a compact set with a vector field whose maximal domain of solution is all of
M x R x R. Having imposed theses conditions, we can thus prove the theorem

by taking

¢: M x[0,1] — M x [0,1]
(p,t) — ¥((p,0), 1),

or in other words, ¢.(p) = ¥+(p,0).

So it remains to construct an extension X’ with the desired properties. Firstly,
it suffices to construct a smooth vector field X’ which

(a) coincides with X on e(X x [0, 1]),
(b) coincides with % outside a compact subset of M x R,

(c) satisfies the property dm o X’ is a positive multiple of % everywhere.

We may then afterwards modify X’ by scaling it with smooth function that is 1
on X x R, to get that dr o X' = % on all of M x R.

Since X is compact, we may find a finite collection of charts ¢;: R¥ > U; —
Vi © M x R covering the image of e and satisfy ¢; (Vi n e(X x [0,1])) =

U; 0 (R™1 % [0,00) x {0}). Let X! be the vector field on V; given as follows:
Step (i): first extend (gZ)i)*(%) on U; n (R™~1 x [0, 0) x {0}) to U; n (R™ x {0}),

Step (ii): then extend it in constant manner to the remaining (k—m) coordinate
directions of Uj,

Step (iii): apply (¢; ")

This extends X|y;, so in particular has the property that dm o X, = % on

Vine(X x[0,1]). Hence by possibly shrinking V; to a smaller open neighborhood

of Vi ne(X x [0,1]), we may assume that 7, (X}) is a positive multiple of a%.
Let V be an open subset of M x [0, 1] satisfying Vo ne(X x [0,1]) = @ and

Vo u Ule Vi = M x [0, 1], and let 7; be smooth partition of unity subordinate

to this open cover. The desired vector field is

: O N
X ::n0-§+2m-xi.
=1

By construction this extends X and the condition that dr o X’ is a multiple of %
by a positive smooth function is preserved by taking convex linear combinations
such as those that appear when using partitions of unity. ]



28.2  Isotopy extension 235

ffffff X

—

An embedding of R into R3
given by knot X centered at
the origin for ¢ = 0 moving
rightwards to co as t increases.

Figure 28.2 A family of embeddings to which isotopy extension does not apply. It does not
satisfy the assumption that X is compact.

28.2.2 Transitivity of diffeomorphisms

We have previously asserted that there exists a diffeomorphism of R™ mapping
the origin to any specified point = € R™. Let us use isotopy extension to generalize
this to all connected manifolds:

Corollary 28.2.2. Suppose that M is a connected manifold and p,p’ € M,
then there exists a compactly-supported diffeomorphism @: M — M such that

o(p) = (p').

In fact, the proof will give a stronger result: we can find such a ¢ which is
isotopic to the identity.

Proof. Since M is connected, there exists a path v from p to p’. Defining
e: xx[0,1] — M
(%, 2) — (),
this can be interpreted as an isotopy of embeddings from the embedding

eg: * — M

* —> D
to the embedding

ep:x — M

*l—)p/_

Applying the isotopy extension theorem to e, we find an isotopy ¢;: M x [0,1] —
M such that ¢g = id and ¢;o0ey = e;. Then ¢ is the desired diffeomorphism. [J

28.2.3 Knot complements

It follows from Corollary 28.2.2 that M\p and M\p’ are diffeomorphic; the

restriction of ¢ gives this diffeomorphism. This can be generalized as follows.
Recall that a knot is an embedding e: S! — R3 up to isotopy. One might

think of trying to distinguish a knot by its complement R3\e(S'). However, it
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is not obviously clear this is well-defined, because its diffeomorphism type may
depend on the choice of e within the isotopy class. However, the isotopy extension
theorem tells us that for any two representatives e, e’: S — R? of a knot, there
exists a diffeomorphism ¢: R?* — R3 such that ¢ o e = ¢/. This restrict to a
diffeomorphism

plrae(sr): R7\e(S1) — R\e'(S1).

28.3 Manifold bundles and the Ehresmann fibration theorem

28.3.1 Manifold bundles

The data of a smooth vector bundle in particular is a smooth map p: £ — X
whose fibers are diffeomorphic to R¥. It must be locally trivial, in the sense that
each point x € X admits an open neighbourhood V' and a commutative diagram

(V) —=— V xRF

S

v

the horizontal maps are diffeomorphisms. There is nothing special about R* here,
and we can replace it with any other smooth manifold M:

Definition 28.3.1. Suppose that either M = @ or 0X = @. A smooth manifold
bundle with fiber M is a smooth map 7: F — X such that for each point x € X
there is an open neighbourhood V and a commutative diagram

~

(V) ==V xM

©

V _—— V
with horizontal maps diffeomorphisms.

Usually both M and X will be empty. We will denote the fiber p~!(z) by
E.; by definition it is diffeomorphic to M.

FEzxample 28.3.2. There is always a trivial manifold bundle 71: X x M — X.

Example 28.3.3. Suppose that M # & (hence we assume 0X = &), then
plop: 0F — X is a smooth manifold bundle with fiber dM. Indeed, the local
trivializations in Definition 28.3.1 restrict to local trivializations

oY (V) —== V x oM

P

V:V

Ezxample 28.3.4. If a compact Lie group G acts freely and smoothly on M, then
M — M /G is a smooth manifold bundle with fiber G.
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28.3.2 The Ehresmann fibration theorem

Theorem 28.3.5 (Ehresmann fibration theorem). A proper submersion w: E —
X is a manifold bundle.

Proof. It remains to check that p: E — X is locally trivial. That is, we need to
find for each point x € X a local trivialization: an open neighbourhood U of x
and a commutative diagram

p W (U) == UxM

o

U:U

with horizontal maps diffeomorphisms. By restricting to a chart in X, we thus
may assume without loss of generality that X = R* and x is the origin.

By induction over k, it suffices to prove that a proper submersion p: E — R¥
whose restriction to R¥~1 x {0} has a trivialization, has a local trivialization near
the origin. To do so, it suffices to find a commutative diagram

T R X {0) x R —— 7' (RFT xR) = E

[t Js

RF-I xR RF-1 xR

with horizontal maps diffeomorphisms.

To do so, we use a vector field X on E such that dpo X = & Such a vector
field can clearly be constructed locally using charts provided by the submersion
theorem, and these can be combined using a partition of unity as in the proof of
Theorem 28.2.1. Now we apply Theorem 28.1.5 to X and consider the maximal
domain of each integral curve. For p € E the maximal domain of the integral
curve through p either (i) is R, (ii) the maximal integral curve gives a proper
map vp: (ap,0] or v,: [0,b,) — M with a, # —o0 or b, # 0. We rule out case
(ii): the composition 7 o, is proper since 7 and 7, are and by uniqueness of
solutions to ordinary differential equations given by t — 7(p) + t - ex. But this
map is not proper unless both a, = —o0 or b, = c0. Thus the flow is defined on
all of M x R.

In terms of this, the map G is given by

7 YR x {0}) x R — 7 }(R*! x R)
(p,t) — g(p,1)

with inverse given by mapping p’ € E to (g(p’, —pry ow(p')), pry o m(p')): the fact
that dr o X = =2 guarantees this is well-defined and that the composition of G

oz,
with 7 is equal to 7 x id. O

Using the result that quotients of free smooth actions of compact Lie groups
are submersions, this implies the following:
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Corollary 28.3.6. If a compact Lie group G acts freely and smoothly on M,
then the quotient map M — M /G is a manifold bundle with fibers diffeomorphic
to G.

28.4 Problems

Problem 61. Let G be a compact connected Lie group.
(a) Show that there is an isomorphism between the tangent space T.G and
the vector space left-invariant vector fields on G.

(b) For X € T.G, let ;X be the flow generated by the left-invariant vector
field corresponding to X. Prove that its maximal domain is R.
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First fundamental theorem of Morse theory

In this lecture, we discuss that part of Morse theory which does not involve
critical points. We define Morse functions, prove they exist, and show that if
[a,b] = R contains no critical points of f, then f~!([a,b]) is diffeomorphic to
f~a) x [a,b]. This can be found in Section 1.7 of [GP10], Section 5.1 of [Wal16],
and Section 3 of [Mil63].

29.1 Morse functions

Recall that for a smooth function f: M — R, a point p € M so that d,f is not
surjective is called a critical point. Given a critical point and local coordinates
(1,...,2k), one can define the Hessian. For simplicity, suppose that p is the
origin in these local coordinates, then we have a (k x k)-matrix with (¢, j)th entry
given by

_ @
B &cha:rj

Hesso(f)ij : (0).

Remark 29.1.1. By Taylor’s theorem, in these local coordinates f is near the
origin given by

= £(0 Ly P 0)viay + O
flx) = f( )+2¢JZ=1 a%i(%j( )aizj + O(z”).

We say that p is a non-degenerate critical point if the Hessian matrix as
described above is invertible. Though the Hessian itself depends on a choice of
coordinates, it being invertible is well-defined, by the following lemma which is
an easy consequence of the chain rule:

Lemma 29.1.2. If : R¥ 5 U — U’ < R* is a diffeomorphism such that
¢(0) = 0. Then the origin is a non-degenerate critical point f: U — R if and
only if it is a non-degenerate critical point of f o ¢.

Definition 29.1.3. A smooth function f: M — R is a Morse function if all its
critical points are non-degenerate.
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Ezxample 29.1.4. Tt follows from the expression in Remark 29.1.1 that non-
degenerate critical points are isolated. In particular, a Morse function on a
compact manifold only has finitely many critical points.

29.1.1 Existence of Morse functions

Morse functions are generic among smooth maps f: M — R. This follows from
the following theorem, which depends on a choice of embedding e: M — RY
(this exists by Whitney embedding theorem). Let ey, ...,en: M — R denote the
coordinates of e.

Theorem 29.1.5. For a dense set of (ay,...,ay) € RY, the smooth map
fo: M —R
p— f(p) + are1(p) + -+ anen(p)
is a Morse function.

Proof. We shall denote the map in the statement of the theorem as f,.

We first consider the local situation; suppose U < R¥ is an open subset and
g: U — R is a smooth function. Then we claim that for outside of a set of b € R¥
of measure zero, the map

g: U —R
(x1,...,zk) — g(z1, ..., xk) + bixy + -+ + by

is a Morse function. To do so, we observe that p is a critical point of g, if and
only if D,g = —b.

Since we working on R¥, the Hessian is well-defined even at points which
are not critical point. Thus it makes sense to say that g and g; have the same
Hessians; this is true because g, is obtained by adding a linear perturbation to g.
We next consider the function

G: U —RF
g g
(x1y...,x) — <am(:z:1,...,:nk),...,m(an,...,x@)
because b is a critical point of G if and only if the Hessian of g (or equivalently
gp) at p is non-degenerate. Thus g; is Morse if and only if b is not a critical value
of G. By Sard’s theorem these critical values have measure zero.

Having established this local statement, we use a prove the global one. To do
so, we find a countably open cover {U,} of M such that for each U, there exist k

integers i1,...,4 in {1,..., N} such that coordinate functions e;,,...,e;, : Uy —
R give local coordinates on U,. Without loss of generality we have i; = j for
je{l,...,k} and we can use ey, ...,e; as local coordinates x1,...,x; on U,.
Then for each cgy1,...,cny € R we consider the smooth function

fS: Uy —R

(X1, xk) — f(z1, .. xk) + Chr1 €pr1 (X1, k) + - Fenven(Tr, ..., Tk).
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By the above local argument, the set of b € R* such that (f¢), is not Morse, has

measure zero. As a union of countably many such sets, the set of (b1, ..., bk, crr1, . -

RY such that (f¢), is not Morse, also has measure zero.

Thus, for each each « there is a measure zero set of a € RY so that f, is not
Morse on U,. Since a countable union of measure zero subset still has measure
zero, there is a dense set of a € RN so that f, is Morse on all of M. O

29.2 The first fundamental theorem of Morse theory

Let M be a manifold without boundary and f: M — R be a Morse function. We
shall study M by studying the (sub)level sets

Mg, = f_l((—oo,a]) and M, = f_l({a}).

By the submersion theorem, if a is a regular value, M, € M is a codimension
zero submanifold with boundary dM¢, = M, given by a level set.

29.2.1 Gradients
Given a smooth function f: R¥ — R, its gradient is the vector field

of

or1
vi=|
of
8:vk

That is, the component in the direction of the standard basis vector e; is given by

%. Using the standard Riemannian metric, we can identify each basis vector of

R* with a basis vector of its dual (R¥)*: e; corresponds to the linear functional
{ej, —). In other words, the Riemannian metric provides an isomorphism of the
tangent spaces to points in R¥ with the corresponding cotangent spaces. From a
vector field, a section of the tangent bundle, we thus get a 1-form, a section of
the cotangent bundle. In this particular case, the Riemannian metric sends e; to
dz;, and we see that Vf gets sent to

k
of

This discussion extends to manifolds with a Riemannian metric g. This
Riemannian metric is given by a smoothly varying non-degenerate bilinear form
on the tangent space T},(M),

Tp(M) x Tp(M) 3 (v,w) — g(v,w) € R
and thus provides an isomorphism of vector bundles T'M — T*M
Tp(M) € v—> g(v,—) € T,;(M).

In particular, it sends sections of T'M to sections of T*M and vice versa: every
vector field corresponds to a unique 1-form.

7CN) €
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Now suppose we have a smooth function f: M — R, then there is a 1-form
df € Q'(M). The Riemannian metric sends this to a vector field V f, which we
call the gradient of f (this notation and terminology is not ideal, as the gradient
depends on the choice of Riemannian metric).

29.2.2 Gradient flow without critical points

Suppose that M is compact, then using the techniques of the previous lecture, we
can flow along V f. The result is a smooth family of diffeomorphisms ¢,: M — M
for t € R, satisfying ¢g = id, ¢s 0 ¢+ = P51+ and %gﬁt =V/f.

To understand this flow, let us see how f varies over an integral curve ¢.(p).
Let || — ||* denote the norm on T* M coming from the Riemannian metric, then
we compute that

L 0ue)lemo = dps (2P,

= pf(vf@))
= |ldp f11*.

Since ¢ is a flow, this implies that <& f(¢(p))|i—s = [|dg, (p) f||*>. We conclude
that:

Lemma 29.2.1. The function t — f(¢1(p)) is non-decreasing and strictly in-
creasing when ¢(p) is not a critical point.

We shall use this to study the subset
Moy = " ([a,b]),

for a < b regular values. This is a codimension zero submanifold of M with
boundary M, u M. Let us take p € M, and consider the integral curve ¢(p).
When does this leave M, p?

Lemma 29.2.2. Fizpe M,. Let (0,c) for ¢ > 0 be the maximal interval such
that ¢i(p) € int(Mqp)) for t € (0,c). Then if ¢ is finite, ¢.(p) € My, and if c = 0

then there are t; — o0 such that ¢, (p) converges to a critical point.

Proof. Suppose that c is finite. Then we know that ¢.(p) is defined but not in
int (M, p)) (or we could extend the interval (0,c)). Thus it is either in M, or My,
and since a is not a critical value, f(¢:(p)) is strictly increasing with ¢ at ¢ = 0.
It is non-decreasing afterwards, so we must have that ¢.(p) € M,.

If ¢ = oo, then since f(¢(p)) increases at t — oo but remains strictly smaller
than b,

N N d
J ||d¢t(p)f|‘2dt = f af(@(ﬁ))dt = f(én(p)) — f(¢o(p))
0

0

converges as N — 0. Thus |[dg, () f|| must decrease to 0 as t increases. This
means that it eventually be contained in any open neighbourhood of the critical
points in M. Since the M, is compact, this means that we can find a
subsequence which converges to a critical point. O
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We are interested in the case that there is no critical point in M, ), and thus
the second case in the above lemma can not occur. The same argument then
tells us that when we start any p € M, ), there is some maximal finite interval
(¢, ) with ¢/ < ¢ such that ¢;(p) € int(M,y)) for t € (¢, c) and ¢ (p) € M, and

¢C(p) € M.

7/// _ -
M EI -

—
f E—

ﬂ[|u.b|
R

s . ’ _ -

Figure 29.1 An example of a proper map f: M — R such that M, ;) contains no critical point.
note that M(_ ,) contains 7 critical points.

Theorem 29.2.3 (First fundamental theorem of Morse theory). If the interval
[a,b] contains no critical point, then there is a diffeomorphism M, ) — My x[0,1]
which restricts to the map M, — M, x {0} given by p — (p,0).

Proof. By the previous lemma, for each p € M, there is a ¢(p) > 0 such that
Ge(p)(p) € My. This is unique because f(¢:(p)) is non-decreasing and strictly
increases at t = ¢(p). By smooth dependence of solutions of ordinary differential
equations on initial conditions, ¢: M, — (0,00) is smooth. Now consider the map

U M, x [0, 1] —_—> M[a,b]
(1) = Bre() ()-

In other words, it is the composition of the diffeomorphism (p,t) — (p,tc(p))
between M, x [0,1] and N := {(p,t) € My, x R |0 <t < ¢(p)} and the smooth
map ¢: M, x R — M.

It has an inverse given as follows: given by p € M, take (c,c) as above
and define ®(p) = (¢ (p), —’). This is smooth using the smooth dependence of
solutions of ordinary differential equations on initial conditions and smoothness of
¢. It is an inverse by uniqueness of solutions to ordinary differential equations. [J

Corollary 29.2.4. If the interval [a,b] contains no critical points, then M, is
diffeomorphic to My.
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Proof. Mgy is obtained from Mg, by gluing on M, ;). Recall that the existence of
collars tells us that M«, contains a neighborhood C' of M, with a diffeomorphism
M, x [-1,0] — C. Since M, = M, x [0,1] by the previous theorem, we see
that Mg, is diffeomorphic to M, via

Mgb — Mga

c(q,n(t)) ifp=c(qt)eC,
pr— < clg,n(t) ifp="U(gt)e Mygy,
D if pe Mc,\C.

with n: [—1,1] — [—1,0] a diffeomorphism which is the identity near —1. O



Chapter 30

Second fundamental theorem of Morse theory

In this lecture we discuss the part of Morse theory which does involves critical
points and show if [a,b] = R contains a single critical points of f of index p, then
f~1((—o0,b]) is obtained by attaching an i-handle to f~!((—o0,a]). This can be
found in Section 5.1 of [Wall6] and Chapter 1.§3 of [Mil63].

Remark 30.0.1. Throughout this chapter we shall ignore the issue of “smoothing
corners.” If you want to understand these technical details, see Section 2.6 of
[Wall6].

30.1 The second fundamental theorem of Morse theory

Let M be a compact manifold and f: M — R be a Morse theory. We recall some
notation from the previous lecture

Moo= f({a), Moo= f N (-o0a])  and Mgy = ([a.b]).

In the previous chapter we saw that if there is no critical value in [a,b]—or
equivalently no critical point in M[, y;—then there is a diffeomorphism M, 3} —
M, x [a,b] that is the identity on M,.

30.1.1 The Morse lemma

What happens when there is a unique non-degenerate critical point p in M, y?
Pick a chart ¢: R¥ > U — V < M such that ¢(0) = p, and in terms of coordinates
(x1,...,2,) €U, f is given by

A k
f(xl,...,xk)zc—Zx?—k Z z2.
i=1 i=A+1

This is possible by the Morse lemma, and we provide a proof below from [DK04a,
Theorem 4.8.1] that is different from the one in [GP10]:

Lemma 30.1.1. If a critical point pe M of f: M — R is non-degenerate then
there exists a chart as above.

245
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Proof. Without loss of generality we may assume that f(p) = 0, and fix a chart
¢: RF 5 U — V < M such that ¢(0) = p. Let x = (x1,...,2;) denote the
coordinates near p coming from this chart, defined on U < R,

Let Sym(R*) denote the space of symmetric (k x k)-matrices over R; we
give this a smooth structure by using the entries to identify with a Euclidean
space. The multi-variable version of Taylor approximation says that there is a
smooth map Q: W — Sym(R¥) such that f(x) = (Q(z)x,z) and which satisfies
Q(0) = Hessy(f) [DK04a, Theorem 2.8.3]. We first want to change coordinates
from z to y so that () is independent of y. To do this, make the ansatz that
y = A(x)x for a smooth map A: U — GLg(R). In that case we need to solve the
equation

(Q0)A(z)z, A(x)z) = {Q(x)2, ),

(
or equivalently A'(x)Q(0)A(z) = Q(x). We then consider the smooth map
G: Sym(R¥) x U — Sym(R¥) given by

(B,z) — (id + ;Q(O)_lB)t Q(0) (id + ;Q(O)_IB> —Q(x).

This is equal to 0 at (B,z) = (0,0) and its derivative with respect to B at
(B,x) = (0,0) is the identity:

|

560 = (500 a0+ o) (300)7)
= %id + %id = id.

By the implicit function theorem, there exists a neighbourhood U’ of 0 in U
and a smooth map B: U — Sym(R¥) such that G(8(z),x) = 0. Taking

A(z) =id + %Q(O)_lﬂ(:ﬂ)

we obtain that (Q(0)A(x)z, A(x)z) = (Q(z)x,z). So we shall use coordinates
y = A(x)z. Since z — A(x)z has derivative id at 0, by the inverse function
theorem there exists some smaller neighbourhood U” on which this map is a
diffeomorphism.

Now that in y-coordinates we have that f(y) = (Q(0)y,y), it is a matter
finding a matrix A such that A'Q(0)A diagonal with entries +1 and using the
coordinates z = Ay instead. This is possible by Gram-Schmidt. 0

Remark 30.1.2. The proof in fact tells us we can take A(x) to be an invertible
symmetric matrix.

30.1.2 The second fundamental theorem

Let € > 0 be small enough such that U contains the ball B 5:(0) and a < c¢—2¢ <
¢+ 2¢ < b. Then we shall describe the difference between f~!([a,c — €]) and
f~Y([a,c + €]), at first up to homotopy and then as a manifold. To do so, define
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the subset C' = B 5.(0) by {(x1,...,2,0,...,0) | S 22 < €}, where C stands
for core. This is of course a A-dimensional disk, whose boundary (A—1)-sphere lies
in f~!(c—e¢). The description of M, [a,c+¢ UP to homotopy equivalence is as follows,
and along the way we will in fact obtain a description up to diffeomorphism. This
amounts to two applications of the first fundamental theorem of Morse theory,
combined with a difficult computation in the local model provided by the Morse
lemma.

Proposition 30.1.3. My . is homotopy equivalent, as a topological space, to
the union My, ._q v C.

We shall use the notion of a deformation retraction: for A < X closed, a
deformation retraction of X onto A is a homotopy H: X x [0,1] — X such that
H(z,1)e Aforall z € X and H(a,t) = a for alla € A and ¢ € [0, 1]. If there is a
deformation retraction of X onto A, then i: A — X is a homotopy equivalence;
its homotopy inverse is H(—,1).

To prove the proposition, we shall find a neighbourhood U of M, ._q v C
which is a deformation retract M, ., and itself deformation retracts onto
M, [a,c—e€] v C:

M[a,c—s] vCSUS M[a,c-i—e]'
To do so, we modify f to another function F' with some special properties. We
will only change f on the subset M[._, ., using a smooth function ¢: [0,00) —

[0, 00) satisfying
(i) ¢(0) € (e, 2e),

(ii) ¢(t) = ¢(0) for t near 0,
(iii) ¢(t) = 0 for t € [2¢,0), and
(iv) ¢'(t) € (—1,0] for all ¢ € [0, o0).
Yy
2e

2¢

Figure 30.1 The function ¢.
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Then the function F' shall be given by

F:M—R
s {f(ﬁ) —¢(Z?=1x% +22f:/\+1$12> ifreV,

f(x) otherwise.

This is a smooth function because ¢ (Zg\:l wlz +2 Zf: At l x?) has compact sup-
port in V. It is essentially f with a strip near the critical point pushed downwards:

Lemma 30.1.4. F has the following properties:
(1) Migerg = F-'([a.c + €]).
(2) F has the same critical points as f.
(3) In B 5.(0) ¢ U, F~'([a,c — €]) is described by Figure 30.2. More
precisely, U is diffeomorphic to M, . v (D* x D*=) attached along an

embedding 0D x D¥=* (up to smoothing corners), with C corresponding
to D* x {0}.

Figure 30.2 The set U is the union of the red and purple parts. The set is f~!([a,c + €]) is the
union of the red, purple and dashed parts.

Proof. Let us write x = (y,z) when z € U, with y = (y1,...,y)) denoting the
first A coordinates and z = (z1,..., 2zx—)) denoting the remaining k& — A.

Part (1) follows by noting that since F' < f (since ¢ is non-negative), we have
that f~([a,c+€]) € F~'([a,c+ €]). For the converse, if z € F~([a, c + €]) and
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o(||y||? + 2[|2|1?) > 0, then ||y||> + 2||2||* < 2¢ (since ¢(t) = 0 when t > 2¢), so
that

1
F(@) = fle) = =Ill* + 1211 < Syl + [l=]* < e

and thus z € f~!([a,c + €]) as well.

For part (2) there is only something to check when p € V. Working in local
coordinates, we have that 1VF(z) = (—y — ¢/(z)y, 2 — ¢/(x)22). This certainly
vanishes at 0, so p is a critical point. To see this is the only critical point, note
that since ¢/(z) > —1, we must have y = 0 and since ¢'(z) < 0, we must have
z = 0.

Rk—)x

M[a,c—i—e

Figure 30.3 The gray part consists of those disks D, in the proof of Lemma 30.1.4 that do not
coincide with those for the original function f.

The precise proof of part (3) is a rather long computation, as we need to
produce an explicit diffeomorphism; details can be found in Chapter 3 of [Mil63]
or Section VII.2.2 of [Kos93]. The main observation is that upon fixing the first
A-coordinates to be equal to y = (y1,...,yx) with ||y||* < ¢, the intersection
of F~Y([a,c — €]) with the (k — \)-dimensional plane {y} x R* is given by a
disk whose radius depends smoothly on y. Of course, as soon as ||y||? + 2||z||?
reaches Tp = inf{t | ¢(¢) = 0}, then this disk coincides with the intersection of
the original set f~!([a,c — ¢€]) with the (k — \)-dimensional plane {y} x RF=A,

To check this, note that this intersection is given by the set (y, z) € R x RF=4
with z satisfying

c—lylI2 + [12]12 = oyl + 2[|2||2) < ¢ — .



250 Chapter 30  Second fundamental theorem of Morse theory

The condition may be rewritten in terms of a(y, z) = ||y||* + 2||z||? as

By, 2)) — aly,2)/2 > e~ Sl (30.1)

Since ¢(t) — t/2 is decreasing on the interval [0, 2¢] from ¢(0) > € to —e, there is

a unique #p > 0 such that ¢(tg) —to/2 = € — 3||y||*>. In terms of ¢y, the inequality
(30.1) is equivalent to

1

12117 < 5 (ko = Ilyl)- (30.2)

Since ¢(0) > € and ¢'(t) > —1, we have that ¢(tg) > € — tg, so that we have

d(to) — to/2 > € — 3to and thus that ty > ||y||?, so the right hand side of (30.2)

is strictly positive. The set D, = {(y,z) | ||z||> < 1(to — ||y[|*)} is the desired

disk. O

We shall then define U = F~!([a, ¢ — €]), which is diffeomorphic to M, c4 -
To see this, apply the first fundamental theorem of Morse theorem using the
observation that there is no critical point in M, .4.\U. From this observation
and part (3) of the Lemma, we not only obtain the homotopy-theoretic description
also the stronger statement that M, . is diffeomorphic to (M, x [a,c —€]) U
(D* x D*=*). Thus we have proven:

Theorem 30.1.5 (Second fundamental theorem of Morse theory). If M,
contains a unique non-degenerate critical point in its interior, which has index A,
then there is a diffeomorphism (up to smoothing corners)

M(foo,b] o M(,Oo’a] UaDA x Dk—A (DA X Dki)‘).

30.1.3 Handle decompositions

The construction which takes a manifold W with boundary 0W and an embedding
e: 0D* x DF=* < 0W to the manifold obtained by smoothing the corners in

W Ugpaxpr-x D x DF72,

is called a handle attachment of index A.

The second fundamental theorem of Morse theory says that each critical point
of index A corresponds to a handle attachment of index A, as long as all critical
points have distinct critical values. This is a minor restriction, as by a small
perturbation we may assume this is the case, cf. Exercise 1.§7.19 of [GP10].

Since every manifold admits a Morse function and Morse singularities are
isolated, we conclude that every compact manifold M can be obtained by a finite
number of handle attachments. We say it admits a handle decomposition.

Ezxample 30.1.6. The height function

Sk R

(xo,...,Tk) — Tp
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is a Morse function with a minimum at (—1,0,...,0) (so index 0) and a maximum
at (1,0,...,0) (so index k). Thus we see that S* has a handle decomposition
with a single 0- and k-handle. This is just the decomposition

Sk = (DO X Dk) UoDk x DO (Dk X DO)

into two hemispheres.

Figure 30.4 A 3-dimensional 1-handle D! x D? attached to R? = 0(R? x (—00,0]). The red line
is D! x {0}, the orange disk is {0} x D2.

30.2 Morse functions and de Rham cohomology

The relationship between de Rham cohomology and Morse functions will be the
following:

Proposition 30.2.1. Let f: M — R be a Morse function on a k-dimensional
compact manifold M, then for each 0 < A < k there is an inequality

#{critical points of f of index \} = dim H*(M).

Proof. We may assume without loss of generality that f has critical points with
distinct critical values, and shall ignore the smoothing of corners in this proof.
Pick ag < -+ < ay, such that f(M) c [ag, a,] and each interval [a;_1, a;] contains
a unique critical value.

We shall prove by induction over ¢ that there is an inequality

#{critical points of f|a_, , , of index A} > dim H)‘(M(_OOM]).

The initial case is ¢ = 0, and then M(_, ) = @ and the statement is clearly
true. For the induction step, we use the second fundamental theorem of Morse
theory:

M(foo,ai] = M(foo,ai,l] UaDX x Dk—A D/\ X Dki)\.

Let us apply Mayer—Vietoris to the open cover

U = int(DY) x D*,
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V= M(foo,aifl] UaDA x Dk—X (D)‘\Di‘/z) x DF=2

Then U is contractible, V' is homotopy equivalent to M(_y 4, ,) and U NV is

1
homotopy equivalent to S*~1.

From the Mayer—Vietoris long exact sequence we conclude that
Hi(M(_OOM]) - Hi(M(—OOm?l])

is an isomorphism unless ¢+ = A\, A — 1. In those cases, we get an exact sequence
(for convenience we assume A > 3, dealing with H%’s requires a bit of additional
care)

[_) H)\(M(—Oo,az]) E— HA(M(—OO,G,Z'_J) E— O

r HY Y (M(_op0y) —— HY M (M(_p 0, ;) —— R J

0

Two things can happen to the R in HA~1(U n V): either it adds to H*

dim HN(M(— o q,]) = dim HNM(_o5 4, 1)) + 1,
and dim H* N (M(_y o) = dim BN (M(_op 4, 1),

or it subtracts from H 1,

dim HMNM(_y 07) = dim HN(M(_os 0, 1),
and dim H ' (M(_y 4,1) = dim H} 1 (M(_op 0, 1) — L.

In both cases the inequalities to be proven are satisfied. (Indeed, it may be
helpful to observe that equality occurs only if all critical points add cohomology
and never subtract cohomology). O

Ezample 30.2.2. We know the cohomology of the 2-torus: H°(T?) = R, H!(T?) =
R2 H?(T?) = R. Thus every Morse function on T? has at least one minimum,
one maximum, and two saddle points. We leave it to you to find an example of
such a Morse function.

Ezample 30.2.3. Tt is not true that you can always find a Morse function with
exactly dim H* critical points of index A. For example, only H°(RP?) = R is
non-zero, but since RP? is compact every Morse function on it has a maximum.

Remark 30.2.4. Given a Morse function f: M — R, there is a chain complex CZ{
with Cg given by the free R-vector space on the critical points of f of index p,
and differential given by counting flowlines. Its homology is the Morse homology
H.(M; f). It turns out to be independent of f and for compact M there is an
isomorphism H,(M; f)* =~ HP(M).
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Classification of smooth surfaces

In this lecture we use the theory of handle decompositions to classify smooth
compact surfaces.

31.1 Manipulating handle decompositions

31.1.1 Handle decompositions

We recall from the previous lecture the notion of a handle attachment. The input
is a smooth manifold W with boundary 0W and an embedding ¢: dD* x DF=* —
OW that we call the attaching map, and the output is the smooth manifold

W + ((Zﬁ) =W UaoDA x DE—A D)\ X Dki)\,

where the identification is made along ¢ and implicitly smooth the corners. We
name some subspaces of W + (¢):

- D* x DF=* is the handle,

- D* x {0} is the core,

- 0D x {0} is the attaching sphere,

- {0} x D*=* is the cocore,

- {0} x dD*=* is the transverse sphere.

To give a handle decomposition of a manifold is write it as diffeomorphic to
one obtained by iterating handle attachments. The existence of Morse functions
implies that every compact manifold admits a finite handle decomposition, so we
can always write

M= (o) + -+ + (60)

for some r. Note that this notation is a bit deceptive, since handle attachments
do not commute.

Remark 31.1.1. It is convenient to observe that handle decompositions can be
read backwards: we think of a A-handle D* x D¥~? rather as a (k — \)-handle
and reverse the order of handle attachments. This amounts to replacing a Morse
function f: M — R with its negative —f: M — R.

253



254 Chapter 31  Classification of smooth surfaces

31.1.2 Handle manipulations

There are four moves to modify handle decompositions:

(1) Handle isotopy.
(2) Handle rearrangement.
(3) Handle cancellation and addition.

(4) Handle exchange.
We will need only the first three of these.

Handle isotopy

The first concerns modify the attaching map:
Lemma 31.1.2. If ¢ is isotopic to ¢’ then there is a diffeomorphism
W+ (¢) =W + (¢).

Proof. Let ¢y: D* x D¥=* < 0W be an isotopy of embeddings from ¢y =
¢ to ¢1 = ¢, and use the isotopy extension theorem to find an isotopy of
diffeomorphisms f;: 0W — 0W so that (i) fo = idew and (ii) fi¢o = ¢;. Picking
a closed collar x: dW x [0,1] < W we then define a diffeomorphism

F: W+ (¢) — W+ (¢)
- {(flt(q%t) if p = x(g,t)

P else

which is well-defined since it sends a point in the image of ¢ to the corresponding
point in the image of ¢'. O

Handle rearrangement

The second concerns the ordering the handles. We start with the following
obvious observation:

Lemma 31.1.3. If ¢y9 and ¢1 have disjoint image in W, then there is a
diffeomorphism

W+ (¢0) + (¢1) =W + (¢1) + (¢0).
It is sometimes possible to arrange the hypothesis:

Lemma 31.1.4. If index(¢o) > index(¢1) then we can isotope ¢1 to ¢ which
takes image in OW\im(¢pg) and thus

W+ (¢o) + (¢1) = W + (¢1) + (¢0).

Proof. Write Ao := index(¢g) and A; := index(¢;). There are three steps:
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1. We first isotope the attaching sphere of ¢; to be disjoint from the transverse
sphere of ¢g. To do so, we make the former transverse to the latter by an
isotopy. Since the first is a (A\; —1)-sphere, the latter is a (k— Ao — 1)-sphere,
and we are in the (k — 1)-dimensional manifold o(W + (¢9)), they are in
fact disjoint.

2. We next isotope the attaching sphere of ¢; to be disjoint from ¢q. To
do so, we choose a vector field on (W + (¢0))\({0} x D¥=?°) that on
(D* x 9D*=20)\({0} x dD¥=20) is given by d/0r in the first coordinate.
Flowing along at least one unit of time will move the compact submanifold
$1(0D*M x {0}) out of D x dDF=0 < AW + (¢)).

3. We finally shrink the D*~*1_direction so that ¢; is disjoint from ¢y. O

Applying this inductively, we can find for every compact manifold M a handle
decomposition

M= (o) + -+ + (60)

where index(¢;—1) < index(¢;) and we can assume all handles of the same index
are attached simultaneously.

Handle cancellation

The third concerns the removal of a pair of handles. We will not give a proof
since we will only need it in a special case:

Proposition 31.1.5. If the attaching sphere of ¢1 intersects the transverse
sphere of ¢g transversally in a single point, then there is a diffeomorphism

W+ (¢o) + (¢1) = W.

The special case we need is that of 2-dimensional manifolds. First consider
the case that ¢ is a 0-handle, i.e. a disc D?, and ¢y is a 1-handle. The transverse
sphere of ¢g =~ D? is all of dD? and the attaching sphere of ¢; =~ D' x D! is
0D' consisting of two points. So the hypothesis is simply that the strip D' x D!
is attached along a single line segment to D?, and the other line segment is
attached to W. We are thus just gluing a D? to W along half of its boundary
and smoothing corners, and this is diffeomorphic to W again. For the last step
we use the following lemma to reduce it to writing down a diffeomorphism in a
local model, by choosing e to be the unit disc in a chart:

Lemma 31.1.6. Let M be a connected d-dimensional manifold with an embedding
e: D4 — M. Let ¢: D* — M ben another embedding and suppose that either
(i) M s oriented and both e and ¢ are orientation-preserving, (ii) M is non-
orientable.

Proof. We prove the first case, as the second is similar. Applying isotopy extension
to a path connecting ¢(0) to e(0) to isotope ¢ and shrinking its domain, we can
isotope ¢ to a ¢’ with image in im(e). Thus we may assume that M = D? and
we have proved before that every orientation-preserving embedding ¢: D¢ — D?
is isotopic to the identity. O

The second case that ¢q is a 1-handle and 2-handle is similar.
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31.2 The classification of surfaces

We will use the existence of handle decompositions and the above three moves to
classify compact surfaces.

31.2.1 The orientable case

You should be familiar with the 2-sphere and the 2-torus, which are the case g = 0
and g = 1 of the surface 3, of genus g. The latter admits a handle decomposition

2g

Xy = (o) + Z(¢z) + (P2g+1)

=1

where (¢g) has index 0, (¢;) has index 1, and ¢2441 has index 2, and the attaching
maps for the 1-handles alternate in the following pattern:

Figure 31.1 An attachment pattern for a genus 4-surface (from [FM97]).

It is in fact unnecessary to describe the attaching map of the 2-handle, using
the following lemma and the fact that there is a diffeomorphism of D? that
restricts to an orientation-reversing diffeomorphism of its boundary (namely,
reflection):

Lemma 31.2.1. Every orientation-preserving diffeomorphism of S* is isotopic
to the identity.

Proof. Let f: S' — S! be an orientation-preserving diffeomorphism and note
that by Lemma 31.1.6 the restriction f|D1_ : D' — S1 to the bottom half of the

circle is isotopic to the identity. By the isotopy extension theorem, we may thus
assume that f|p1 = id and hence it is uniquely determined by the differential
f‘Di: D' — D'. This is the identity on the boundary and is isotopic to the
identity by linear interpolation. O

Theorem 31.2.2. Every connected compact orientable surface (without boundary)
is diffeomorphic to ¥4 for some g = 0.

Proof. Any such surface ¥ admits a handle decomposition. By handle rearrange-
ment we may assume that it is given by taking k 0-handles, attaching m 1-handles,
and then attaching n 2-handles to the remaining boundary circles.
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Since attaching an n-handles cannot two components, it must be the case
that the union of the 0- and 1-handles is connected. If k > 2 there must hence
be a 1-handle connecting two different 0-handles, and we can remove a pair of a
0- and 1-handle using handle cancellation. Thus we may assume that k = 1, and
by applying the same argument to reversed handle decomposition we may also
assume that n = 1.

Each 1-handle is attached to the 0-handle (¢g) along an embedding 0D x
{0} — 0D?, and these must be orientation-preserving or orientation-reversing
(with our outward-pointing convention for boundary orientations) or the surface
would not be orientable. Pick a first 1-handle (¢;) and note that there must
be a second 1-handle (¢2) which connects the two regions between its attaching
strips, as otherwise a single 2-handle could not close the surface. This implies the
boundary of (¢g) + (¢1) + (¢2) is connected and hence we can slide the attached
strips for the remaining 1-handles to clear the indicated regions;

Figure 31.2 The emptied attaching regions (from [FM97]).

Repeating this argument we get g pairs of alternating 1-handles, and thus a
diffeomorphism to X,. O
31.2.2 The non-orientable case

If we have two k-dimensional manifolds M and N with embeddings D* — M
and DF < N, we can construct a new k-dimensional manifold

M#N = (M\int(D¥)) Uspr (N\int(D*))

called the connected sum. Using Lemma 31.1.6 and the isotopy extension theorem,
M#N is in fact independent of the choice of embeddings as long as M and N are
connected and either (i) oriented and we use orientation-preserving embeddings,
(ii) non-orientable. For example, we have

Zg = #921,
and it is possible to similarly define a non-orientable surface
#,RP?.

For example, the Klein bottle is diffeomorphic to #.RP2.
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Theorem 31.2.3. Every connected compact non-orientable surface (without
boundary) is diffeomorphic to #,RP? for some h > 1.

Proof sketch. We argue as in the orientable case to see that 3 has a handle
decomposition with a single O-handle, h 1-handles, and a single 2-handle. For
it be non-orientable, it must be the case that at least 1-handle is twisted—the
attaching map is orientation-preserving on one strip and orientation-reversing on
the other—and given one such twisted strip we can clear an indicated region: and

Figure 31.3 An emptied attaching region (from [FM97]).

continuing with the remaining 1-handles we can by induction either make them
a collection of twisted strips or a collection of alternating untwisted 1-handles.
The latter can be transformed into a collection of twisted strips: O

Figure 31.4 Making alternating untwisted strips into twisted strips (from [FM97]).
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Exotic 7-spheres 1

Our final goal is to construct of a smooth manifold which is homeomorphic to S7
but not diffeomorphic to it, an exotic sphere. Today prove the first statement,
and the latter we will outline in the next lecture.

32.1 Reeb’s theorem

If M is compact, then any smooth f: M — R has to have a minimum and a
maximum. Thus any Morse function on M has at least two critical points. What
happens if it has exactly two critical points?

Theorem 32.1.1 (Reeb). If a compact k-dimensional manifold M admits a
Morse function with exactly two critical points, then M is homeomorphic to S*.

Proof. Let p be such that f(p) = a is the minimum and ¢ be such that f(q) = b
is the maximum. By the Morse lemma, we can find an € > 0 small enough so that
the following is true: M<,4, is diffeomorphic (using the coordinates z1, ..., zk)
to a little disk D¥(a) = {(x1,...,21) | Zle r? < €}, and similarly Ms,_ is
diffeomorphic to a little disk Df. Hence their boundaries M, and M, . are
diffeomorphic to (k—1)-spheres. The region M [a+eb—e] COntains no critical points,
so is diffeomorphic to My4. x [0,1].

Thus M is obtained by gluing a cylinder Mpycp— = Sk=1 % [0,1] to two
disks D¥ given by M, . and Msp_.. The diffeomorphism is such that

SFL s {0} = Myye x {0} — Myye = 0Mcqre = SF71
is the identity, so doing this first gluing we see that there are diffeomorphisms
o: Moy = DF U (SF71 x [0,1]) = D,
However, we have no control over the diffeomorphism
g: SFTUx {1} = Mage x {1} — My_ = 0M>y— = S"1.

The best we can do is the following: by Proposition 32.1.2 there exists a homeo-
morphism G: D* — D extending this diffeomorphism. That is, we can find a
homeomorphism

p: Mzp—e — D k’

259



260 Chapter 32  Exotic 7-spheres 1

which is compatible with ¢. Then we can write a homeomorphism M — S* as

follows:
M =M Msy_. — S¥ = D* U DF

o(p) ifpe Mgy o, (32.1)
p(p) ifpe Msp_..
O

Proposition 32.1.2 (Alexander trick). Every homeomorphism (so in particular
diffeomorphism) g: S¥~1 — S*=1 extends to a homeomorphism G: D*¥ — DF.

Proof. In radial coordinates, it is given by G(r,0) = (r, g(8)). O

Remark 32.1.3. For later use, we point out that if g: S¥~1 — S¥~1 extended to
D¥ as a diffeomorphism, then the formula (32.1) shows that M is diffeomorphic
to Sk,

32.2 Exotic 7-spheres

We will now describe some 7-dimensional manifolds and prove that they are
homeomorphic to S”. We will in the next lecture give a brief explanation why
these are not diffeomorphic to S7, a result due to Milnor [Mil56a].

32.2.1 Milnor’s construction

The unit norm quaternions S(H) on S(H) by multiplication on the left and the
right. Thus we can write down for each pair of integers (7, j) a diffeomorphism

S(H) x S(H) — S(H) x S(H)

(z,y) — (z,2'ya?).

We can use this to construct 7-dimensional manifolds X ; as follows: we start
with two copies D* x S(H). Now we recall that S(H) =~ S3, so each of these
has boundary S x S(H) =~ S(H) x S(H). We identify these using the above
diffeomorphism. Each of these is a 3-sphere bundle over S*.

To endow this topological space with a smooth structure, we use the existence
of collars. We can avoid the use of these technical tools by gluing along open
subsets in the base instead, thinking of the base as a one-point compactified H.
To do so, take two copies of H x S(H) and identify the open subsets (H\0) x S(H)
using the diffeomorphism

(ED\0) x S(H) — (E1\0) x S(H)
x  alyxd
(=.9) <Hw\l2’ mvﬂ‘) '

Here ||z||? = ||a + bi + cj + dk||? = a® + b? + ¢® + d? is the (squared) quaternion
norm.

Ezample 32.2.1. Xo0 = 5% x §3 and X0 = ST
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Proposition 32.2.2. Ifi+j =1, X;; admits a Morse function with two critical
points.

Proof. We start in the first chart H x S(H), extending to the remaining 3-sphere
{oo} x S(H) later. The idea is to take the real part ®(z) = R(a+bi+cj+dk) = a
on the fibers, scaled by a suitable function of norm of the base H u o to localize
all critical points over 0:

R(y)

flz,y) = W

For its derivative to vanish, certainly the partial derivatives of R(y) with respect
to the coordinates of y have to vanish. The function R on S(H) is just the height
function on S3, so this occurs only if y = +1. A further condition is then that
the partial derivatives of 1/4/1 + ||x||? with respect to the coordinates of = has
to vanish, and this only happens when x = 0. We leave to the reader to check
that the maximum at (x,y) = (0,1) and the minimum at (z,y) = (0,—1) are
non-degenerate.
We claim that in the other chart, the Morse function is given by

R'(y) Y

f@'y) = e

Indeed, when substituting the coordinate change

r iy
(x/7y/) = < Y > )
[l=[[*" []]]

we get, using cyclic invariance of # and the fact that R(y~!) = R(y),

2 ) = R('(y')~)
e = S

_ Ml Rlza™Iy~la™)

|22 /1 + [[2]]2/]|=]]*
1 R
IRV VIER
R(y)
V14 [a]?

We know already know that f(z’,3’) has no critical points unless possibly when
a

r . ;. s s r / .
' = 0. But fixing ¥/ = 1 and restricting to real 2’ = a, we get f'(a,0) = i

which has no critical point at a = 0. Hence f(2',%’) has no critical points. [

Thus Theorem 32.1.1 gives:
Corollary 32.2.3. Ifi+ j =1, X;; is homeomorphic to ST,

We will combine this with the following fact:



262 Chapter 32  Exotic 7-spheres 1

Theorem 32.2.4 (Milnor). X, can not be diffeomorphic to S™ unless (i—j)? = 1
(mod 7).

Taking i = 2 and j = —1, we get (i — j)? = 32 = 2 (mod 7) and we have
found an exotic sphere! In fact, Kervaire and Milnor proved that there 28 oriented
exotic 7-spheres up to orientation-preserving diffeomorphism [KMG63].

32.2.2 Exotic diffeomorphisms

Let us now return our attention to Reeb’s theorem. Observe that the diffeomor-
phism g we obtained in its proof is orientation preserving, as it is the restriction
of an obviously orientation-preserving diffeomorphism M, x [0, 1] — M, [a,b]-

Corollary 32.2.5. There exist orientation-preserving diffeomorphisms of S°
which are not isotopic to the identity.

Proof. Suppose that in the case of X5 _1, the orientation-preserving diffeomor-
phism ¢ of S® obtained in Theorem 32.1.1 is isotopic to the identity, say by a
family of diffeomorphisms ¢; starting at the identity and ending at g. Think of
S8 as sitting inside of R” via the standard embedding ¢ and apply the isotopy
extension theorem to the family of embeddings

vog: S — R,

We then obtain a family of compactly-supported diffeomorphisms ¢; of R” such
that g; = @ 0. Since g; maps S° to S, ¢y maps D7 to D7. Then p := ¢1|p7 is a
diffeomorphism of D" extending g. As suggested in Remark 32.1.3, using it in the
last part of the proof of Theorem 32.1.1 would prove that Xo _; is diffeomorphic
to S7, and we get a contradiction. Thus g was not isotopic to the identity. [

Remark 32.2.6 (The Gromoll-Meyer sphere). One of Milnor’s exotic spheres—in
fact, X2 _1—can be obtained explicitly up to diffeomorphism as a quotient of a Lie
group [GMT74]. Let Sp(n) denote the group of (n x n)-matrices with quaternion
entries satisying QTQ = id = QQT where QT denotes the transpose conjugate of
Q. There is an action of Sp(1) on Sp(2), where ¢ € Sp(1) acts on @ € Sp(2) by

o 3lels V)

Then there is a diffeomorphism X5 _; = Sp(2)/Sp(1). You can use this to give
an explicit formula for exotic diffeomorphism of S¢ [Dur01].
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We will now explain why some of Milnor’s homotopy 7-spheres are not diffeomor-
phic to S7. This is based on the signature theorem, which in turn relies on a
computation of the rational oriented cobordism ring.

33.1 The signature theorem

33.1.1 Unoriented cobordism

Instead of trying to classify smooth manifolds up to diffeomorphism, one may
first try to classify them up to the following weaker equivalence relation:

Definition 33.1.1. Two compact k-dimensional smooth manifolds My and M;
with empty boundary are said to be cobordant if there is a compact (k + 1)-
dimensional smooth manifold W such that W = My u M.

We call W a cobordism from My to M7. Here the “equation” oW = M L M,
means that the boundary of W comes with a diffeomorphism to the disjoint of
My and M;. In particular, if M; is diffeomorphic to My we can interpret the
cylinder My x [0,1] as a cobordism from My to Mj.

Ezample 33.1.2. If W — R is a proper smooth map without critical values then
the Ehresmann fibration theorem says W][mb] is a cylinder between the fibres
W\, and W,. The pre-image theorem says W — R is just a proper smooth map
with regular values a,b € R, then W{, ;) is a cobordism between W|, and W|;.

Lemma 33.1.3. Cobordism is an equivalence relation.

Proof. To see it is reflexive, note that the cylinder My x [0, 1] exhibits My as
cobordant to My. For symmetry, note that W as a cobordism from My to M,
can also be interpreted as a cobordism from M7 to M. Finally, for associativity,
note that if Wy is a cobordism from My to M7 and W is a cobordism from M;
to My, then Wy upr, Wi is a cobordism from My to M. O

Definition 33.1.4. We let Q? denote the set of k-dimensional compact manifolds
up to cobordism. We denote the cobordism class of M by [M].

263
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Lemma 33.1.5. Disjoint union makes Qg into an abelian group:
[M] + [N]:=[M u N].

Proof. 1t is straightforward to show that L is compatible with the equivalence
relation of cobordism, and gives an associative and commutative binary operation
on QS with identity given by @. It remains to see why there are inverses. To do
so, we interpret M x [0, 1] not as a cobordism from M to M but as a cobordism
from M u M to @, so [M] + [M] = 0 and thus [M] is its own inverse. O

It is a consequence of the proof of this lemma that QS is a 2-torsion abelian
group.
Example 33.1.6 (QS’). A compact d-dimensional manifold M represents the
identity in Qg if and only if it bounds a compact manifold. By the classification
of 0-dimensional compact manifolds, these are given by a finite disjoint union of
points. By the classification of 1-dimensional compact manifolds, a finite disjoint
union of points is a boundary if and only if it consists of an even number of
points. We conclude that the homomorphism

QY — 7/2
{r points} — r (mod 2)

is an isomorphism.

Ezample 33.1.7 (QF). Similarly, the classification of 1-dimensional compact
manifolds says that every such manifold without boundary is a finite disjoint
union of circles. This is the boundary of a finite disjoint union of 2-dimensional
disks, so QF = 0.

Let us assemble all Qg into a single graded abelian group Q9. In addition to
disjoint unions, we can take cartesian products. We will leave the proof of the
following lemma to the reader:

Lemma 33.1.8. Cartesian product makes Q2 into a graded-commutative algebra:
[M]-[N]:=[M x NJ.

The following is a deep result of Thom [Tho54], with addendum by Dold
[Dol56]; its proof uses a lot of algebraic topology.

Theorem 33.1.9 (Thom, Dold). There is an isomorphism of graded-commutative
algebras
Q0 =~ Fy[z; | i > 0 and i # 2F — 1],

where x; in degree i is represented by the Dold manifold of dimension i.

This should be surprising, as it is a complete classification of smooth manifolds
up to an equivalence relation that does not seem very weak. It is also quite useful,
as invariants obtained by taking inverse images of regular values are often only
well-defined up to cobordism and hence take values in QY.
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33.1.2 Oriented cobordism

As the terminology suggests, we want to modify unoriented cobordism to take
into account orientations.

Definition 33.1.10. Two compact oriented k-dimensional smooth manifolds
My, M7 with empty boundary are said to be oriented cobordant if there is a
compact oriented (k + 1)-dimensional smooth manifold W such that oW =
M 1 —My (recall that —M, denotes My with opposite orientation).

The following is proven for oriented cobordism by taking into account orien-
tations in the proofs for unoriented cobordism:

Lemma 33.1.11. Oriented cobordism is an equivalence relation.

Definition 33.1.12. We let Q%O denote the set of k-dimensional compact oriented
manifolds up to oriented cobordism. We denote the cobordism class of M by
[M].

Lemma 33.1.13. Disjoint union makes Qg into an abelian group, and cartesian
product makes the graded abelian group Q5° into a graded-commutative algebra.

If you go through the proof of this lemma, you will learn that the inverse of
[M] is [-M], i.e. M with the opposite orientation. In particular, it is not the
case that Q3° consists of 2-torsion groups. The graded-commutativity comes
from the fact that M x N is orientation by appending to the orientation of T, M
that of T}, N, so if one reverses the order the orientation changes if and only if
both M and N are odd-dimensional.

Ezample 33.1.14 (Q5° and QF°). The classification of compact oriented 0- and
1-dimensional manifolds saying that these are a finite disjoint union of oriented
points or a finite disjoint union of circles. This can be used to prove that

00—z

r positively oriented points
and s negatively oriented —Tr—3
points

is an isomorphism, and that Q?O =0.

Ezample 33.1.15 (25°). The classification of compact oriented surfaces says that
each of these is a disjoint union of ¥, for some g > 0. Each of these bounds a
solid handlebody, so Q5° = 0.

The oriented cobordism ring is harder to describe, so we settle for its ratio-

nalization Q5° ® Q. The following is again a deep result of Thom [Tho54]:

Theorem 33.1.16 (Thom). There is an isomorphism of graded-commutative
algebras

Q§O®Q%Q[Z4i ‘Z'>0]

where zy; in degree 4i is represented by CP%.
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Example 33.1.17. That this is not the full story can be seen by the computation
that Q8° = Z/2, generated by [SU(3)/SO(3)]. It is known that all torsion
is 2-torsion, and Q3° /tors is a free polynomial ring generated by the Milnor
manifolds.

It is outside the scope of this course, but for each oriented manifold there are
invariants

pi(TM) e H¥(M)  fori >0,

called Pontryagin classes. As the notation suggests, these makes sense for any
oriented vector bundle and here we are just applying them to T'M. They record
to what extent the tangent bundle is a non-trivial vector bundle. For example, if
the tangent bundle M is trivial, e.g. because it is a Lie group, they all vanish.

For a compact oriented 4k-dimensional manifold with empty boundary, one can
extract from these cohomology classes a number as follows: if i; < io < --- < iy i
a consequence of positive integers (possibly repeated) such that i1 + -+ 4+ is = k,
we take

J pzl(TM) . pzS(TM) e R.
M
It is a non-trivial fact that these numbers are in fact integers, and give homomor-
phisms
J pr: Q0 — 7 for I = (iy,...,is) with sum k
M
called Pontryagin numbers.
Tensoring with the rationals, we get linear maps Qi‘ko ®Q — Q. Thom proved
that these are linearly independent. As the number of sequences I is the same as

dimension of Q[zy; | ¢ > 0] in degree 4k, equal to the number of partitions p(r)
of r, we get:

Proposition 33.1.18 (Thom). The linear map @, §,,pr: 250 ® Q — QP is
an isomorphism.

Ezample 33.1.19. If §, p;(M) = 0 for all sequences I, then there exists some
N > 1 such that | | M bounds a compact oriented manifold.

33.1.3 The signature

Suppose that M is a compact oriented even-dimensional manifold, say of dimen-
sion k = 2r. Then there is a bilinear form

(=, —): H(M)® H" (M) — R

Lok — | waw

By graded-commutativity of the wedge product, this is anti-symmetric if r is odd
and symmetric if r is even. By Poincaré duality it is non-degenerate.
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For r odd, by Problem 63 there exists a sympletic basis e1,...,es, f1,..., fs
of H"(M). This means that it satisfies

1 ifi=j,

0 otherwise.

Ceivej) =0=_fi, fi), and (e fj) = {

That is, in this basis it is given by the skew-symmetric matrix

0 ids
—ids 0 |’

In particular, we can not obtain any information from it that the Betti number
Bi(M) := dim H" (M) does not already tell us.

For r even, we can use Sylvester’s theorem—a direct consequence of the
spectral theorem for symmetric matrices—which says that there exists a basis
€l,...,€es, f1,..., fr of H"(M) such that
1 ifi=j, 1 ifi=j,

0 otherwise, otherwise.

Cei, fi7=0, (e e5) = { (fir i) = {;

That is, in this basis it is given by the symmetric matrix

ids O
0 —id¢|”

The numbers s and ¢ are unique, and from them we extract the following invariant:

Definition 33.1.20. If M is a compact oriented 4r-dimensional manifold, then
its signature (M) is given by s — t.

By construction, the signature is additive in disjoint unions and reserving the
orientation multiplies it by —1. Using the following example, any integer can be
realized as the signature of a 4r-dimensional manifold.

Example 33.1.21. The signature of CP% is 1.
Ezample 33.1.22. The signature of the K3-manifold is —16.

The signature is a cobordism-invariant

We will now prove that the signature only depends on the oriented cobordism
class of M. To do so, it suffices to prove that if a 4r-dimensional compact
oriented manifold M bounds a (47 + 1)-dimensional compact oriented manifold
W then (M) = 0. Indeed, if M) is oriented cobordant to M, then this implies
o(My u —Mj) = 0 or equivalently o(My) — o(M;) = 0.

Lemma 33.1.23. Let i: M < W denote the inclusion and take [w] € H*"(W).
Then §,, i*w = 0.

Proof. By Stokes’ theorem we have {, i*w = {, dw = 0 because w is closed. [J
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We will use the following algebraic observation.

Lemma 33.1.24. Suppose we have a R-vector space V of dimension 2n with
non-degenerate symmetric bilinear form {(—,—): V.® V. — R which has an n-
dimensional subspace W < V' such that the restriction {(—, —)|w: W QW — R is
identically zero. Then we have o(V) = 0.

Proof. The proof is by induction over n. Fix e € W, then by non-degeneracy
there is an f € V such that (e, f) = 1. By replacing f by f — %<f, fre we may
assume (f, f) = 0. Then on the linear subspace U = span(e, f), the bilinear
form (—, —) has signature 0, and V = U @ U*. As U' is 2(n — 1)-dimensional,
W A U+ is (n — 1)-dimensional, and {—, —) vanishes identically on it, we may
invoke the induction hypothesis. O

Proposition 33.1.25. If a 4r-dimensional compact oriented manifold M bounds
a (4r + 1)-dimensional compact oriented manifold W then o(M) = 0.

Proof. It suffices to prove that H?*(M) is of dimension 2n and contains an
n-dimensional subspace on which (—, —) vanishes identically. We claim that the
image of i*: H**(W) — H?#(M) has the desired property. By Lemma 33.1.23
the bilinear form (—, —) vanishes on it, so it suffices to prove that its dimension
is half of that H2*(M).

The long exact sequence of a pair and Poincaré—Lefschetz duality assemble to
a commutative diagram

HZ(N) — 2 H2R(M) —— H? (N, M)

E |= |=

H2k+1(N, M)* SN H2k(M)* % H2k(N)*
Our starting point is the tautological equation:
dim H**(M) = dimim(i*) + dim im(i*)*.

On the one hand, the isomorphism of the top row to the bottom row and exactness
gives
dim im(¢*) = dimker((¢*)*).

On the other hand, we have

dim im(¢*)* = dim ker((i*)*).
because A: H?*(M) — R is in the kernel of (i*)* if and only if it annihilates the
image of i*. We thus get dim H?¥(M) = 2dimim(i*) and the result follows. [
The signature theorem

What we have just proved implies that the signature gives a surjective homomor-
phism
o: 050 — 7,
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which upon rationalization gives a linear functional o: ngo ®Q - Q.

By Proposition 33.1.18 this is a linear combination with rational coefficients
of Pontryagin numbers. Hirzebruch determined what these coeflicients are in
terms of the coefficients of the Taylor series expansion of % around z. We
shall not describe this procedure, but will remark that is easily implemented on
a computer.

Theorem 33.1.26 (Hirzebruch). The signature of a 4k-dimensional compact
oriented manifold is given by

o(M) = jM Lu(ps (TM), .. p(T M)

where
Log=1
Ly =ip
_ 1 2
Ly = 45(Tp2 — p1)

Ly = 515 (62p3 — 13p1p2 + 2p7)
Ly = 15175 (381pa — Tlpips — 19p5 + 22ptps — 3p1)
etc.

This is a quite remarkable theorem. A priori, all we know about the Pontryagin
numbers is that they are integers. However, as the signature is by definition an
integer, the signature theorem imposes intricate arithmetic conditions on these
numbers.

33.2 Application to exotic 7-spheres

We will known explain why some of Milnor’s manifolds X ; are not diffeomorphic
to S7, though do not have the tools to fill in the details proof, which would require
at least a course in algebraic topology. The idea is straightforward, however: Xj ;
bounds a 4-disk bundle W; ; over 5S4 and if it were diffeomorphic to S7 then we
can glue a D® along it to get a compact oriented manifold which contradicts the
signature theorem, unless the condition in the theorem is satisfied.

Theorem 33.2.1 (Milnor). X; j can not be diffeomorphic to S™ unless (i—3j)% = 1
(mod 7).

Proof sketch. The X; ;, given by 3-sphere bundles over S4, naturally bound an
8-dimensional manifold W; ;; the corresponding 4-disk bundle over S4.

Associated to any oriented compact 7-dimensional M which bounds a com-
pact oriented 8-dimensional manifold W, there are three invariants o(W, W),
SW7 ow Pt and SW, ow P2- We will not define these, but they are relative versions
of the signature and Pontryagin numbers which we discussed before, and in
particular are all integers.
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If we have two such W'’s, say W7 and W5, we can form the closed oriented
manifold V := Wy ujps Wa. Its invariants are related to the relative ones by the
equations

o(V)=o(Wy,oWy) — o(Wa, dWs),

| vy | pawy-| g,
Vv Wy,0Wy Wa,0Wa

f p2(TV) = J p2(TWy) — f pa(TWs).
14 Wr,0Wy W1,0W1

The Hirzebruch signature theorem tells for closed V

Ba(WV) = 7| p@v)- | Aav).
|4 1%
Thus we see that

AM) == 450(W,0W) — J pH(TW) (mod 7)€ Z/7
W,0W
is independent of W. It is an invariant of M.

Let us return to the task at hand. On the one hand, one may use the
construction of W; ; to compute

U(WZ”]‘, 0Wi7j) =1 and JW o p%(TWZ"j) = 4(i —j)z.
i,5,0Wi 5

Since 45 = 3 (mod 7) and 471 =2 (mod 7), we get A(W; ;) = (i — j)? — 1.
On the other hand, if W; ; is diffeomorphic to S 7 it bounds D® and one may
use this to compute

o(D® 0D®) =0 and f pH(TD?) = 0.
D8 0D3

Since A(X; ;) is independent of the bounding manifold, this implies that
A(W; ;) = 0. Comparing these values we see that a necessary condition for W ;
to be diffeomorphic to S is that (i — j)2 =1 (mod 7). O

33.3 Problems

Problem 62 (Cobordism is an algebra). Prove Lemma 33.1.8.

Problem 63 (Symplectic bases). Prove that V' is a finite-dimensional R-vector
space with non-degenerate anti-symmetric bilinear form (—,—): V® V — R,
then it admits a symplectic basis.

Problem 64 (Signature is multiplicative). Use the Kiinneth theorem of Problem
60 to prove that
o(M x N)=0o(M)o(N).
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