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Introduction

These are the collected lecture notes on differential topology. They are based
on [BJ82, GP10, BT82, Wal16]. Our reference for multivariable calculus is
[DK04a, DK04b].

Differential topology is the study of smooth manifolds; topological spaces on
which one can make sense of smooth functions. This is done by providing local
coordinates. Through these, many of the results of multivariable calculus can be
extended to manifolds. The latter provide a convenient language, the former the
technical details: state globally, prove locally.

The motivating goal of differential topology is the classification of smooth
manifolds, and maps between smooth manifolds. This is done through numerical
invariants extracted from geometric objects living in our manifolds (e.g. subman-
ifolds) or on our manifolds (e.g. differential forms). Particular instances of these
ideas are intersection theory and de Rham cohomology.
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Chapter 1

Spheres in Euclidean space

In this first lecture we give a taste of differential topology, with a discussion of
spheres which are embedded or immersed in Rk. The highlight will be Smale’s
result that the two-dimensional sphere can be everted. Along the way, we meet
a significant portion of the cast of this course: smooth manifolds, embeddings,
isotopies, orientations, immersions, regular homotopies, winding numbers, and
transversality.

1.1 Circle eversion

We are all familiar with the circle

S1 :“ tpx, yq P R2 | x2 ` y2 “ 1u,

which we can thicken to an open annulus

A2 :“ tpx, yq P R2 | p1 ` δq´1 ă x2 ` y2 ă 1 ` δu

for some small δ ą 0. There is of course a standard inclusion inc of A2 into R2,
given by sending px, yq P A2 to px, yq P R2.

A2

S1

Figure 1.1 The circle S1 inside the annulus A2.

There are many other inclusions of A2 into R2. We could rotate by 90˝ degrees
counterclockwise

rot90 : A2 ÝÑ R2

px, yq ÞÝÑ p´y, xq,

1



2 Chapter 1 Spheres in Euclidean space

reflect in the x-axis

refl: A2 ÝÑ R2

px, yq ÞÝÑ px,´yq,

or invert the circle

inv : A2 ÝÑ R2

px, yq ÞÝÑ

ˆ

x

x2 ` y2 ,
y

x2 ` y2

˙

,

These injective maps are not only continuous, but have three further properties.
Firstly, they are smooth: all partial derivatives exist and are continuous at each
point in px, yq P A2. Secondly, not only does the total derivative exists at each
point, but it is injective (in fact, invertible). Thirdly, they are homeomorphisms
onto their image.

Definition 1.1.1. A continuous map A2 Ñ R2 is called an embedding if it is a
smooth map which is a homeomorphism on its image and whose total derivative
is injective everywhere.

reflrot90 inv

Figure 1.2 Three embeddings A2 ãÑ R2.

How different are these embeddings from each other? The maps inc and rot90
are closely related to each other: they can be connected by a path of embeddings.
This path is given by varying the rotation angle

rott : r0, 1s ˆ A2 ÝÑ R2

pt, px, yqq ÞÝÑ
`

cospπ2 ¨ tqx` sinpπ2 ¨ tqy,´ sinpπ2 ¨ tqx` cospπ2 ¨ tqy
˘

,
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a path of embeddings. It is called an isotopy because it is also smooth as a map
with domain r0, 1s ˆ A2.

However, the cases of reflection and inversion are more subtle.

Proposition 1.1.2. Both refl and inv can not be connected to inc (or equivalently
rot90) by such an isotopy.

Proof. The reason is that both refl and inv reverse orientations. The Euclidean
space R2 has a so-called orientation, given by a consistent choice of direction of
“counterclockwise rotation,” and so does A2 as an open subset of R2. As can be
seen in Figure 1.3, rotations such as rot90 preserve orientation, but reflection refl
and inversion inv do not.

ö

counterclockwise

reflrot90 inv

ö

clockwise

ö

counterclockwise

ö

clockwise

Figure 1.3 The effect of our three embeddings on orientations.

If the inclusion inc and reflection refl (or inversion inv) were isotopic then the
latter would have to preserve orientation, because inc does and the embeddings in
an isotopy can not switch from being orientation-preserving to being orientation-
reversing. (This is the crux of the argument, and making it rigorous is something
we will do in these notes.)

However, the composition of reflection and inversion does preserve orientation;
reversing orientation twice preserves it. This map

eve :“ inv ˝ refl: A2 ÝÑ R2

px, yq ÞÝÑ

ˆ

x

x2 ` y2 ,
´y

x2 ` y2

˙

is called eversion. Can eversion be connected to the identity by an isotopy?
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To answer this question, we look at S1 Ă A2. This is our first example of
a smooth manifold which is not Euclidean space Rn or an open subset thereof.
More precisely, it is a one-dimensional smooth manifold; a topological space
which locally looks like R and on which we can make sense of smooth functions.
To do the latter, we use local coordinates on S1 and our understanding of smooth
maps between open subsets of Euclidean space: the two charts (“coordinate
patches”)

ϕ0 : p0, 2πq ÝÑ S1

θ ÞÝÑ pcospθq, sinpθqq

ϕ1 : p0, 2πq ÝÑ S1

θ ÞÝÑ pcospθ ` πq, sinpθ ` πqq

cover all of S1, and we say that f : S1 Ñ R2 is smooth if both f ˝ ϕ0 and f ˝ ϕ1
are smooth. Similarly, it is an embedding if it is a smooth map which is a
homeomorphism onto its image and whose total derivative is injective everywhere.
It is easy to recognize it is a homeomorphism on its image; when we restrict the
target to its image we get a continuous bijection between compact Hausdorff
spaces.

If eve : A2 Ñ R2 were isotopic to inc, then by restricting the isotopy to S1 we
would be able to prove that eve|S1 is isotopic to inc|S1 . So, to prove that eve is
not isotopic to inc, it suffices to show that eve|S1 is not isotopic to inc|S1 .

Figure 1.4 An example of the image of S1 under an immersion into R2.

In fact, we will prove something even stronger. We can drop the condition
that an embedding is injective. Since the derivative controls the local behaviour
of smooth maps, that the derivative is everywhere non-zero means it is still locally
injective. A smooth map S1 Ñ R2 with everywhere non-zero derivative is called
an immersion, and a smooth map r0, 1s ˆ S1 Ñ R2 consisting of immersions
is called a regular homotopy. This is a family of smooth maps where we allow
self-intersections to occur, but not the pulling tight of loops (the derivative would
blow up there).

Proposition 1.1.3. The embeddings eve|S1 and inc|S1 are not regularly homo-
topic.

Proof. Suppose a regular homotopy et : r0, 1s ˆ S1 Ñ R2 existed between eve|S1

and inc|S1 , then for each s P r0, 1s, the map es : S1 Ñ R2 is an immersion. Thus,
when we take for θ0 P S1 the derivative d

dθ |θ“θ0espcospθq, sinpθqq we get a non-zero
vector in R2. If we normalize these to have length 1, we get a smooth map

gausspesq : S1 ÝÑ S1.
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Here the domain S1 is the circle which is the domain of our immersions, and the
target S1 is the space of unit length vectors in R2. You can think of the latter as
the space of lines through the origin in R2 with a choice of orthonormal basis (in
this case just a single vector).

If eve|S1 and inc|S1 are regularly homotopic through et, then gausspeve|S1q

and gausspinc|S1q can be connected the path gausspesq of maps S1 Ñ S1. In other
words, they would be homotopic. But they are not; as gausspeve|S1q “ refl ˝ rot90
and gausspinc|S1q “ rot90 wind around the origin a different number of times;
the first once clockwise (so ´1 times) and the second once counterclockwise (so 1
times). The difference between these winding numbers implies that gausspeve|S1q

and gausspinc|S1q are not homotopic. (Again, this is the crux and we need to
rigorously justify this claim.)

1.2 Knots

Let us now increase the dimension of the target; instead of looking at circles in
R2 we will look at circles in R3. Immersions are significantly easier to study than
embeddings; though both are smooth maps with injective total derivative, a local
condition, embeddings need to be injective, a global condition. This distinction
becomes evident when we try to discern the difference between embeddings
S1 ãÑ R3 and immersions S1 í R3.

Proposition 1.2.1. Each immersion S1 í R3 is regularly homotopic to an
embedding.

Proof. This uses a technique called transversality. Informally, this allows you
take smooth maps to be “generic” without loss of generality. This means that by
making an arbitrary small change to an immersion e0 : S1 Ñ R3, we can make
its self-intersections have the “expected dimension.”

Here “arbitrarily small” means that for each ϵ ą 0, we can find an e1 : S1 Ñ R3

whose values and derivatives are within ϵ of those for e0. By taking ϵ to be small
enough, during a linear interpolation

et : S1 ˆ r0, 1s ÝÑ R3

pt, θq ÞÝÑ p1 ´ tq ¨ e0pθq ` t ¨ e1pθq

the derivative never becomes 0. In particularly, e0 is regularly homotopic to e1.
The advantage of e1 is that its self-intersections have the expected dimension.

This expected dimension is that of the intersection of two affine lines R3 with
arbitrarily chosen coefficients: two such lines do not intersect, and thus generically
the self-intersections are empty as well.

Isotopy classes of embeddings S1 ãÑ R3 are called knots. The isotopy class
of the standard circle inc : S1 ãÑ R3 is the unknot, but there are of course many
more interesting and complicated knots. At first sight many seem obviously
distinct, or at least non-trivial. This is an artefact of our tendency to draw rather
simple knots: it is by no means clear to me that Figure 1.5 is not the unknot. It
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should furthermore not be obvious how to prove that two knots are distinct, as
you need to rule out the existence of some extremely complicated isotopy. To do
so one uses knot invariants, with such disparate sources as algebraic topology,
combinatorics, number theory, hyperbolic geometry, or quantum field theory
[Ada04, Sos23]. We will discuss some of these later. At any rate, your intuition
is correct:

Figure 1.5 Haken’s “gordian knot,” which is actually unknotted (from [Sos23]).

Proposition 1.2.2. There are infinitely many distinct isotopy classes of embed-
dings S1 ãÑ R3. That is, there are infinitely many knots.

Remark 1.2.3. This does not mean that distinguishing knots, or recognizing
unknots, is easy. Even though there exists an algorithm that says whether a knot
is the unknot, these algorithms are not very efficient [HLP99].

Armed with this knowledge, Proposition 1.2.1 seems rather useless. All we
have shown is that immersions of a circle into R3 can be represented by knots.
However, we can use that this representation is not unique. In particular, if
we are interested in immersions we are allowed to make the strands of a knot
self-intersect! Using this, it is not hard to give an informal proof of the following:

Proposition 1.2.4. All immersions S1 í R3 are regularly homotopic.

Proof sketch. By another application of transversality, it is possible to draw each
knot as you are used to; a circle in the plane with some crossings, which never
occur at the same point. As we just explained, you can change any crossing using
a regular homotopy. Let us explain through an example a procedure to change
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crossings to end up with an unknot. Suppose our starting point is:

‚Ó p0

We fix a point p0 in the knot, and start moving along it in an arbitrary direction.
When we cross under a strand, we (a) keep it as it is if we haven’t seen the
crossing yet, but (ii) if we have seen it we change the crossing. For example, the
first crossing clockwise from p0 is not changed but the second one is. The result
will be:

‚

I will leave it to the reader to understand why this procedure always produces
an unknot (hint: look at the height of the strands).

1.3 Sphere eversion

Let us now increase the dimension of the domain. There is a two-dimensional
sphere S2 :“ tpx, y, zq P R3 | x2 ` y2 ` z2 “ 1u. This is a two-dimensional
smooth manifold which is a subset of the thickened sphere A3 :“ tpx, y, zq P R3 |

p1 ` δq´1 ă x2 ` y2 ` z2 ă 1 ` δu for some small δ ą 0.
Again, in addition to the identity map inc: A3 ãÑ R3 there are many other

inclusions; we could rotate by applying an element A P SOp3q (the group of
rotations around some axis through the origin in R3), reflect in the px, yq-plane

refl: A3 ÝÑ R3

px, y, zq ÞÝÑ px, y,´zq,

or invert it

inv : A3 ÝÑ R3

px, y, zq ÞÝÑ

ˆ

x

x2 ` y2 ` z2 ,
y

x2 ` y2 ` z2 ,
z

x2 ` y2 ` z2

˙

.

All of these are smooth maps, and in fact embeddings. The rotation by A is
isotopic to the identity because the group SOp3q is path-connected (move the
rotation angle to 0), while both refl and inv are not isotopic to the identity
because they do not preserve the orientation.
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However, the eversion

eve :“ refl ˝ inv : A3 ÝÑ R3

px, y, zq ÞÝÑ

ˆ

x

x2 ` y2 ` z2 ,
y

x2 ` y2 ` z2 ,
´z

x2 ` y2 ` z2

˙

does preserve the orientation. Is it isotopic to the identity? The answer turns
out to be negative; in fact, eve|S2 is already not isotopic to inc|S2 . If it were,
we could “drag along” the disk D3 Ă R3 that bounds the image of inc|S2 on the
inside along an isotopy of embeddings—a result called isotopy extension (which
requires the embeddings and isotopy are proper)—and would have to end up with
a disk that bounds the image of eve|S2 on the outside, which is clearly impossible.
(This requires justification.)

However, it is a surprising result of Smale that eve|S2 is regularly homotopic
to inc|S2 [Sma58]. That is, these two embeddings can be connected by a family
of immersions; self-intersections are allowed to form, but not the pulling tight
of the fabric of S2. The procedure is rather complicated, but you can watch
a video of it called Outside In online. The reason this works is that the two-
dimensional versions of the Gauss maps, gausspeve|S2q and gausspinc|S2q, which
are maps from S2 to the space V2pR3q of two-dimensional planes though origin
with a choice of orthonormal basis, are homotopic. This homotopy can then be
approximated by a regular homotopy using holonomic approximation, a instance
of general philosophy called an h-principle [EM02]. Explicitly implementing this
approximation gives the video referred to above.

1.4 Problems

Problem 1. Is the following knot trivial (i.e. isotopic to the unknot)?

If no, explain why. If yes, draw an isotopy.



Chapter 2

Smooth manifolds

In this lecture we give the modern definition of a smooth manifold, which is the
one we will use throughout this course; you have read what is considered to be
the historically first one, due to Riemann. It is given in [BJ82, Chapter 1], but
unfortunately not in [GP10]. References for further reading are [Tu11, Chapter
5] or [Wal16, Section 1.1]. We also give a number of examples (you need to know
Sn, RPn, and CPn, but not the examples of moduli spaces).

2.1 Topological manifolds

Underlying every smooth manifold is a topological manifold. This is a topological
space which locally looks like Euclidean space, though we will ask it satisfies
some point-set topological conditions to make it more well-behaved. A local
property of a topological space is one which concerns sufficiently small open
subsets. For a k-dimensional topological manifold the relevant local condition is
“being homeomorphic to an open subset of Rk:”

Definition 2.1.1. A topological space X is locally Euclidean of dimension k if
each point x P X has an open neighbourhood Vx Ă X which is homeomorphic to
an open subset Ux Ă Rk.

This models a “world” which, for a tiny creature living in it, is indistinguishable
from Rk. This intuition is not compatible with certain pathological examples.
The “world” is not supposed to “split into two points” somewhere, as occurs
in a plane with doubled origin [SS95, §74]. This is ruled out by demanding
X is Hausdorff (any two distinct points have distinct open neighbourhoods).
Furthermore, the “world” should admit a notion of distance, i.e. a metric. For a
Hausdorff locally Euclidean topological space, being metrizable is equivalent to
being second-countable (admitting a countable basis for its topology) [Gau09],
and hence we demand that X is also second-countable. An example of a locally
Euclidean space which is Hausdorff but not second-countable is the long line,
created by “concatenating” uncountably many real lines [SS95, §45].

Definition 2.1.2. A k-dimensional topological manifold is a second-countable
Hausdorff space X which is locally Euclidean of dimension k.

9
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This definition only involves properties of X. We can rephrase the property
that it is locally Euclidean as data instead, which will be necessary to define
smooth manifolds.

Definition 2.1.3. A triple pUα, Vα, ϕαq of open subsets Uα Ă Rk, Vα Ă X, and
a homeomorphism ϕα : Uα Ñ Vα is called a chart or a local parametrization.

Definition 2.1.4. A collection of charts pUα, Vα, ϕαq such that
Ť

α Vα “ X is a
k-dimensional atlas for X.

Vα Ă X
ϕα

Rk
Ą Uα

Figure 2.1 A chart.

Two local parametrizations ϕα : Rk Ą Uα Ñ Vα Ă X and ϕβ : Rk Ą Uβ Ñ

Vβ Ă X give two competing identifications of Vα X Vβ Ă X with an open subset
of Rk, which we can compare by the transition function

ψαβ :“ ϕ´1
β ˝ϕα : Rk Ą ϕ´1

α pVα XVβq
ϕα

ÝÑ Vα XVβ
ϕ´1

β
ÝÑ ϕ´1

β pVα XVβq Ă Rk. (2.1)

(It would be better to use the notation ϕ´1
β ˝ ϕα|ϕ´1

α pVαXVβq
to point out we are

restricting the domain, but this notation would quickly become unwieldy.)
An atlas for a topological manifold X is not unique, but it turns out there is a

unique maximal one. We shall not discuss this in detail now, saving a discussion
of maximal atlases for smooth manifolds (where there is no longer a unique one,
i.e. there are exotic smooth structures). An alternative equivalent definition of a
k-dimensional topological manifold is then:

Definition 2.1.5. A k-dimensional topological manifold is a second-countable
Hausdorff space X with a maximal k-dimensional atlas.

2.2 Smooth manifolds

On a topological manifold, as on any topological space X, we can make sense of
continuous functions X Ñ R. A smooth manifold is a refinement of a topological
manifold with additional data that allows us to make sense of smooth functions
X Ñ R. This will use that we know from multivariable calculus what a smooth
function Rk Ñ R is: a map which has partial derivatives of arbitrary degree, in
other words, an infinitely-many times differentiable function.

As the domain of a chart is an open subset of Rk, we know what it means
for a continuous function to be smooth with respect to the local coordinates
provided by a chart. To make guarantee consistency between charts, we require
that the transition functions ψαβ are smooth.
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Definition 2.2.1. A k-dimensional smooth atlas for a topological space X is a
collection of triples pUα, Vα, ϕαq consisting of

¨ an open subset Uα Ă Rk,
¨ an open subset Vα Ă X, and
¨ a homeomorphism ϕα : Uα Ñ Vα,

so that
Ť

α Vα “ X and all maps

ψαβ “ ϕ´1
β ˝ ϕα : ϕ´1

α pVα X Vβq ÝÑ ϕ´1
β pVα X Vβq

are smooth maps between open subsets of Rk. The triples pUα, Vα, ϕαq are called
charts and the maps ϕ´1

β ˝ ϕα are called transition functions.

Observe that these transition function have the following properties:

ψαα “ id and ψαβ ˝ ψβγ “ ψαγ .

Taking γ “ α, this gives
ψαβ ˝ ψβα “ id,

as smooth maps Rk Ą ϕ´1
α pVα X Vβq Ñ ϕ´1

β pVα X Vβq Ă Rk. This shows that
ψαβ is a smooth bijection with smooth inverse, and hence is what we call a
diffeomorphism. Thus, in a smooth atlas the transition functions are always
diffeomorphisms.

ϕ´1
β ˝ ϕα

ϕα ϕβ

Rk
Ą Uα Uβ Ă Rk

X

Figure 2.2 A transition function.

Two atlases for X are said to be compatible if their union is an atlas. A
maximal atlas is one with the property that every atlas compatible with it, is in
fact contained in it.

Lemma 2.2.2. Every k-dimensional smooth atlas is contained in a unique
maximal k-dimensional smooth atlas.
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Proof. For uniqueness, it suffices to prove that every two k-dimensional smooth
atlases A1 “ tpU 1

β, V
1
β, ϕ

1
βqu and A2 “ tU2

γ , V
2
γ , ϕ

2
γqu containing a given one

A “ tpUα, Vα, ϕαqu are compatible. That is, we must prove that every map

pϕ2
γq´1 ˝ ϕ1

β : pϕ1
βq´1pV 1

β X V 2
γ q Ñ pϕ2

γq´1pV 1
β X V 2

γ q

is smooth. Since being smooth is a local property, it is enough to prove that
each x P pϕ1

βq´1pV 1
β X V 2

γ q has an open neighbourhood such that the restriction
of pϕ2

γq´1 ˝ ϕ1
β to this open neighbourhood is smooth. Let us pick a chart

pUα, Vα, ϕαq P A so that ϕ1
βpxq P Vα. Then we can write the restriction of

pϕ2
γq´1 ˝ ϕ1

β to pϕ1
βq´1pVα X V 1

β X V 2
γ q as

ppϕ2
γq´1 ˝ ϕαq ˝ pϕ´1

α ˝ ϕ1
βq,

which is a composition of two smooth functions because both A1 and A2 are
compatible with A. Hence it is smooth, and hence so is pϕ2

γq´1 ˝ ϕ1
β. Thus A1

and A2 are compatible.
Now that we have proven that A Ă A1 and A Ă A2 implies that A1 and A2

are compatible, we can just define

Amax :“
ď

AĂA1

A1.

Definition 2.2.3. A k-dimensional smooth manifold is a Hausdorff second-
countable topological space X with a maximal k-dimensional smooth atlas.

That is, it is a k-dimensional topological manifold with an atlas where all
transition functions are smooth. Some questions and answers about this definition:
(a) How should I think of the smooth atlas? The interpretation that follows

directly from the definition is that it provides local coordinates, via the maps
ϕ´1
α , so that the transition between two of these coordinate systems is smooth.

A different perspective on the role of an atlas is the one we used to motivate
it: it tells you when a continuous function f : X Ñ R is smooth:
Definition 2.2.4. A continuous function f : X Ñ R is smooth when

f ˝ ϕα : Rk Ą Uα ÝÑ R

is smooth for all charts pUα, Vα, ϕαq.
This definition generalizes with ease to the case where the target is Rm. To
generalize to the case that the target is another smooth manifold, we involve
the charts of the target. We discuss the following definition in more detail in
the next lecture:
Definition 2.2.5. Let X and Y be manifolds with atlases tpUα, Vα, ϕαqu

and tpU 1
α1 , V 1

α1 , ϕ1
α1qu respectively. A continuous map f : X Ñ Y is smooth if

pϕ1
α1q

´1 ˝ f ˝ ϕα : Rk Ą ϕ´1
α pVα X f´1pV 1

α1qq ÝÑ U 1
α1 Ă Rk

1

is smooth for all charts.
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(b) When are two manifolds “the same”? Saying when two manifolds are equiva-
lent involves Definition 2.2.5:
Definition 2.2.6. A smooth map f : X Ñ Y is a diffeomorphism if it is a
bijection with smooth inverse.

Two manifolds X and Y are to be considered equivalent when there is a
diffeomorphism between them; we say they are diffeomorphic.

(c) Why demand X is Hausdorff and second-countable? We mentioned that this
“fits our intuitions,” but there are more utilitarian answers. First, atlases on
topological spaces without these properties rarely arise in practice. Second,
having these properties is helpful, as they imply the existence of certain
smooth functions X Ñ R. For example, Hausdorffness will mean we can
construct a smooth function which separates two distinct points, and both
properties are used to construct partitions of unity.

(d) Why demand that the atlas is maximal? If we did not, then S2 with two
charts would be a different smooth manifold than S2 with three charts. This
would be absurd. Furthermore, we often want certain nice charts to exist.
If our atlas has few charts this may not be the case. However, in practice
we will want to specify a smooth manifold with an atlas that is as small as
possible; a finite amount of data is easier to comprehend that an infinite
amount. Then Lemma 2.2.2 generates for us a unique maximal atlas.

(e) Can a topological space X have more than one maximal atlas? The answer is
almost always yes, as you can change the charts by a homeomorphism X Ñ X;
the resulting smooth manifold is a diffeomorphic but the maximal atlases are
not the same. On the homework you work this out. Moreover, even up to
diffeomorphism a topological space X can have more than one maximal atlas.
Another term for a maximal atlas is a smooth structure. Milnor surprised
the mathematical community when he proved that S7 admits more than one
smooth structure up to diffeomorphism [Mil56a]; there are in fact 15.1 This
is a global phenomenon except when n “ 4, as Rn admits a unique smooth
structure up to diffeomorphism when n ‰ 4. On the other hand, R4 admits
uncountable many smooth structures up to diffeomorphism [Sco05, Section
5.4], and yes, you should be surprised by that.2

(f) Can a topological space X have atlases of different dimensions? This is not
possible by a famous result of algebraic topology due to Brouwer called
invariance of domain, which says that any injective map from an open subset
of Rk to Rk has image given by an open subset [Hat02, Theorem 2.B.3]. If
two such atlases did exist, charts from them would give a homeomorphism
f : Rk Ą U Ñ V Ă Rk1 between open subsets of Rk and Rk1 for say k ą k1.

1The more well-known figure is that the group Θ7 of oriented exotic spheres up to orientation-
preserving homeomorphism is isomorphic to Z{28. In this group, inverse is given by reversing
the orientation, so that when we allow (not necessarily orientation-preserving) diffeomorphisms
there are 15 elements, corresponding t0u, t14u and ta, 28 ´ au for 1 ď a ď 13.

2It is more accurate to think of this as there being many distinct 4-dimensional smooth
manifolds that for a magical reason happen to be homeomorphic to R4.
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But invariance of domain implies that the composition of f with the inclusion

i ˝ f : Rk Ą U ÝÑ V Ă Rk
1

ÝÑ Rk

has image both an open subset of Rk and contained in the subset Rk1

Ă Rk,
which is impossible.

2.3 Examples of manifolds

2.3.1 First examples

Example 2.3.1 (Euclidean spaces). The prototypical example of a k-dimensional
smooth manifold is Rk itself. It has second-countable and Hausdorff, and has an
atlas with a single chart: pU, V, ϕq “ pRk,Rk, idq.
Example 2.3.2 (Spheres). Recall that the k-sphere is the subspace of Rk`1 defined
by

Sk :“
#

px0, . . . , xkq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“0
x2
i “ 1

+

.

As a subspace of a second-countable Hausdorff topological space, it is second-
countable and Hausdorff, Problem 2. We will now describe a k-dimensional
smooth atlas on it, making it a k-dimensional smooth manifold, in terms of
2pk ` 1q different hemispheres. It suffices to describe the ϕ´1’s (and then we can
of course recover the ϕ’s as their inverse). For 0 ď j ď k and i P t0, 1u, we have
a chart given by

ϕ´1
ij : Sk Ą Vij “ tx P Sk | p´1qixj ą 0u ÝÑ Uij “ intpDkq Ă Rk

px0, . . . , xkq ÞÝÑ px0, ¨ ¨ ¨ , pxj , ¨ ¨ ¨ , xkq.

The transition functions have most entries of the form xi, except that one has
the form

b

1 ´
ř

i‰j x
2
i . These are clearly smooth.

A different but compatible k-dimensional smooth atlas with only two charts is
given by stereographic projection. As before, we describe the ϕ´1’s: if CN , CS Ă

Sk denote small closed neighborhoods of the north and south pole p˘1, 0, . . . , 0q,
then ϕ´1 is given by casting rays form N through SkzCN onto a plane below the
sphere, see Figure 2.3.
Example 2.3.3 (Real projective spaces). The real projective space RP k is the
space of lines through the origin in Rk`1. Such a line is specified by a unit vector,
up to multiplication by ˘1. That is, it is the quotient space

RP k “ Sk{„

with „ the equivalence relation generated by px0, . . . , xkq „ p´x0, . . . ,´xkq. We
will denote an example class as rx0 : ¨ ¨ ¨ : xks.

The first of the atlases for Sn given in the previous example induces a k-
dimensional smooth atlas on RP k. It has pk ` 1q charts given as follows: for



2.3 Examples of manifolds 15

‚
N

V “ SkzCN

Rk U

Rk`1

Figure 2.3 To obtain ϕ´1 : V Ñ U , the inverse of a local parametrization of Sk Ă Rk`1, follow
the rays.

0 ď j ď k it is

ϕ
´1
j : RP k Ą Vj “ tx P RP k | xj ‰ 0u ÝÑ Uj “ intpDkq Ă Rk

rx0 : . . . : xks ÞÝÑ signpxjqpx0, ¨ ¨ ¨ , x̂j , ¨ ¨ ¨ , xkq.

Example 2.3.4 (Surfaces of genus g). We will not describe atlases for these yet,
but for each g ě 0 there is a compact surface of genus g. It looks like a sphere
with g handles added to it:

Figure 2.4 A surface of genus g “ 2.

The classification of surfaces say that all compact orientable two-dimensional
smooth manifolds (we will define “orientable manifolds” later) are diffeomorphic
to Σg for some g.

2.3.2 Constructions of further manifolds

Example 2.3.5 (Open subsets). Suppose U Ă X is an open subset of a k-
dimensional smooth manifold. If tpUα, Vα, ϕαqu is an atlas of X, then the maps

ϕα|ϕ´1
α pVαXUq

: Rk Ą Uα Ą ϕ´1
α pVα X Uq ÝÑ Vα X U Ă U
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endow U with a k-dimensional smooth atlas. If the atlas of X is maximal, so is
this atlas of U .
Example 2.3.6 (Disjoint unions). Let M and N be smooth manifolds with smooth
atlases tpUα, Vα, ϕαqu and tpU 1

β, V
1
β, ϕ

1
βqu, of same dimension m “ n. Then their

union is an atlas for the disjoint union M \ N , though it is in general not
maximal even if the atlases on M and N are. This is the disjoint union of smooth
manifolds.
Example 2.3.7 (Products). Now let M and N be smooth manifolds with smooth
atlases tpUα, Vα, ϕαqu and tpU 1

β, V
1
β, ϕ

1
βqu, of dimension m and n respectively.

Then the maps

ϕα ˆ ϕ1
β : Rm ˆ Rn Ą Uα ˆ U 1

β ÝÑ Vα ˆ V 1
β Ă M ˆN

endow the cartesian product M ˆN with an pm` nq-dimensional smooth atlas,
though it is in general not maximal even if the atlases of M and N are. This is
the product of smooth manifolds.
Example 2.3.8 (Pre-manifolds). A k-dimensional smooth pre-manifold is a set X
together with a collection tpUα, Vα, ϕαqu of Uα Ă Rk an open subset, Vα Ă X a
subset, and ϕα : Uα Ñ Vα a bijection. We require that all maps

ψαβ “ ϕ´1
β ˝ ϕα : Rk Ą ϕ´1

α pVα X Vβq ÝÑ ϕ´1
β pVα X Vβq Ă Rk

are smooth.
Then we can give X the smallest topology such that all ϕα are continuous.

If this is Hausdorff and second countable, then tpUα, Vα, ϕαqu serves as a k-
dimensional smooth atlas on X and hence makes it into a k-dimensional smooth
manifold. In terms of category theory, this in fact presents X as a colimit of
open subsets in Euclidean space.

2.3.3 Riemann’s vision

In this more advanced section, we recall some historical context. You should not
be surprised if much of this material is unfamiliar to you.

One-dimensional complex manifolds

If you have studied complex analysis, the following example may illuminate the
definition of a k-dimensional smooth manifold.

We will define complex manifolds by replacing R by C and smooth maps
by holomorphic maps: a 1-dimensional complex atlas for topological space X
is a collection of triples pUα, Vα, ϕαq of an open subset Uα Ă C, an open subset
Vα Ă X, and a homeomorphism ϕα : Uα Ñ Vα, so that

Ť

Vα “ X and all maps

ϕ´1
β ˝ ϕα : ϕ´1

α pVα X Vβq ÝÑ ϕ´1
β pVα X Vβq

are holomorphic maps between open subsets of C. A 1-dimensional complex
manifold is then a second-countable Hausdorff topological X with a maximal
1-dimensional complex atlas.



2.4 Problems 17

Since C can be identified with R2 and all holomorphic maps are smooth, any
1-dimensional complex manifold is a 2-dimensional smooth manifold. However,
since it is much harder for a function to be holomorphic than for it to be smooth,
it is harder to produce 1-dimensional complex manifolds than 2-dimensional
smooth manifold.

Remark 2.3.9. By replacing C by Ck, this definition generalizes to that of a
k-dimensional complex manifold. Such a complex manifold always gives rise to a
2k-dimensional smooth manifold.

The moduli spaces of Riemann surfaces

It is in Riemann’s Habilitationsvortrag that the general concept of a manifold
first appeared [Rie13].3 He proposed that geometry should study “extended
magnitude or quantity,” objects made of points with a continuous transition
from one to another. To be mathematically useful, these objects should have
sufficiently many functions so that it is possible to find coordinate functions
which specify points uniquely, at least locally. One example he had in mind is
quite advanced even from our modern point of view: the moduli space of Riemann
surfaces of genus g with n marked points.

A Riemann surface is a compact one-dimensional complex manifold, as above.
It is a rather deep result that all of these are algebraic, that is, cut out by
polynomial equations in a complex projective space. Riemann’s idea was that
deformations of a Riemann surface structure on a fixed surface of genus g
with n marked points as pictured in Figure 2.5 are uniquely specified (up to
isomorphism) by 3g ´ 3 ` n complex parameters. He wanted to use this to
show that one can organize all such Riemannn surfaces into (something like) a
p6g ´ 6 ` 2nq-dimensional smooth manifold, each complex parameter giving rise
to two dimensions [Loo00], so that you could study all Riemann surfaces at the
same time. This has proven wildly successful, with entire fields doing dynamics
and geometry on such moduli spaces.

We are far from having the theory to make this precise, but this example
holds an important lesson: unlike spheres, many examples of smooth manifolds
do not arise as subsets of some Euclidean space.

2.4 Problems

Problem 2 (Point-set topology of subspaces).
(a) Prove that every subspace of a Hausdorff space is Hausdorff.

(b) Prove that every subspace of a second-countable space is second-countable.

Problem 3 (Connected vs. path components). Prove that for a topological
manifold, connected components coincide with path components.

3You can read it at https://www.emis.de/classics/Riemann/Geom.pdf. More about the
history of manifolds can be found in [Sch99].

https://www.emis.de/classics/Riemann/Geom.pdf
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‚

‚

‚

Figure 2.5 A surface of genus g “ 2 with n “ 3 marked points.

Problem 4 (Gluing smooth structures). Suppose that if U, V Ă X is an open
cover of a second-countable Hausdorff space, and that we are given smooth atlases
on U and V which agree on U X V . Prove that there exists a unique smooth
maximal atlas on X which is compatible with the given ones on U and V .

Problem 5 (Complex projective plane). There is a complex analogue of the real
projective plane RP k, as constructed in the homework. The complex projective
plane CP k has points given by complex lines in Ck`1, or equivalently by the
quotient

pCk`1zt0uq{„

where „ is the equivalence relation generated by pz0, . . . , zkq „ pλz0, . . . , λznq for
λ P Czt0u. Give CP k a 2k-dimensional smooth atlas.

Problem 6. Recall that the quaternions H are the 4-dimensional non-commutative
unital R-algebra with generators i, j, k and relations

i2 “ j2 “ k2 “ ´1, ij “ ´ji, ik “ ´ki, jk “ ´kj

ij “ k, jk “ i, ki “ j.

In analogy with the previous exercise, construct the quaternionic projective plane
HP k.4 What is its dimension?

4There is even an octionic projective space OP 2, also known as the Cayley projective plane,
but no OP k for k ą 2. This is harder to construct.
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Submanifolds

In the previous lecture we defined smooth manifolds, and we now discuss smooth
submanifolds. We will use some results from multivariable calculus to produce
examples of submanifolds of Euclidean spaces. I will assume you know the
relevant results, but if you do not, you can find these in Chapters 3 & 4 of
[DK04a]. After that we will give five constructions of the 2-torus.

3.1 Submanifolds

A loop of string in R3 can be thought of as a subset S of R3. Which subsets S
describe such loops of string? Let us abstract the situation by declaring that the
string is infinitely thin and bendable, but can not make sharp corners. Certainly
an ordinary circle tpx, y, zq | x2 ` y2 ` z2 “ r2u Ă R3 describes a loop of string,
but so do many other subsets. Some differ from the circle by being more wiggly,
and some by being knotted, see Figure 3.1.

Figure 3.1 Some subsets of R3 which describe strings.

However, in spite of their complicated global behaviour, all locally look like
smooth line segments: they are one-dimensional smooth submanifolds of R3,
subsets of R3 that locally looks like R. This illustrates why the study of smooth
manifolds is so interesting: they have a straightforward local structure, but a
rich global structure.

19
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Of course, we need not restrict ourselves to one-dimensional objects: 2-spheres,
2-tori, and the surface of a coffee mug all locally look like R2. Indeed, for any
r ě 0 we will define r-dimensional smooth submanifolds as subsets of Rk that
locally look like Rr. More generally, we use charts to replace the ambient space
Rk by a k-dimensional smooth manifold N .

3.1.1 The definition

To make precise the definition of a submanifold of a manifold, we recall the
definitions from the previous lecture. A k-dimensional topological manifold is a
second-countable Hausdorff space X which is locally homeomorphic to an open
subset of Rk. To give this the structure of k-dimensional smooth manifold, we
need to provide the additional data of a maximal k-dimensional smooth atlas.
This is a collection pUα, Vα, ϕαq of homeomorphisms ϕα : Rk Ą Uα Ñ Vα Ă X
such that (i)

Ť

α Vα “ X, and (ii) all transition functions ϕ´1
β ˝ ϕα are smooth

maps between open subsets of Rk.
Intuitively, a submanifold is a manifold which lives inside another manifold.

This is made precise by demanding it looks like a linear subspace of Euclidean
space with respect to the atlas.

Definition 3.1.1. Let N be a k-dimensional smooth manifold. A subset X Ă N
is an r-dimensional submanifold if for each p P X there is a chart pUα, Vα, ϕαq of
N around p such that ϕ´1

α pXq “ Uα X Rr.

If X is a submanifold, it comes with a canonical structure of an r-dimensional
smooth manifold. Firstly, X with the subspace topology is second countable and
Hausdorff. We produce an atlas on this by taking a chart pUα, Vα, ϕαq for N as
above, and creating from it a chart pU 1

α, V
1
α, ϕ

1
αq for X as follows:

U 1
α :“ Uα X Rr, V 1

α :“ X X Vα, and ϕ1
α :“ ϕα|U 1

α
.

3.2 Examples of submanifolds using calculus

We for now concentrate on submanifolds of Euclidean space, and apply tools from
multivariable calculus. We will eventually generalise these tools to manifolds, the
philosophy being that differential topology is globalised multivariable analysis.

3.2.1 Sn by equations

Last chapter we defined the n-sphere by equations

Sn “

#

px0, . . . , xnq P Rn`1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“0
x2
i “ 1

+

,

and by hand gave a smooth atlas for it.
However, when you define a manifold by equations, it is much easier to

obtain the smooth atlas using results from multivariable calculus; the inverse
function theorem. This uses the notion of a total derivative of a map g : Rn Ñ Rp
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(or between open subsets thereof) [DK04a, Section 4.5]: at x P Rn, the total
derivative Dgx of g at x is the linear map described by the pp ˆ nq-matrix of
partial derivatives

»

—

—

—

—

–

Bg1
Bx1

pxq
Bg1
Bx2

pxq ¨ ¨ ¨
Bg1
Bxn

pxq
Bg2
Bx1

pxq
Bg2
Bx2

pxq ¨ ¨ ¨
Bg2
Bxn

pxq

...
... . . . ...

Bgp

Bx1
pxq

Bgp

Bx2
pxq ¨ ¨ ¨

Bgp

Bxn
pxq

fi

ffi

ffi

ffi

ffi

fl

.

The local version of the inverse function theorem then says the following [DK04a,
Theorem 3.2.4]:

Theorem 3.2.1 (Inverse function theorem). Let U0 Ă Rn be open and a P U0.
Suppose g : U0 Ñ Rn is a smooth map whose total derivative Dga at a is an
invertible linear map. Then there exists an open neighborhood U Ă U0 of a such
that gpUq is open and

g|U : U ÝÑ gpUq

is a diffeomorphism onto this open subset.

By adding variables, you can deduce the implicit function theorem [DK04a,
Theorem 3.5.1] from this. The following is a consequence of that result [DK04a,
Section 4.5]:

Theorem 3.2.2 (Submersion theorem). Let U0 Ă Rn be open and a P U0.
Suppose g : U0 Ñ Rp, p ď n is a smooth map whose total derivative Dga of g at a
is a surjective linear map. Then there exist open neighborhoods U Ă U0 of a and
V Ă Rp of gpaq, and diffeomorphisms ψ : Rn Ñ U and φ : Rp Ñ V , such that

(i) ψp0q “ a,
(ii) φp0q “ gpaq, and

(iii) the following diagram commutes

Rn U Ă U0 Ă Rn

Rp V Ă Rp,

πp

–

ψ

g

–

φ

with πp the projection px1, . . . , xnq ÞÑ px1, . . . , xpq. That is,

gpψpx1, . . . , xnqq “ φpx1, . . . , xpq.

Remark 3.2.3. A stronger version of this theorem, which is the one stated as
[DK04a, Theorem 4.5.2(iv)], says that φ can be taken to be translation near 0.

Parts (i) and (ii) are just normalisations, part (iii) is where the magic happens:
the diffeomorphism ψ restricted to t0u ˆRn´p Ă Rn gives a local parametrisation
of the inverse image g´1pgpxqq around x, identifying it with an open subset of
the origin in Rn´p. We conclude that the subset g´1pcq for c P Rp is an pn´ pq-
dimensional smooth submanifold of Rn when each of the total derivatives Dgx
for x P g´1pcq is surjective.
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Example 3.2.4. If we take

g : Rn`1 ÝÑ R
px0, . . . , xnq ÞÝÑ x2

0 ` . . .` x2
n,

and c ‰ 0 P R, then the total derivative at x “ px0, . . . , xnq satisfying x2
0 ` . . .`

x2
n “ c is given by the p1 ˆ nq-matrix

“

2x0 2x1 ¨ ¨ ¨ 2xn
‰

with not all xi zero. If c ‰ 0, then not all entries can vanish at the same time
and this matrix is surjective. In particular, we can take c “ 1 to obtain another
proof that the n-sphere is a smooth manifold.
Example 3.2.5. Let p, q be positive integers, and take

g : C2 ÝÑ C ˆ R
pz1, z2q ÞÝÑ pzp1 ` zq2, |z1|2 ` |z2|2q.

This is smooth, and its total derivative is surjective at all points g´1p0, ϵq for
p0, ϵq P C ˆ R with ϵ ą 0 small enough. Thus the inverse image g´1p0, ϵq is a
one-dimensional submanifold of C2, which lies inside S3

ϵ , the sphere of radius ϵ
around the origin. It is in fact also a one-dimensional submanifold of S3

ϵ , and if
we remove a point from it and identify the result with R3, the result is a so-called
pp, qq-torus link. See Figure 3.2 for an example.

Figure 3.2 A p3, 7q-torus knot (since 3 and 7 are coprime, there is only a single component).

3.2.2 Sn by parametrisations

One can often parametrise solution sets of equations, e.g. S1 is the image of

h : R ÝÑ R2

θ ÞÝÑ pcospθq, sinpθqq.

This map is not a bijection, but it is locally a bijection. It seems quite
plausible that it is in fact a local diffeomorphism of R onto S1, though giving an
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explicit formula may be hard. However, the difficulty of finding explicit formula’s
can be avoided by using the inverse function theorem again, in a slightly different
guise [DK04a, Section 4.3].

Theorem 3.2.6 (Immersion theorem). Let U0 Ă Rp be an open subset and
a P U0. Suppose h : U0 Ñ Rn, p ď n, is a smooth map whose total derivative
Dha of h at a is injective. Then there exist open neighborhoods U Ă U0 of a and
V Ă Rn of hpaq, and diffeomorphisms ψ : Rp Ñ U and φ : Rn Ñ V , such that

(i) ψp0q “ a,
(ii) φp0q “ hpaq, and

(iii) the following diagram commutes

Rp U Ă Rp

Rn V Ă Rn,

ιp

–

ψ

h

–

φ

with ιp the inclusion px1, . . . , xpq ÞÑ px1, . . . , xp, 0, . . . , 0q. That is,

hpψpx1, . . . , xpqq “ φpx1, . . . , xp, 0, . . . , 0q.

Remark 3.2.7. As before, there is a stronger version stated as [DK04a, Theorem
4.3.1] which says that ψ can be taken to be translation near 0.

Again part (iii) is the important part: it provides a chart for hpUq as in the
definition of a submanifold. We will later see that the image of h is a submanifold
if we not only suppose that its derivative is injective everywhere but also that
the map h is a homeomorphism onto its image.
Example 3.2.8. If we want to parametrise the n-sphere Sn, we will need more
than one function hi. For example, we can use 2pn`1q ones indexed by 0 ď i ď n
and a sign ˘1:

h˘
i : ty P Rn | ||y|| ă 1u ÝÑ Rn`1

py1, . . . , ynq ÞÝÑ py1, . . . , yi´1,˘
a

1 ´ ||y||2, yi, . . . , ynq.

Each covers one of the two hemispheres in each of the n` 1 directions of Rn`1.

3.3 Five constructions of the 2-torus

Another important example of a smooth manifold is the 2-torus, one of the basic
surfaces. We will now give five constructions of the torus,

(1) By specifying it as a submanifold of R3 using equations.
(2) By parametrising it as a submanifold of R3.
(3) As a product of two circles.
(4) By gluing edges of a square r0, 1s2.
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(5) As a quotient R2{Z2.
All these constructions give us diffeomorphic smooth manifolds, but we will not
prove this. The first three can be thought of as naturally being subsets of some
Euclidean spaces, but the underlying topological space of a smooth manifold
obtained by gluing or quotients is not naturally a subset of a Euclidean space.
This is one of the reasons we gave an abstract definition of manifold in the last
chapter.

3.3.1 The 2-torus specified by equations

Our first construction of a 2-torus is as those points that are distance 1 from
a circle of radius

?
2: it consists of those points px, y, zq in R3 satisfying the

equation p2 ´
a

x2 ` y2q2 ` z2 “ 1. More precisely, define

g : R3 ÝÑ R

px, y, zq ÞÝÑ

´

2 ´
a

x2 ` y2
¯2

` z2.

This is smooth and has surjective total derivative at all points in the pre-image of
1. Thus the submersion theorem tells us that g´1p1q is a two-dimensional smooth
submanifold of R3:

T2 “ g´1p1q.

3.3.2 The 2-torus parametrised

We can parametrise the 2-torus, defined as g´1p1q Ă R3, as the image of

h : R2 ÝÑ R3

pθ, ϕq ÞÝÑ rp2 ` cospθqq cospϕq, p2 ` cospθqq sinpϕq, sinpθqs.

This is smooth and has injective total derivative at all points in its domain. Thus
the immersion theorem provides local charts for the image of h. These exhibit
the image of h as a submanifold of R3, and give another description of the 2-torus
as a two-dimensional smooth submanifold of R3:

T2 “ imphq.

Some care is required now, as h is not a homeomorphism onto its image because
it is not injective. Trying to amend this leads one to the definition of the 2-torus
by gluing or as a quotient.

3.3.3 The 2-torus as a product

There is a general method to produce new submanifolds out of old ones.

Lemma 3.3.1. Suppose that X Ă Rn and Y Ă Rm are submanifolds of di-
mensions p and q respectively. Then X ˆ Y Ă Rn ˆ Rm “ Rn`m is a pp ` qq-
dimensional submanifold of Rn`m.
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Sketch of proof. Local parametrisations of X near x and Y near y combine a
local parametrisation of X ˆ Y near px, yq.

This gives a different construction of T2 as a submanifold of R4: take the
product of S1 Ă R2 with itself. Of course, we can forget that S1 is a submanifold
of R2, and instead take the abstract product of manifolds discussed in the previous
lecture:

T2 “ S1 ˆ S1.

3.3.4 The 2-torus by gluing

Let us take a square r0, 1s2 and make identifications along its boundary Br0, 1s2 “

tpx, yq P r0, 1s2 | x P t0, 1u or y P t0, 1uu as in Figure 3.3: take r0, 1s2{„ with „

the equivalence relation generated by

p0, yq „ p1, yq and px, 0q „ px, 1q.

That is, the left edge t0u ˆ r0, 1s gets identified with right edge t1u ˆ r0, 1s and
the bottom edge r0, 1s ˆ t0u with the top edge r0, 1s ˆ t1u Such a gluing of the
square produces a torus.

r0, 1s2� �

ą

ą

Figure 3.3 The 2-torus is obtained by identifying edges of r0, 1s2.

We now give a 2-dimensional smooth atlas on r0, 1s2{„, see Figure 3.4. It is
easy to give charts for a point represented by px, yq P p0, 1q2; just use a small open
disk Bϵpx, yq contained in p0, 1q2. For equivalence classes rpx, 0qs represented by
px, 0q with x P p0, 1q we use the chart determined by

ϕ : Bϵpx, 0q ÝÑ r0, 1s2{„

px1, y1q ÞÝÑ

#

rpx1, y1 ` 1qs if y1 ă 0,
rpx1, y1qs if y1 ě 0,

and similarly for the element represented by p0, yq with y P p0, 1q. For the
equivalence class rp0, 0qs we use the chart determined by

ϕ : Bϵp0, 0q ÝÑ r0, 1s2{„

px1, y1q ÞÝÑ

$

’

’

’

’

&

’

’

’

’

%

rpx1 ` 1, y1 ` 1qs if y1 ă 0, x1 ă 0,
rpx1 ` 1, y1qs if x1 ă 0,
rpx1, y1 ` 1qs if y1 ă 0,
rpx1, y1qs otherwise.
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� �

ą

ą

Figure 3.4 The open subsets Vα for three charts, one of each type.

The transition functions are mostly given by the identity map which is
obviously smooth, but sometimes by a translation which is also obviously smooth.
See Figure 3.5 for the hardest case. We conclude that

T2 “ r0, 1s2{„.

� �

ą

ą Bϵp0, yq

Bϵp0, 0q

translation by p0, 1q

ϕα

ϕβ

Figure 3.5 A transition function.

The lesson is, using terms we have not defined yet: a sufficiently nice gluing of
a k-dimensional manifold with corners along its boundary is again a k-dimensional
manifold. In the above example k “ 2, the manifold with corners is r0, 1s2 and
the boundary is Br0, 1s2.
Example 3.3.2. Changing the identifications to those in Figure 3.6 and using
similar charts we can endow the Klein bottle and real projective plane with a
2-dimensional smooth structure.

3.3.5 The 2-torus as a quotient

Let us recast this definition in terms of group theory. If you are not familiar with
group theory, you should take a look at a textbook on it, e.g. [Arm88].

We can add elements of R2 from which we obtain an action of the abelian
group Z2 on R2: the element pn,mq P Z2 acts on px, yq by sending it to its
translate pn,mq ¨ px, yq :“ px` n, y `mq. Let us look at the set

R2{Z2 :“ R2{„ with px, yq „ px1, y1q if pn,mq ¨ px, yq “ px1, y1q for pm,nq P Z2
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r0, 1s2� �

ă

ą

Klein bottle

r0, 1s2� �

ă

ą

real projective plane

Figure 3.6 Two more 2-dimensional smooth manifolds obtained by identifying edges of r0, 1s2.

with the quotient topology. This is still Hausdorff and second countable.
We claim that R2{Z2 inherits from R2 the structure of a 2-dimensional smooth

manifold. To do so we describe a 2-dimensional smooth atlas on R2{Z2: for
a point px, yq P R2 we can consider the open disks Bϵpx, yq for ϵ ă 1

4 . The
composition of the inclusion with the quotient map

Bϵpx, yq ãÑ R2 q
ÝÑ R2{Z2

is injective as ϵ ă 1
4 . We denote its image by V ϵ

px,yq
and resulting map by

ϕϵpx,yq : Bϵpx, yq ÝÑ V ϵ
px,yq.

We claim these chart give an atlas. Since the map q : R2 Ñ R2{Z2 is surjective,
the V ϵ

px,yq
cover. For any two open subsets V ϵ

px,yq
, V ϵ1

px1,y1q
, the transition function

is just given by translation and hence is smooth.
One way to visualise the result is to give a fundamental domain: an open

subset U Ă Rn such that U Ñ R2{Z2 is injective and Ū Ñ R2{Z2 is surjective.
Then you can think of R2{Z2 as being obtained from Ū by making identifications
along BU . In this case a moment’s reflection produces p0, 1q2 Ă R2 as a candidate;
no two elements differ by translation by pm,nq P Z2 so p0, 1q2 Ñ R2{Z2 is
injective, but px, yq „ px´ txu, y ´ tyuq P r0, 1s2 so r0, 1s2 Ñ R2{Z2 is surjective.
Thus R2{Z2 is homeomorphic to r0, 1s2{„ as in the previous section, and thus
we have produced another description of the 2-torus. Under this identification,
the charts we have described to go the charts in the previous section. We get

T2 “ R2{Z2.

There is a general lesson here: a quotient of a k-dimensional smooth manifold
by a sufficiently nice action of a discrete group G is again a k-dimensional smooth
manifold. In the above example k “ 2, the manifold is R2 and G “ Z2.
Example 3.3.3. Can we come up with other examples? One idea would be to use
with some subgroup G of Z2, and take

R2{G :“ R2{„ with px, yq „ px1, y1q if g ¨ px, yq “ px1, y1q for g P G,
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instead of R2{Z2. Most of these seem to give variations on the 2-torus, but the
subgroup Z ˆ t0u Ă Z2 does not. In this case a fundamental domain is given by
p0, 1q ˆ R, and R2{pZ ˆ t0uq is given by identifying the left edge t0u ˆ R of the
infinite strip r0, 1s ˆ R with the right edge t1u ˆ R; an infinite cylinder.
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Smooth maps

In this lecture we will define smooth maps. This material appears at the end of
Section 1 of [BJ82], as well as Section 2. For more details, see [Tu11, Chapters 6,
8].

4.1 Smooth maps and diffeomorphisms

Let us recall some definitions from Lecture 2, on which we shall elaborate now:

Definition 4.1.1. Let M and N be smooth manifolds of dimension m and n,
with smooth maximal atlases tpUα, Vα, ϕαqu and tpU 1

β, V
1
β, ϕ

1
βqu. A continuous

map f : M Ñ N is said to be smooth if for all charts pUα, Vα, ϕαq of M and
pU 1

β, V
1
β, ϕ

1
βq of N , the map

pϕ1
βq´1 ˝ f ˝ ϕα : Rm Ą ϕ´1

α pVα X f´1pV 1
βqq ÝÑ pϕ1

βq´1pV 1
βq “ U 1

β1 Ă Rn (4.1)

between open subsets of Euclidean spaces is smooth.

It may be helpful to expand (4.1) into a commutative diagram

Rm Ą ϕ´1
α pVα X f´1pV 1

βqq Vα X f´1pV 1
βq Ă M

Rn Ą U 1
β1 “ pϕ1

βq´1pV 1
βq V 1

β Ă N.

pϕ1
βq´1˝f˝ϕα

ϕα

–

f

ϕ1
β

–

In terms the definition of a smooth map, we explained when we consider two
smooth manifolds to be the same:

Definition 4.1.2. A smooth map g : M Ñ N between smooth manifolds is a
diffeomorphism if it has a smooth inverse.

We say M and N are diffeomorphic if there is a diffeomorphism between
them. This is an equivalence relation.
Example 4.1.3. The real projective space RP 1 is diffeomorphic to S1.
Example 4.1.4. The complex projective plane CP 1 is diffeomorphic to S2.

29
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Example 4.1.5. All five definitions of T2 that we gave—by equations, by parametriza-
tion, as a product, by gluing, and a quotient—are diffeomorphic.

Example 4.1.6. Rk is diffeomorphic to Rl if and only if k “ l. This is a smooth
variant of invariance of domain.

4.1.1 Properties of smooth maps

Definition 4.1.1 at first sight involves a condition that is hard to check, as both
maximal atlases will in general have infinitely many charts. However, it suffices
to only verify the condition on a smaller collection of charts; all these need to do
is cover the entire domain M , as well as the image fpMq Ă N in the target.

Lemma 4.1.7. Let tpUi, Vi, ϕiquiPI and tpU 1
j , V

1
j , ϕ

1
jqujPJ be collections of charts

of M and N respectively, such that
Ť

iPI Vi “ M and fpMq Ă
Ť

jPJ V
1
j . If for all

i P I and j P J , the map

pϕ1
jq

´1 ˝ f ˝ ϕi : Rm Ą ϕ´1
i pVi X f´1pV 1

j qq ÝÑ pϕ1
jq

´1pV 1
j q “ U 1

j Ă Rn

between open subsets of a Euclidean space is smooth, then f is smooth.

Proof. We must prove that every map

pϕ1
βq´1 ˝ f ˝ ϕα : Rm Ą ϕ´1

α pVα X f´1pV 1
βqq ÝÑ pϕ1

βq´1pV 1
βq “ U 1

β1 Ă Rn

is smooth. Since being smooth is a local property, it is enough to prove that
each x P ϕ´1

α pVα X f´1pV 1
βqq has an open neighbourhood such that the restriction

to this open neighbourhood is smooth. Let us pick charts pUi, Vi, ϕiq so that
x P Vi and pU 1

j , V
1
j , ψ

1
jq so that fpxq P V 1

j . Then we can write the restriction to
ϕ´1
α pVα X Vi X pf´1pV 1

β X V 1
j qq as

ppϕ1
βq´1 ˝ ϕ1

jq ˝ ppϕ1
jq

´1 ˝ f ˝ ϕjq ˝ pϕ´1
i ˝ ϕαq,

which is a composition of three smooth functions.

A first consequence of this is that in Definition 4.1.1 we could have equivalently
taken any atlases of M and N compatible with their maximal atlases. A second
consequence is the following rephrasing:

Corollary 4.1.8. A map f : M Ñ N is smooth if and only if for all m P M
there is a chart pUα, Vα, ϕαq around m in M and a chart pU 1

β, V
1
β, ϕ

1
βq around

fpmq in N , such that the map

pϕ1
βq´1 ˝ f ˝ ϕα : Rm Ą ϕ´1

α pVα X f´1pV 1
βqq ÝÑ pϕ1

βq´1pV 1
βq “ U 1

β Ă Rn

between open subsets of Euclidean spaces, is smooth at m.

Sometimes you can pick a few charts particularly well-suited to your situation:
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Example 4.1.9. A map f : Rm Ñ Rn is smooth in the above sense if and only if it
is smooth in the sense of multivariable calculus, since we may use the identity
as a single chart for both Rm and Rn. This justifies our lack of distinction
between “smooth in the sense of multivariable calculus” and “smooth in the sense
of differential topology.”
Example 4.1.10. If M and N are spheres Sm and Sn, we know that each of them
can be covered by two charts using stereographic projection and hence we can
get away with checking only four cases.
Example 4.1.11. The diagonal map

∆: M ÝÑ M ˆM

p ÞÝÑ pp, pq

is smooth, where the target is made into a smooth manifold by taking products
of charts. Indeed, we can verify this using charts pUα, Vα, ϕαq on the domain and
charts of the form pUα ˆ Uα, Vα ˆ Vα, ϕα ˆ ϕαq on the target. The result then
amounts to verifying that the diagonal Rk Ñ Rk ˆ Rk given by x ÞÑ px, xq is
smooth.

4.2 Constructing smooth maps

In practice, one often constructs new smooth maps out of old ones using one of
the following tools. Parts (iii) and (iv) use the construction of a smooth structure
on an open subset of a smooth manifold.

Lemma 4.2.1.
(i) For every smooth manifold M , the identity map idM is smooth.

(ii) If tUiu is an open cover of M and each f |Ui : Ui Ñ N is smooth, then
f : M Ñ N is smooth.

(iii) If f : M Ñ N and g : N Ñ P are smooth, then so is g ˝ f : M Ñ P .
(iv) If f : M Ñ N is smooth and U Ă M is open, then f |U : U Ñ N is smooth.

Note that (iv) gives the converse to (ii), so we can replace “if” by “if and only
if” there.

Proof. (i) If f “ idM , then (4.1) becomes

ϕ´1
β ˝ ϕα : ϕ´1

α pVα X Vβq ÝÑ ϕ´1
β pVβq,

which is smooth by definition of an atlas, as it is a transition function
followed by the inclusion of an open subset.

(ii) By Lemma 4.1.7, it is enough to verify smoothness with respect to the
collection of charts pUα, Vα, ϕαq with the property that Uα Ă Ui for some
i. In that case, we can replace in (4.1) the map f by f |Ui and smoothness
follows from the hypothesis that f |Ui is smooth.
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(iii) We write out (4.1) as

pϕ2
γq´1˝g˝f˝ϕα : Rm Ą ϕ´1

α pVαXpg˝fq´1pV 2
γ qq ÝÑ pϕ2

γq´1pV 2
γ q “ U2

γ Ă Rp

Then for each chart pU 1
β, V

1
β, ϕ

1
βq we can write pϕ2

γq´1 ˝ g ˝ f ˝ ϕα as

ppϕ2
γq´1 ˝ g ˝ ϕ1

βq ˝ ppϕ1
βq´1 ˝ f ˝ ϕαq

when restricting to ϕ´1
α pVαXf´1pV 1

βqXpg˝fq´1pV 2
γ qq. This is a composition

of a smooth map between open subsets of Rm and Rn with a smooth map
between open subsets of Rn and Rp, and hence is smooth. Since the
open subsets ϕ´1

α pVα X f´1pV 1
βq X pg ˝ fq´1pV 2

γ qq give an open cover of
ϕ´1
α pVα X pg ˝ fq´1pV 2

γ qq and smoothness is a local property, this tells us
that ppϕ2

γq´1 ˝ g ˝ f ˝ ϕαq is smooth.
(iv) It suffices to prove that the inclusion iU : U Ñ M is smooth, as then f |U is

the composition f ˝ iU of two smooth maps. Using the chart on U obtained
by restricting those on M , (4.1) becomes

ϕ´1
β ˝ ϕα : ϕ´1

α pU X Vα X Vβq ÝÑ ϕ´1
β pVα X Vβq,

which is just the restriction of the smooth map ϕ´1
β ˝ ϕα to an open subset.

Remark 4.2.2. Using part (i) and (iii) we can define a 1-category Mfd of smooth
manifolds; its objects are smooth manifolds and morphisms from M to N are
smooth maps. Part (i) then implies that this category has identity morphisms
and part (iii) implies that composition is well-defined. We takes this up again
later.

Category theory is a useful language for studying topology and related fields,
as many objects of interest can be defined in terms of universal properties saying
how other objects should map to them or receive maps from them. Let us give
two examples.

Recall that we have defined the disjoint union of M \ N of two manifolds
of the same dimension. It is a consequence of parts (ii) and (iv) that a map
f : M \N Ñ P is smooth if and only if f |M and f |N are. This exhibits M \N
as the (categorical) coproduct in Mfd.

We also defined the product M ˆN of two smooth manifolds. By Problem 7
the projection π1 : M ˆN Ñ M and π2 : M ˆN Ñ N are smooth. Thus by (iii)
if f : P Ñ M ˆN is smooth so are its components π1 ˝ f and π2 ˝ f . Note that
we can recover f as

P
∆

ÝÑ P ˆ P
pπ1˝fqˆpπ2˝fq
ÝÝÝÝÝÝÝÝÝÑ M ˆN,

which is smooth as a consequence of (iii), Example 4.1.11, and Problem 7 (d).
We conclude that f : P Ñ M ˆ N is smooth if and only if its components
π1 ˝ f : P Ñ M and π2 ˝ f : P Ñ N are. Thus M ˆN is the (categorical) product
in Mfd.
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It is particularly easy to construct smooth maps into or out of submanifolds.

Lemma 4.2.3. Suppose that X Ă M is a submanifold.
(i) The inclusion i : X Ñ M is a smooth map.

(ii) If f : X Ñ N extends to a smooth map f̃ : M Ñ N , then f is smooth.
(iii) If g : N Ñ X is such that i ˝ g is smooth, then g is smooth.

Proof. (i) Since X is a submanifold, we can find charts pUα, Vα, ϕαq of M
covering X such that ϕ´1

α pVα X Xq “ Uα X Rk. In fact, it is these charts
that generate the atlas on X. By Lemma 4.2.1 (ii), it suffices to prove that
i|VαXX : Vα XX Ñ M is smooth. Since we can cover Vα XX by the single
chart pUα X Rk, Vα XX,ϕα|UαXRk q and its image by the chart pUα, Vα, ϕαq,
by Lemma 4.1.7 it suffices to prove that

ϕ´1
α ˝ i|VαXX ˝ ϕα|UαXRk : Uα X Rk ÝÑ Uα

is smooth. But it is just the inclusion of those points with last m ´ k
coordinates equal to 0, which is clearly smooth!

(ii) Since f “ f̃ ˝ i, this follows from (i) and Lemma 4.2.1 (iii).
(iii) We again use charts pUα, Vα, ϕαq of M covering X such that ϕ´1

α pVαXXq “

Uα X Rk. By Lemma 4.1.7, g is smooth if and only if

pϕα|UαXRk q´1 ˝ g ˝ ϕ1
β

is smooth for all charts pU 1
β, V

1
β, ϕ

1
βq of N . However, we are guaranteed that

all maps
pϕαq´1 ˝ g ˝ ϕ1

β

are smooth, which differ from the previous maps by composition with
the standard inclusion Rk Ñ Rm onto the first k coordinates, m ě k.
Composing these with the projection Rm Ñ Rk onto the first k coordinates,
we recover the previous maps as a composition of smooth maps and hence
they are smooth.

Remark 4.2.4. We will later be able to prove that (ii) is actually an “if and only
if”.
Example 4.2.5 (Rotations as diffeomorphisms of Sn). By Lemma 4.2.3 (ii) and
(iii), a map Sn Ñ Sn is smooth if it extends to a smooth map Rn`1 Ñ Rn`1.
We will use this to construct diffeomorphisms of Sn. Let us take a matrix
A P Opn` 1q, the group of orthogonal pn` 1q ˆ pn` 1q-matrices. By definition
an orthogonal matrix preserves the Euclidean norm ||x||, and hence x ÞÑ Ax
sends Sn to Sn. Furthermore, each entry of Ax is just a linear combination of
the entries of x so is easily seen to be smooth. Thus x ÞÑ Ax gives an example of
a smooth map Sn Ñ Sn. It has an evident smooth inverse given by x ÞÑ A´1x.

We have thus just produced a map Opn` 1q Ñ DiffpSnq, the latter the group
of diffeomorphisms of Sn. The latter can be endowed with a natural topology
which makes this map continuous. If n ď 3, it is a homotopy equivalence by work
of Smale and Hatcher [Sma59, Hat83]. If n ě 4, it is not a homotopy equivalence;
the case n “ 4 was only proven recently [Wat18].
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Example 4.2.6 (General linear groups). The set MnpRq of pnˆ nq-matrices with
real entries can be identified with Rn2 , and through this identification can be
made into a smooth n2-dimensional manifold. Matrix multiplication gives a map

µ : MnpRq ˆMnpRq ÝÑ MnpRq

pA,Bq ÞÝÑ AB

which we claim is smooth. To check this, we use that there is a single chart
covering MnpRq, the standard identification, and similarly a single chart covering
MnpRq ˆMnpRq, a product of two standard identifications. By Lemma 4.1.7 it
suffices to prove that matrix multiplication is smooth with respect to these charts
only; this is true because it is a polynomial in the entries of the matrices and
hence smooth.

The open subset GLnpRq Ă MnpRq of invertible matrices, which can be
described as the complement of the closed subset determined by the equation
det “ 0, is hence also a smooth n2-dimensional manifold. Since a composi-
tion of invertible matrices is again invertible, Lemma 4.2.3 implies that matrix
multiplication restricts to a smooth map

µ : GLnpRq ˆ GLnpRq ÝÑ GLnpRq.

We can also take the inverse of an invertible matrix, giving a map

ι : GLnpRq ÝÑ GLnpRq

A ÞÝÑ A´1,

which is also smooth. Indeed, using again the standard identifications as charts,
we can use Cramer’s rule:

A´1 “
1

detpAq
CT

with C the cofactor matrix; its pi, jqth entry is given by p´1qi`j detpÂijq where
Âij is obtained from A by deleting the ith row and jth column. The details are
not important, only that it is a smooth function of the entries of an invertible
matrix.

An example of a group which compatibly is a smooth manifold deserves a
name:

Definition 4.2.7. A Lie group is a smooth manifold G which is also a group,
such that multiplication µ : GˆG Ñ G and inverse ι : G Ñ G are both smooth.

4.3 Problems

Problem 7 (Maps in or out of products). Let X,Y be smooth manifolds.
(a) Prove that the projection maps π1 : X ˆ Y Ñ X given by π1px, yq “ x

and π2 : X ˆ Y Ñ Y given by π2px, yq “ y are both smooth.
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(b) Show that
Tpx,yqpX ˆ Y q ÝÑ TxX ‘ TyY

v ÞÝÑ pdpx,yqπ1pvq, dpx,yqπ2pvqq
(4.2)

is an isomorphism of R-vector spaces.
(c) Fixing a point y P Y , there is an injection map

iy : X ÝÑ X ˆ Y

x ÞÝÑ px, yq,

which you may assume is smooth. Prove that its derivative dxiy : TxX Ñ

Tpx,yqpX ˆ Y q – TxX ‘ TyY is given by w ÞÑ pw, 0q.
(d) Let f : X Ñ X 1 and g : Y Ñ Y 1 be smooth maps. Prove that

f ˆ g : X ˆ Y ÝÑ X 1 ˆ Y 1

px, yq ÞÝÑ pfpxq, gpyqq

is smooth. Prove that its derivative dpx,yqpf ˆ gq : Tpx,yqpX ˆ Y q Ñ

Tpfpxq,gpyqqpX
1 ˆ Y 1q is given by pv, wq ÞÑ pdxfpvq, dygpwqq under the

isomorphism (4.2).

Problem 8 (Complex general linear groups). Show that GLnpCq is a p2nq2-
dimensional Lie group.

Problem 9 (Orthogonal groups). Show that Opnq Ă GLnpRq is an npn´1q

2 -
dimensional Lie group.
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Derivatives

In this lecture we will define the derivatives of a smooth map at a point, and
in the next lecture we will assemble these together. This material appears at
the end of Section 1 of [BJ82], as well as Section 2. For more details, see [Tu11,
Chapters 6, 8].

5.1 Derivatives and tangent spaces

We want to extend the notion of a derivative of a smooth map between two open
subsets of Euclidean space to a smooth map between smooth manifolds. This
is useful because the derivative determines the local behaviour of smooth maps.
Using it, we will be able to formulate and prove global versions of the submersion
and immersion theorem.

If you are unfamiliar with the total derivative of smooth maps between open
subsets of Euclidean spaces, take a look at Chapter 2 of [DK04a]. For each x P Rk,
we can think of Rk as a space of vectors based at x. It has a standard basis. A
smooth map g : Rk Ą U Ñ Rk1 has a total derivative at x given by the linear
map, whose matrix with respect to the standard bases is the pk1 ˆ kq-matrix of
partial derivatives

»

—

—

—

—

–

Bg1
Bx1

pxq
Bg1
Bx2

pxq ¨ ¨ ¨
Bg1
Bxk

pxq
Bg2
Bx1

pxq
Bg2
Bx2

pxq ¨ ¨ ¨
Bg2
Bxn

pxq

...
... . . . ...

Bgk1

Bx1
pxq

Bgk1

Bx2
pxq ¨ ¨ ¨

Bgk1

Bxk
pxq

fi

ffi

ffi

ffi

ffi

fl

,

with gj : U Ñ R the jth component of g.
Our goal will be to construct for each point m in a k-dimensional manifold M

a tangent space TmM , as well as for each smooth map f : M Ñ N a derivative
dmf : TmM Ñ TfpmqN . The tangent space should satisfy the following properties:

(I) Each tangent space TmM is a R-vector space.

(II) In local coordinates it can be identified with Rk in a natural manner.
The derivative should satisfy similar properties:

(I’) Each derivative dmf is a linear map.

36
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(II’) In local coordinates it can be identified with the total derivative in a
natural manner.

(III’) It satisfies dmpidM q “ idTmM , and the chain rule dmpg ˝ fq “ dfpmqg ˝

dmf .
We have not explained what “in a natural manner” means here. It is intended
informally, but can be given some content by demanding that the identifications
are compatible with changing coordinates.

There is a number of perspectives on tangent spaces and derivatives, leading
to different but equivalent definitions. Which is most useful depends on your
setting, and we will discuss five of them eventually. In the end, the “stating
globally” part of our philosophy to state globally and prove locally, will allow us
to dispense with the details of the definitions.

5.1.1 The algebraicists’ definition

Intuitively, the tangent space to a k-dimensional submanifold of Euclidean space
at some point is the k-dimensional affine linear subspace that best approximates
it. However, we do not know (yet) that every smooth manifold is a submanifold
of some Euclidean space, nor do we want to verify that the resulting definition is
independent of the choice of such an embedding. So instead, we want a definition
of TmM that only refers to M and its maximal atlas. The first definition we will
give, the algebraicists’ one, does so, and will be our official one. However, you are
free to use one of the definitions in the next section if those are more convenient
for solving the problem at hand.

Germs of smooth maps and smooth functions

We start with the observation that the derivative of f : M Ñ N at m P M should
only depend on the behaviour of f in a small neighbourhood of m. Let us define
an equivalence relation „ on the set

tf : U Ñ N | U Ă M an open neighbourhood of m, f smoothu,

by saying that

f „ g if there exists an open neighbourhood V of m such that f |V “ g|V .

Definition 5.1.1. The equivalence class of a smooth map f : U Ñ N under „

is called germ of f at m, and denoted f : pM,mq Ñ N . If we like to stress that
fpmq “ n, we will use the notation f : pM,mq Ñ pN,nq.

We can compose germs: given f : pM,mq Ñ pN,nq and g : pN,nq Ñ pP, pq,
their composition is

g ˝ f :“ g ˝ f,

leaving it to the reader to verify this is well-defined, i.e. independent of the choice
of representatives.



38 Chapter 5 Derivatives

Definition 5.1.2. A function germ is a germ α : pM,mq Ñ R. The set of
function germs is denoted EpM,mq.

Pointwise addition, scaling, and multiplication of functions induces on EpM,mq

the structure of an R-algebra: this means it has addition, scaling, and multiplica-
tion operations

f ` g :“ f ` g, λf “ λf, and fg :“ fg for f, g P EpM,mq and λ P R,

These should satisfy appropriate commutativity, associativity, unitality, and
distributivity axioms. We will leave it to the reader to verify these operations
are well-defined, and satisfy these required properties (which will follow directly
from the corresponding properties of the real numbers).
Example 5.1.3. Evaluation at m P M induces a function

evm : EpM,mq ÝÑ R
f ÞÝÑ fpmq.

This is an R-algebra homomorphism, i.e. preserves addition, scaling, and multi-
plication.

We can precompose function germs in EpM,mq by a germ f : pQ, qq Ñ pM,mq,
and thus get an R-algebra homomorphism

f˚ : EpM,mq ÝÑ EpQ, qq

α ÞÝÑ α ˝ f “ α ˝ f.

The usual properties of composition of functions imply:

Lemma 5.1.4.
¨ f˚ is an R-algebra homomorphism,
¨ id˚ “ id, and
¨ pg ˝ fq˚ “ f˚ ˝ g˚.

In particular, if ϕ is a diffeomorphism then ϕ˚ is an isomorphism of R-algebras;
its inverse is given by pϕ´1q˚. Furthermore, since a germ only depend on maps
on arbitrarily small open neighbourhoods of m, it suffices that ϕ is a local
diffeomorphism.

We can apply this observation to a chart pUα, Vα, ϕαq with m P Vα. By
translation, we may assume without loss of generality that ϕαp0q “ m. Then
we can consider ϕα as a local diffeomorphism Uα Ñ M and hence it induces an
isomorphism

pϕαq˚ : EpM,mq ÝÑ Ek,

of EpM,mq with Ek :“ EpRk, 0q, the R-algebra of functions germs pRk, 0q Ñ R.
Any two such identifications differ by an isomorphism pψβαq˚ induced by a
transition function.
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From germs to the algebraicists’ definition of tangent spaces

The idea behind the algebraicists’ definition is that a vector v⃗ based at m P M
induces a directional derivative of functions f : M Ñ R, which we can imprecisely
write as

f ÞÝÑ dv⃗pfq :“ dfpm` tv⃗q

dt
p0q P R. (5.1)

(The difficulty is that we can not make sense of m` tv, but let us just go with
it.) This only depends on the germ f of f at m. Furthermore, by the linearity of
derivatives and the product rule, this should satisfy

dv⃗pf ` gq “ dv⃗pfq ` dv⃗pgq, dv⃗pλfq “ λdv⃗pfq,

and dv⃗pfgq “ dv⃗pfqgpmq ` fpmqdv⃗pgq.

Let us abstract this definition:

Definition 5.1.5. A derivation X : EpM,mq Ñ R is a function which satisfies
¨ Xpf ` gq “ Xpfq `Xpgq,
¨ Xpλfq “ λXpfq, and
¨ Xpfgq “ Xpfqgpmq ` fpmqXpgq.

Example 5.1.6. The value of X on the constant function 1 is given by

Xp1q “ Xp1 ¨ 1q “ Xp1q ¨ 1 ` 1 ¨Xp1q “ 2 ¨Xp1q,

so Xp1q “ 0. As a consequence of linearity, Xpconstant functionq “ 0.
We can add and scale such derivations, making them into a R-vector space:

pX ` Y qpfq “ Xpfq ` Y pfq and pλXqpfq “ λXpfq.

Definition 5.1.7. The tangent space TmM is the vector space DerpEpM,mqq of
derivations X : EpM,mq Ñ R.

Let us recap: EpM,mq is the R-algebra of germs at m of smooth functions
M Ñ R. We take derivations of this algebra, a notion inspired by directional
derivatives. These form a vector space as in desideratum (I) but it remains to
show that the vector space TmM is k-dimensional if M is k-dimensional as in
desideratum (II). To do so, we use that the isomorphism pφαq˚ : EpM,mq

„
Ñ Ek “

EpRk, 0q induced by a chart induces a linear isomorphism

T0Rk “ DerpEkq
„

ÝÑ DerpEpM,mqq “ TmM.

Thus it suffices to prove that T0Rk is k-dimensional. Unlike on M , on Rk we
can make sense of addition, and hence the directional derivatives of (5.1) with
respect to each of the k coordinate directions give derivations

B

Bxi
: Ek ÝÑ R

f ÞÝÑ
Bf

Bxi
p0q.

To see that these are linearly independent, apply them to the coordinate functions
xj : px1, . . . , xkq ÞÑ xj . Every other derivation is a linear combination of these:
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Proposition 5.1.8. The derivations B
Bxi

form a basis of T0Rk, and in particular
the latter is k-dimensional.

We will use the following lemma:

Lemma 5.1.9. Let U Ă Rk be an open neighborhood and f : U Ñ R a smooth
function. Then there exist smooth functions f1, . . . , fk : U Ñ R such that

fpxq “ fp0q `

k
ÿ

i“1
xifipxq.

Proof. The fundamental theorem of analysis implies

fpxq ´ fp0q “

ż 1

0

d

dt
fptx1, . . . , txkqdt “

n
ÿ

i“1
xi

ż 1

0
difptx1, . . . , txnqdt,

with dif the partial derivative in the ith coordinate direction. So we have that

fipxq “

ż 1

0
difptx1, . . . , txnqdt.

This implies that for germs we have f “ fp0q `
ř

i xifi.

Proof of Proposition 5.1.8. We prove that X “
řk
i“1Xpxiq

B
Bxi

by proving that

Y :“ X ´

k
ÿ

i“1
Xpxiq

B

Bxi

vanishes on all germs. By construction, it vanishes on the coordinate function.
Then we have that

Y pfq “ Y
`

fp0q ` xifi
˘

“ Y pfp0qq `
ÿ

i

Y pxifiq

“
ÿ

i

Y pxiqfip0q

“ 0.

Here we use that xi evaluates to 0 at the origin, and that Y pxiq vanishes by
construction.

The algebraicists’ definition of derivatives

A smooth map f : M Ñ N sending m to n induces a map of germs f˚ : EpN,nq Ñ

EpM,mq, which in turn induces a map of tangent spaces

dmf : TmM ÝÑ TnN

X ÞÝÑ X ˝ f˚.

This is the derivative of f at m. From the properties of f˚, we easily deduce the
basic properties of the derivative, desiderata (I’) and (III’):
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Lemma 5.1.10.
(i) dmf is a linear map

(ii) dmid “ id, and

(iii) dmpg ˝ fq “ dfpmqg ˝ dmf .

You may recognize (iii) as an incarnation of the chain rule. We will compare
it to the chain rule in multivariable calculus later in this section.
Example 5.1.11. If f : M Ñ N is a diffeomorphism, then it follows from (ii) and
(iii) that dmf is invertible with inverse dfpmqf

´1.
Example 5.1.12. To compute the derivative, you can often exploit the chain rule.
Recall that π1 : X ˆ Y Ñ X has derivative

dpx,yqπ1 : TxX ‘ TyY “ Tpx,yqpX ˆ Y q ÝÑ TxX,

is given by projection onto the first summand. The analogous statement is true
for π2 : X ˆ Y Ñ Y .

We will deduce from this that the diagonal map

∆: M ÝÑ M ˆM

m ÞÝÑ pm,mq

has derivative Tm∆: TmM Ñ TmˆmpMˆMq “ TmM‘TmM given by v ÞÑ pv, vq.
To see this, observe that π1 ˝ ∆ and π2 ˝ ∆ have derivatives given by the first and
second components of Tm∆. We apply the chain rule to π1 ˝ ∆ “ idM “ π2 ˝ ∆.
For example, for the first equality: the first component of Tm∆pvq is given by

Tpm,mqπ1 ˝ Tm∆pvq “ Tmpπ1 ˝ ∆qpvq “ TmpidM qpvq “ v.

For example, this implies that the diagonal map has injective derivative every-
where.

Let us finally describe explicitly Tmf in terms of charts, and verify desideratum
(II’). Fix a chart pUα, Vα, ϕαq ofM such that ϕαp0q “ m, and a chart pU 1

α1 , V 1
α1 , ϕ1

α1q

of N such that ϕ1
α1p0q “ fpmq. Let us denote fpmq by n. What is the dashed

linear map which makes the following diagram commute?

TmM TnN

Rk – T0Rk Rk1

– T0Rk
1

.

dmf

– d0ϕα – d0ϕ1

α1 (5.2)

Lemma 5.1.13. It is the total derivative D0ppϕ1
α1q

´1 ˝ f ˝ ϕαq.

Proof. As pd0ϕ
1
α1q

´1 “ dnppϕ1
α1q

´1q by Example 5.1.11, and

dnpϕ1
α1q

´1 ˝ dmf ˝ d0ϕα “ d0ppϕ1
α1q

´1 ˝ f ˝ ϕαq
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by (iii), it suffices to compute explicitly the derivative of g : Rk Ñ Rk1 at the
origin; we will substitute g “ pϕ1

α1q
´1 ˝ f ˝ ϕα. We write gj : Rk Ñ R for the jth

component of g, 1 ď j ď k1.
Given h P Ek1 , we can use the chain rule to compute that

d0gp B
Bxi

qphq “
Bph ˝ gq

Bxi
“

k1
ÿ

j“1

Bh

Byj
p0q

Bgj
Bxi

p0q “

k1
ÿ

j“1

Bgj
Bxi

p0q B
Byj

phq.

As this is true for all h, the B
Byj

-component is Bgj

Bxi
p0q. These are exactly the entries

of the total derivative matrix.

Remark 5.1.14. We can use this to justify calling dmpg ˝ fq “ dfpmqg ˝ dmf a
chain rule, by proving that under charts it reduces to the chain rule you already
know. Fixing a third chart, we have a triple of commutative diagrams (three
instances of (5.2))

TmM TnN

Rk – T0Rk Rk1

– T0Rk
1

,

dmf

– T0ϕα

D0ppϕ1

α1 q´1˝f˝ϕαq

– T0ϕ1

α1

TfpmqN Tg˝fpmqP

Rk1

– T0Rk
1 Rk2

– T0Rk
2

,

dfpmqg

– T0ϕ1

α1

D0ppϕ2

α2 q´1˝g˝ϕ1

α1 q

– T0ϕ2

α2

TmN Tg˝fpmqP

Rk – T0Rk Rk2

– T0Rk
2

.

dmpg˝fq

– T0ϕα

D0ppϕ2

α2 q´1˝g˝f˝ϕαq

– T0ϕ2

α2

Identifying the term dfpmqg ˝ dmf in charts using the vertical arrows in
the three commutative diagrams pictured above, we get a composition of total
derivatives

D0ppϕ2
α2q´1 ˝ g ˝ ϕ1

α1q ˝D0ppϕ1
α1q

´1 ˝ f ˝ ϕαq.

By the ordinary chain rule this is the total derivative

D0ppϕ2
α2q´1 ˝ g ˝ ϕ1

α1 ˝ pϕ1
α1q

´1 ˝ f ˝ ϕαq “ D0ppϕ2
α2q´1 ˝ g ˝ f ˝ ϕαq,

which is indeed dmpg ˝ fq under the above identification.



5.2 Alternative definitions of tangent spaces and derivatives 43

Thus, we can combine the three squares into a larger commutative diagram
combining the general chain rule and the chain rule in local coordinates:

TmM TnN dg˝fpmqP

Rk – T0Rk Rk1

– T0Rk
1 Rk2

– T0Rk
2

dmf

dmpg˝fq

Dfpmqg

– T0ϕα

D0ppϕ2

α2 q´1˝g˝f˝ϕαq

D0ppϕ1

α1 q´1˝f˝ϕαq

– T0ϕ1

α1

D0ppϕ2

α2 q´1˝f˝ϕ1

α1 q

– T0ϕ2

α2

5.2 Alternative definitions of tangent spaces and derivatives

Recall that we are giving five definitions of the tangent space TmM , and have
just given the first. In this section we give three other definitions, leaving a final
one to the Problem 10.

5.2.1 The definition for submanifolds of Euclidean space

You probably have an intuition for the tangent space at m to some k-dimensional
smooth submanifold M Ă Rn. Informally, it is the k-dimensional affine plane in
Rn through m P M , which is the best linear approximation to M . Before making
this precise, we give an example:
Example 5.2.1. By definition, a point x P Sk Ă Rk`1 is given by a unit length
vector in Rk`1. Then the tangent space TxSk is the k-dimensional affine plane
given by

TxS
n “ tx` v | v K xu.

Note that, upon translating m back to the origin, this affine plane yields a
linear subspace of Rn. This gives TmM the structure of an m-dimensional real
vector space.

To define TmM rigorously, we fix a charts pUα, Vα, ϕαq of M such that m P Vα,
and let x “ ϕ´1

α pmq. Then from the inclusion i : M Ñ Rn, we can construct a
smooth map between open subsets of Euclidean space

i ˝ ϕα : Rk Ą Uα ÝÑ Rn.

The best linear approximation to this smooth map at x is given in terms of the
total derivative Dxpi ˝ ϕαq as

Rk Ą Uα Q y ÞÝÑ pi ˝ ϕαqpxq `Dxpi ˝ ϕαqpy ´ xq P Rn.

It is a consequence of the definition of a submanifold that Dpi˝ϕαqx is an injective
linear map; indeed, in terms of some other chart of Rn it is a restriction of the
inclusion Rk ãÑ Rn. This tells us that:
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Definition 5.2.2. One definition of the tangent space TmM is as

T submfd
m M :“ m`Dxpi ˝ ϕαqpRkq,

considered as a k-dimensional real vector space by its identification with Dxpi ˝

ϕαqpRkq.

We need to verify that this is independent of the choice of chart. This is the
case because if we use another chart pUβ, Vβ, ϕβq, we have

i ˝ ϕβ “ pi ˝ ϕαq ˝ pϕ´1
α ˝ ϕβq “ pi ˝ ϕαq ˝ ψβα,

so its total derivative is given by Dxpi ˝ ϕαq ˝Dx1pψβαq. Since ψβα is a diffeomor-
phism, Dx1pψβαq is a linear isomorphism and hence

Dx1pi ˝ ϕβqpRkq “ Dxpi ˝ ϕαqpRkq.

Relation to algebraicists’ definition

We have previously identified T0Rn with the n-dimensional real vector space
spanned by the derivations B{Bxi. You can think of this as applying the formalism
above to M “ Rn, using the standard chart pRn,Rn, idq.

Given an inclusion i : M Ñ Rn, where without loss of generality we may
assume by translation that ipmq “ 0, we can compute the derivative of i at m
with respect to the standard chart of Rn and some chart pUα, Vα, ϕαq of M with
ϕαp0q “ m. By the chain rule there is a commutative diagram of linear maps

TmM T0Rn

Rk – T0Rk Rn – T0Rn.

dmi

– T0ϕα

D0pi˝ϕαq

– id

Because M is a submanifold dmi is injective, as in terms of appropriate charts
it is the derivative of the inclusion Rk Ñ Rn. This tells us that we could have
defined TmM as the image of the linear map dmi. By the commutative diagram,
this linear subspace is the same as the image of the total derivative D0pi ˝ ϕαq.
Undoing the translation of ipmq to the origin, we recover the T submfd

m M . We
conclude that there is a preferred linear isomorphism

TmM
–

ÝÑ T submfd
m M.

5.2.2 The physicists’ definition

For physicists, a tangent vector is described in terms of a chart (thought of as
a local coordinate system), which transforms in a certain way when passing to
other local coordinates. That is, an element of TmM is an equivalence class of a
chart pUα, Vα, ϕαq such that ϕαp0q “ M and a vector v P Rk. The equivalence
relation tells us that v transforms as expected: by applying the total derivative
of the transition function ψβα.
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Definition 5.2.3. The physicists’ definition of the tangent space of M at m is

T phys
m M “

¨

˝

ğ

pUα,Vα,ϕαq

Rk
˛

‚{»

where the disjoint union is over all charts with m “ ϕαp0q and the equivalence
relation » is given by

pα, v⃗q » pβ, w⃗q if and only if w⃗ “ D0ψβαpv⃗q.

Remark 5.2.4. This definition reflects the experimental roots of physical theories:
the transformation rule under change of local coordinates for physical quantities
is determined experimentally, and a mathematical framework is built on top of
these results.

Since each D0ψβα is a linear map, addition and scalar multiplication in each
copy of Rk induce a vector space structure on T phys

m M . Since each copy of Rk is
identified with every other copy, this is a k-dimensional vector space. To get a
corresponding notion of derivative, we observe that any smooth map f : M Ñ N
induces a map

dphys
f : T phys

m M ÝÑ T phys
fpmq

N

rα, v⃗s ÞÝÑ
“

α1, D0ppϕ1
α1q

´1 ˝ f ˝ ϕαqpv⃗q
‰

.

Relation to algebraicists’ definition

The maps

Rk ÝÑ TmM

pα, v⃗q ÞÝÑ pD0ϕαq

´

ÿ

i

viB{Bxi

¯

are compatible with the equivalence relation, and thus induce a linear map
T phys
m pMq Ñ TmM . On representatives of the form pα, v⃗q, its composition with

the linear isomorphism pD0ϕαq´1 : TmM Ñ Rk is given by pα, v⃗q ÞÑ v⃗, so this is
an isomorphism. We conclude that there is a preferred linear isomorphism

T phys
m pMq

–
ÝÑ

1⃝
TmM.

This identification is compatible with the construction of derivatives: we leave it
to the reader to verify that the following diagram of linear maps commutes

T phys
m M T phys

fpmq
N

TmM TfpmqN.

1⃝–

dphys
m f

1⃝–

dmf
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5.2.3 The geometers’ definition

For geometers, a tangent vector is the derivative of a curve. As such, it is an
equivalence class of germs of smooth maps

γ : pR, 0q ÝÑ pM,mq.

Because we want to avoid a circular definition, we can not (yet) refer to the
derivative of this map. However, we can take a function germ g : pM,mq Ñ R
and compute

d
dtg ˝ γp0q,

a derivative of a real-valued function on a neighbourhood of the origin in R. This
allows us to introduce an relation « on curves through m, given by

γ « η if and only if d
dtg ˝ γp0q “ d

dtg ˝ ηp0q for all g : pM,mq Ñ R.

That is, if γ and η define the same directional derivative.

Definition 5.2.5. The geometers’ definition of the tangent space of M at m is

T geom
m M :“ tgerms pR, 0q Ñ pM,mqu{«.

We will explain how to make it a vector space momentarily. To get a
corresponding notion of derivative, we observe that any smooth map f : M Ñ N
induces a map

dgeom
f : T geom

m M ÝÑ T geom
fpmq

N

rγs ÞÝÑ rf ˝ γs.

Relation to algebraicists’ definition

There is a map

T geom
m M “ tgerms pR, 0q Ñ pM,mqu{« ÝÑ TmM “ DerpEpM,mqq

rγs ÞÝÑ

ˆ

h ÞÑ
dph ˝ γq

dt

˙

By evaluation on coordinate functions in a chart, this is seen to be injective. By
construction of curves in the same chart, this is seen to be surjective. Hence it is
a bijection. In particular, we can use this to make T geom

m M into a vector space,
getting tautologically a linear isomorphism.

T geom
m M

–
ÝÑ

2⃝
TmM.

Again, this is compatible with the construction of derivatives: we leave it to
the reader to verify that the following diagram of linear maps commutes

T geom
m M T geom

fpmq
N

TmM TfpnqN.

2⃝–

dgeom
m f

2⃝–

dmf
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5.3 Problems

Problem 10 (The algebraic geometers’ definition). In this problem you will give
the algebraic geometers’ definition of a tangent space.

(a) Prove that there is a unique maximal ideal of EpM,mq, given by mm “

tf | fpmq “ 0u.
(b) Prove that for pM,mq “ pRk, 0q, the maximal ideal m0 is spanned by the

coordinate functions x1, . . . , xk.
(c) Prove that EpM,mq{mm is a 1-dimensional R-vector space, and mm{m2

m

is k-dimensional if M is k-dimensional.
The algebraic geometers’ definition of the tangent space of M at m is

T ag
mM :“ pmm{m2

mq˚.

(d) Construct a linear map dag
mf : T ag

mM Ñ T ag
fpmq

N for each smooth map
f : M Ñ N . Prove it satisfies dag

m id “ id and dag
m pg ˝ fq “ dag

fpmq
g ˝ dag

mf .

(e) Construct a linear map TmM Ñ T ag
mM and prove it is an isomorphism.



Chapter 6

Tangent bundles

We now assemble the tangent spaces to tangent bundles, and the derivatives of a
smooth map to a map of tangent bundles. This appears in Chapter 2 of [BJ82].
See also [Tu11, Chapters 6, 8].

6.1 Vector bundles

Recall that the total derivative of a smooth map f : Rm Ñ Rn at a point x P Rm
is a linear map Rm Ñ Rn which with respect to the standard coordinates is given
by the pnˆmq-matrix of partial derivatives of its components at x. Importantly
it depends smoothly on x. On smooth manifolds the domains and targets will
depend on points m and fpmq respectively, so we can not state the smooth
dependence on m without first assembling the tangent spaces and derivatives to
each m P M together in an appropriate object, known as a vector bundle. This is
one of the other geometric objects studied by differential topology, in addition to
smooth manifolds, and the tangent bundle is the prototypical example.

6.1.1 Vector bundles

We start with the topological variant, before adding in the smooth structure later
in this lecture:

Definition 6.1.1. A k-dimensional vector bundle over a topological space X is a
topology on the disjoint union E “

Ů

xPX Ex of a collection of real vector spaces,
such that

(i) the function p : E Ñ X sending Ex to x is continuous,
(ii) for each x P X there exists an open subset V Ă X containing x and a

homeomorphism
ζ :

ğ

xPV

Ex
–

ÝÑ V ˆ Rk

that restricts to an invertible linear map Ex Ñ txu ˆ Rk for each x P V .

The continuous map p is called the projection, E the total base, X the base,
and each Ex a fibre. Finally, the pair pV, ζq is called a bundle chart.

48



6.1 Vector bundles 49

Example 6.1.2. The cartesian product X ˆ Rk has an evident structure of a
k-dimensional vector bundle. We call this the trivial k-dimensional vector bundle
over X. The property in Definition 6.1.1 is often referred to as a local triviality
condition, as it is says that E locally looks like such a trivial bundle.
Example 6.1.3. The real projective space RPn is the space of lines in Rn`1.
There is a 1-dimensional vector bundle over it with fibre of L given by those
v P Rn`1 which lie in L. This is the canonical bundle. More precisely, writing
RPn “ Sn{t˘1u, we have

Erxs “ tv P Rn`1 | v “ λx for some λ P Ru for rxs P RPn.

We topologise
Ů

rxs Erxs as a subspace of RPnˆRn`1. The local triviality condition
is verified using charts.

6.1.2 Maps between vector bundles

Definition 6.1.4. Let p : E Ñ X and p1 : E1 Ñ X 1 be vector bundles (possibly
of different dimension). For a continuous map F : E Ñ E1 to be a map of vector
bundles, the first requirement is that there is a continuous map f : X Ñ X 1 the
following diagram commute

E E1

X X 1.

F

p p1

f

Then F restricts to a map of fibres Fx : Ex Ñ E1
fpxq

, and the second requirement
is that this is a linear map.

Note that f is uniquely determined by F , and we say that F covers f or F
is over f . It is clear that the identity is a map of vector bundles, and that maps
of vector bundles are closed under composition.

Definition 6.1.5. An isomorphism of vector bundles is a map of vector bundles
which admit an inverse map of vector bundles.

Example 6.1.6. Over S1 we have exactly two 1-dimensional vector bundles up to
isomorphism: the trivial one and the “Möbius strip” bundle. The latter is given
by the canonical bundle over RP 1 – S1, and can be concretely given by taking
r0, 1s ˆ R and identifying the endpoints by p0, vq „ p1,´vq.
Example 6.1.7. Let X ˆRm be a trivial bundle. The pmˆmq-matrices MatmpRq

are topologised by identifying them with Rm2 through their entries. Then any
continuous map A : X Ñ MatmpRq gives rise to a map of vector bundles

X ˆ Rm ÝÑ X ˆ Rm

px, vq ÞÝÑ px,Apxqpvqq.

This is an isomorphism of vector bundles if and only if A takes values in GLmpRq Ă

MatmpRq, the subset of invertible matrices.
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6.1.3 Smooth vector bundles

As for topological manifolds, we can package the data of k-dimensional vector
bundle over a topological space into an atlas: the collection of bundle charts
pV, ζq for pp,E,Xq with V covering X is called a bundle atlas. As in the case
of smooth atlases, we can define maximal bundle atlases and prove that every
bundle atlas is contained in a unique maximal bundle atlas.

A bundle atlas has transition functions: taking pVα, ζαq and pVβ, ζβq, the
composition

pVα X Vβq ˆ Rk ζ´1
α

ÝÑ p´1pVα X Vβq
ζβ

ÝÑ pVα X Vβq ˆ Rk

is necessary of the form px, vq ÞÑ px, ξαβpxqpvqq for a linear map ξαβpxq : Rk Ñ Rk
depending continuously on x P Vα X Vβ Ď X.

If the base is a smooth manifold, so are the open subsets Vα X Vβ. Recall
that GLkpRq is an open subset of Rk2 and hence inherits a smooth structure, we
can make sense of whether these transition functions are smooth. A bundle atlas
is smooth if all transition functors are smooth.

Definition 6.1.8. Suppose M is a smooth manifold. Then a smooth vector
bundlepp,E,Mq is a vector bundle with a maximal smooth bundle atlas.

The proof of the following is left as a problem:

Lemma 6.1.9. If pp,E,Mq is a smooth vector bundle then there is a unique
maximal atlas on E such that all bundle charts ζα : p´1pVαq Ñ Vα ˆ Rk are
diffeomorphisms and p : E Ñ M is a smooth map.

When we have a pair of vector bundles pp,E,Mq and pp1, E1,M 1q and a map
F : E Ñ E1 of vector bundles over f : M Ñ M 1, then we can use the bundle
charts to write

pVα X f´1pV 1
α1qq ˆ Rk ζ´1

α
ÝÑ p´1pVα X f´1pV 1

α1qq
F

ÝÑ pp1q´1pV 1
α1q

ζ1

α1

ÝÑ V 1
α1 ˆ Rk

1

.

As before, this preserves the first coordinate and hence is encoded by a continuous
map pVα X f´1pV 1

α1qq Ñ LinpRk,Rk1

q. We can ask this to be smooth, and if the
vector bundles are smooth this is independent of the choice of bundle charts. If
all these maps are smooth, we say that the map F : pp,E,Mq Ñ pp1, E1,M 1q of
vector bundles is smooth. This is in particular always a smooth map between the
manifolds M and M 1.

6.2 The tangent bundle and the derivative

In the previous lecture, we described how to assign a vector space TmM to each
m P M , as well as maps

dmf : TmM ÝÑ TfpmqN,

which satisfy the desiderata:
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(I’) dmf is a linear map.
(II’) In local coordinates TmM is Rk and dmf is the total derivative.

(III’) dmid “ id and dmpg ˝ fq “ dfpmqg ˝ dmf .
We next explain how to patch together the vector spaces TmM to a smooth

vector bundle TM over M , and the linear maps dmf to a map df : TM Ñ TN
of smooth vector bundle for each smooth map f : M Ñ N . These should satisfy
analogous desiderata:

(I”) df is a map of vector bundles.
(II”) In local coordinates TM is given by Rk’s and df by the total deriva-

tives.
(III”) dpidq “ id and dpg ˝ fq “ dg ˝ df ,

6.2.1 Constructing the tangent bundle

To construct the tangent bundle TM of a manifold, we shall employ a general
construction, presenting a vector bundle as a colimit of trivial bundles.

Definition 6.2.1. A k-dimensional pre-vector bundle over a space X is a disjoint
union E “

Ů

xPX Ex of a collection of real vector space Ex, together with a
collection B “ tpVα, ζαqu of open subsets Vα that cover X and bijections

ζα :
ğ

xPVα

Ex
–

ÝÑ Vα ˆ Rk

that restrict to invertible linear maps Ex Ñ txu ˆ Rk. Furthermore, we require
that all transition functions ξαβ : Vα X Vβ Ñ GLkpRq are continuous.

That is, a pre-vector bundle is essentially a vector bundle that is of yet without
a topology on its total space. However, we have:

Lemma 6.2.2. There is a unique topology on E so that B “ tpVα, ζαqu is a
bundle atlas for pp,E,Bq.

Proof sketch. Give E the finest topology such that all ζα are continuous.

If we replace X by a manifold M , we can similarly define k-dimensional
smooth vector bundles, by demanding that all ξαβ are smooth. Using the above
construction then makes pp,E,Mq into a smooth vector bundle. In particular,
we can define the tangent bundle TM by prescribing a smooth pre-vector bundle
on M :

¨ TM “
Ů

mPM TmM ,
¨ B “ tVα, ζαu where pUα, Vα, ϕαq is ranges over the charts of the maximal

atlas of M , and
¨ ζα :

Ů

mPM TmM Ñ Vα ˆ Rk is given by

pm, vq ÞÝÑ

´

m, pdϕ´1
α pmq

ϕαq´1pvq

¯

.

Implicitly, we are using here the identifications of Tϕ´1
α pmq

Rk with Rk using
the basis B

Bx1
, . . . , B

Bxk
.
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Definition 6.2.3. The smooth vector bundle TM over M constructed from this
pre-vector bundle is the tangent bundle to M .

Example 6.2.4. If U Ă Rk is open, then TU “ U ˆ Rk.
Note that this does not depend on the exact construction of the tangent

spaces TmM , but only that it satisfies the desiderata.
The tangent bundle is itself a smooth manifold. Indeed, there is a unique

2k-dimensional maximal smooth atlas on TM such that each of the local trivi-
alizations TM |U – U ˆ Rk induced by a chart of M is a diffeomorphism. As a
consequence, the projection map TM Ñ M is a smooth map, as is the 0-section
s0 : M Ñ TM ; its image is a k-dimensional submanifold of TM diffeomorphic to
M .

6.2.2 The derivative and its properties

It is now easy to define the derivative df : TM Ñ TN of a smooth map f : M Ñ N .
This will be a map of vector bundles which covers f , and hence it suffices to
give linear maps dmf : TmM Ñ TfpnqN and verify that these are continuous and
in fact smooth. Of course, we will take these linear maps the derivatives as we
defined before.

Lemma 6.2.5. The derivatives dmf : TmM Ñ TfpnqN assemble to a smooth
bundle map df : TM Ñ TN .

Proof. Since being smooth is a local property, it suffices to check this with respect
to the bundle charts defining TM and TN , i.e. those arising from charts. That
is, we need to prove that

pVα X f´1pV 1
βqq ˆ Rk ÝÑ V 1

β ˆ Rk
1

pm, vq ÞÝÑ

´

fpmq, rpdpϕ1
β

q´1pfpmqqϕ
1
βq´1 ˝ dmf ˝ dpϕ1

β
q´1pmqϕ

1
βpmqspvq

¯

is smooth. To do so, we precompose it with the diffeomorphism

ϕα ˆ id : ϕ´1
α pVα X f´1pV 1

βqq ˆ Rk –
ÝÑ pVα X f´1pV 1

βqq ˆ Rk

and postcompose it with the inverse of

ϕβ ˆ id : U 1
β ˆ Rk –

ÝÑ V 1
β ˆ Rk.

The result is the map ϕ´1
α pVα X f´1pV 1

βqq ˆ Rk ÝÑ U 1
β ˆ Rk1 between trivial

vector bundles over open subsets of Euclidean space given by

px, vq ÞÝÑ

´

pϕ1
βq´1 ˝ f ˝ ϕαpxq, rpdpϕ1

β
q´1pfpϕαpxqqqϕ

1
βq´1 ˝ dfpxqf ˝ dxϕαspvq

¯

Using the chain rule, we identify the right term as dxppϕ1
βq´1 ˝ f ˝ ϕαq, which

equals the total derivative Dxppϕ1
βq´1 ˝ f ˝ ϕαq. That is, we are dealing with the

map
px, vq ÞÝÑ

`

pϕ1
βq´1 ˝ f ˝ ϕαpxq, Dxppϕ1

βq´1 ˝ f ˝ ϕαqpvq
˘

.

This is evidently linear on each fibre and smooth.
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Example 6.2.6. If U Ă Rk and V Ă Rk1 are open and f : U Ñ V is a smooth map,
then df : TU Ñ TV is the map

TU “ U ˆ Rk ÝÑ TV “ V ˆ Rk

px, vq ÞÝÑ pfpxq, Dxfpvqq

obtained by applying pointwise the total derivative of f .
Using that the equations dmpidq “ id and dmpg ˝ fq “ dfpmqg ˝ dmf hold in

each fibre, we see that:

Lemma 6.2.7. The derivative satisfies dpidq “ id and dpg ˝ fq “ dg ˝ df .

6.3 Linear algebra of vector bundles

For later use, we want to generalize our usual definitions and constructions for
vector spaces to vector bundles.

6.3.1 Subbundles

The generalization of a subspace of a vector space is a subbundle.

Definition 6.3.1. Let p : E Ñ X be a k-dimensional vector bundle. A subspace
E1 Ă E is a k1-dimensional subbundle if each E1

x :“ p´1pxqXE1 is a k1-dimensional
linear subspace of Ex “ p´1pEq and there are local trivializations ϕ :

Ů

xPU Ex –

U ˆ Rk sending
Ů

xPU E
1
x to U ˆ Rk1 .

If pp,E,Mq is a smooth vector bundle, we can make sense of a smooth
subbundle, by requiring that the local trivializations are smooth.

6.3.2 Kernels

Using this we can make sense of the kernel and image of certain maps of vector
bundles. This requires the following technical lemma, whose proof you do not need
to know. Let LinpRp,Rp1

q denote the space of linear map Rp1

Ñ Rp, topologised
by identifying it with Rpp1 .

Lemma 6.3.2. If Γ: Rn Ñ LinpRp,Rp1

q is a continuous map whose image
lies in subspace of linear maps of rank exactly equal to r, then there exists an
open neighbourhood W Ă Rn of 0 and continuous maps B : W Ñ GLp1pRq and
C : W Ñ GLppRq so that CpwqΓpwqBpwq “ Γp0q for all w P W . If Γ is smooth,
then B and C can also be taken to be smooth.

Proof. We may as well change bases to something more convenient: pick a basis
of Rp and Rp1 such that in this basis Γp0q is given by the ppˆ p1q-matrix (the 0’s
are rectangular matrices filled with 0’s of the correct size)

πr “

„

idr 0
0 0

ȷ

.
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With respect to these bases, for w in an open neighbourhood W of 0 the matrix
of Γpwq is given by

πr `A “

„

idr `A11 A12
A21 A22

ȷ

with ||A||2 ă 1{2 (with ||A||2 the sum of the squared entries). In fact, because
the first r rows contains a unique entry ą 1{2, A21 and A22 have to be 0 for this
to have rank r.

We will use Cpwq to get rid of A11:

Cpwq “

„

pidr `A11q´1 0
0 idp1´r

ȷ

with the inverse in the top-right square existing because each row contains a
unique entry ą 1{2. We compute that

CpwqΓpwq “ πr `A “

„

idr pidr `A11q´1A12
0 0

ȷ

We will then use Bpwq to get rid of the pr ˆ p´ rq-matrix pidr `A11q´1A12:
it will be the ppˆ pq-matrix given by

Bpwq “

„

idr ´pidr `A11q´1A12
0 idp´r

ȷ

and it is a simple computation that CpwqΓpwqBpwq “ Γp0q.
Since the construction of Cpwq and Bpwq depends continuously on the entries

of Γpwq these maps are continuous.

Lemma 6.3.3. Suppose p : E Ñ X and p1 : E1 Ñ X 1 are vector bundles, and
G : E Ñ E1 is a map of vector bundles so that Gx : Ex Ñ E1

gpxq
has the same

rank for all x P X. Then

kerpGq :“
ğ

xPX

kerpGxq

is a subbundle of E. If the vector bundles and the map between them are smooth,
then kerpGq is a smooth subbundle.

Proof. Passing to local trivializations of p and p1, we may assume that G is a
continuous map U ˆ Rp Ñ V ˆ Rp1 over a continuous map g : U Ñ V so that
Gpu,´q : Rp Ñ Rp1 is linear of fixed rank r. In other words, G is described by a
g and a continuous map Γ: U Ñ LinpRp1

,Rpq landing in the subspace of linear
spaces that have rank r. By the previous lemma, on a neighbourhood of each
point u0 P U we adjust the local trivializations is that Γ is constant with value
πr.
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6.3.3 Images

The image of a vector bundle map is not defined in general. On the one hand,
if the underlying map on base spaces is not injective, it will try to assign two
fibres to the same point in the target. On the other hand, if the underlying map
on base spaces is not surjective, it will not know what fibres to assign to some
points in the target. These issues are resolved by restricting our attention to
inclusions of base spaces only, and constructing the image of the vector bundle
map only over the image of this inclusion.

Definition 6.3.4. Suppose that p : E Ñ X is a vector bundle and Y Ă X a
subspace, then E|Y :“

Ť

yPY Ey with the subspace topology is a vector bundle
over Y .

This definition makes sense, because the local trivializations of E restrict to
local trivializations of E|Y .

Example 6.3.5. The local triviality condition in the definition of a k-dimensional
vector bundle p : E Ñ X can rephrased as saying that for all x P X there exists
an open subset U Ă X such that E|U is isomorphic to the trivial bundle U ˆ Rk.

A similar argument as for kernels now tells us that:

Lemma 6.3.6. Suppose p : E Ñ X and p1 : E1 Ñ X 1 are vector bundles and
X Ă X 1, and G : E Ñ E1 over the inclusion so that Gx : Ex Ñ E1

x has the same
rank for all x P X. Then

impGq :“
ğ

xPX

impGxq

is a subbundle of E1|X . If the vector bundles and the map between them are
smooth, then impGq is a smooth vector bundle.

6.3.4 Quotients

Given a subspace of a vector space, we can take the quotient. Similarly, we can
take the fibewise quotient of a vector bundle by a subbundle.

Lemma 6.3.7. Let E Ñ X be a vector bundle and E1 Ă E a subbundle. Then
the quotients of the vector space Ex by the subspace E1

x assemble to a vector
bundle

E{E1 :“
ğ

xPX

Ex{E1
x

over X using the quotient topology, which we call the quotient bundle. If E was
a smooth vector bundle and E1 a smooth subbundle, then E{E1 is also a smooth
vector bundle.
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6.4 Problems

Problem 11 (Construction of smooth vector bundles). Prove Lemma 6.1.9.

Problem 12 (Tangent bundles to submanifolds). Let M Ă Rn be a k-dimensional
smooth submanifold.

(a) Prove that

T submfdM “ tpm, vq P M ˆ Rn | v `m P T submfd
m Mu

is a k-dimensional smooth vector bundle.
(b) Prove that TM and T submfdM are isomorphic as smooth vector bundles.
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Immersions and submersions

In this lecture we continue with implementation of one of the slogans of differential
topology: state globally, prove locally. We do so by importing the inverse function
theorem and its corollaries into the language of smooth manifolds. The main
difficulty is figuring out the correct statements, as most proofs will start by
passing to charts and then work on open subsets of Euclidean space.

This covers 1.§3 of [GP10], as well as a version of pages 51–52.

7.1 Globalizing the inverse function theorem

The easiest example of the above slogan is a characterisation of diffeomorphisms
where you do not need to go through the effort of finding the inverse and proving
it is smooth. We start by recalling the statement of the inverse function theorem
[DK04a, Theorem 3.2.4]:

Theorem 7.1.1 (Inverse function theorem). Let U0 Ă Rn be open and a P U0.
Suppose g : U0 Ñ Rn is a smooth map whose total derivative Dga at a is an
invertible linear map. Then there exists an open neighbourhood U Ă U0 of a such
that gpUq is open and

g|U : U ÝÑ gpUq

is a diffeomorphism onto this open subset.

To translate this into the language of smooth manifolds we recall the notions
we introduced in the previous lecture. We constructed for each k-dimensional
smooth manifold M a tangent bundle TM , which is a k-dimensional smooth
vector bundle over M . Each smooth map f : M Ñ N with M a k-dimensional
smooth manifold and N a k1-dimensional smooth manifold, induces a map of
smooth vector bundles df : TM Ñ TN called the derivative.

By construction, both of the tangent bundle and the derivative are easy
to understand when viewed through the lens of a chart. A chart pUα, Vα, ϕαq

of M with p P Uα gives an identification the restriction of TM to Vα with
Uα ˆ Rk. A chart pU 1

β, V
1
β, ϕ

1
βq with fppq P V 1

β gives a similar identification of the
restriction of TN to V 1

β with U 1
β ˆRk1 . Under these identifications, the derivative

57
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dpf : TpM Ñ TfppqN is the total derivative of pϕ1
βq´1 ˝ f ˝ ϕα at ϕ´1

α ppq. That is,
the following diagram of vector spaces and linear maps commutes:

TpM TfppqN

Rp Rk1

.

–

dpf

–

D
ϕ´1

α ppq
ppϕ1

βq´1˝f˝ϕαq

(7.1)

We shall translate the hypothesis on dpf into one about the bottom linear
map, and then apply the inverse function theorem to get:

Lemma 7.1.2. Let f : M Ñ N be a smooth map with M k-dimensional and N
k1-dimensional, and suppose that dpf : TpM Ñ TfppqN is an isomorphism. Then
k “ k1 and f is a local diffeomorphism at p, i.e. there is an open neighborhood V
of p in M such that f |V : V Ñ fpV q is a diffeomorphism.

Proof. Using (7.1), the hypothesis translates into the statement that the total
derivative of the map

pϕ1
βq´1 ˝ f ˝ ϕα : Uα Ą ϕ´1

α pVα X f´1pV 1
βqq ÝÑ ϕ´1

α pfpVαq X V 1
βq Ă U 1

β.

at ϕ´1
α ppq is an isomorphism. This is only possible if the total derivative is a

square matrix, so k “ k1. When we call this function g and apply the inverse
function theorem to it at a “ ϕ´1

α ppq, we get an open subset U Ă ϕ´1
α pfpVαqXV 1

βq

such that gpUq is open and g|U : U Ñ gpUq is a diffeomorphism. Translating this
back into M and setting V :“ ϕαpUq through the commutative diagram

Vα Ą V fpV q Ă V 1
β

Uα Ą U gpUq Ă U 1
β,

f

g

ϕα ϕ1
β

this is saying that fpV q “ ϕβpgpUqq is open in N and f |V : V Ñ fpV q is a
diffeomorphism.

Theorem 7.1.3. A bijective smooth map f : M Ñ N which has a bijective
differential at all p P M is a diffeomorphism.

Proof. Since f : M Ñ N is a bijection, it has an inverse f´1 : N Ñ M . To see
that this is smooth at fppq P M , apply the previous lemma and observe that
on fpV q, f´1 coincides with pf |V q´1. The latter is smooth as the inverse of the
diffeomorphism f |V .

Example 7.1.4. The quotient map R2 Ñ R2{Z2 is a surjective smooth map which
has bijective differential at all p P R2, but it is not a diffeomorphism as it is not
even a homeomorphism.

We can avoid having to check that f is surjective by demanding M is compact
and N is connected.
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Corollary 7.1.5. If M is non-empty compact and N is connected, an injective
smooth map f : M Ñ N which has a bijective differential at all p P M is a
diffeomorphism.

Proof. In light of the previous theorem it remains to prove that f is surjective.
By Lemma 7.1.2 the image of f is open. The image of every compact space
under a continuous map is compact and in a Hausdorff space every compact set
is closed, so the image of f is both open and closed. This means it is a union of
connected components of N and by assumption N has a single such component,
hence f must be surjective.

7.2 Globalizing the immersion theorem

We next globalize the immersion theorem [DK04a, Section 4.3], which said:

Theorem 7.2.1 (Immersion theorem). Let U0 Ă Rk be an open subset and a P U0.
Suppose we have a smooth map h : U0 Ñ Rk1 such that the total derivative Dha
of h at a is injective. Then k ď k1 and there exist open neighbourhoods U Ă U0 of
a and V Ă Rn of hpaq, and diffeomorphisms ϕ : Rk Ñ U and ϕ1 : Rk1

Ñ V such
that

(i) ϕp0q “ a,

(ii) ϕ1p0q “ hpaq, and

(iii) the following diagram commutes

Rk U Ă Rk

Rk1

V Ă Rk1

,

ιk

–

ϕ

h

–

ϕ1

with ιk the inclusion px1, . . . , xkq ÞÑ px1, . . . , xk, 0, . . . , 0q.

Let us name the condition that the differential is injective at some point in
domain:

Definition 7.2.2. Let f : M Ñ N be a smooth map.
¨ We say f is an immersion at p if dpf : TpM Ñ TfppqN is an injective linear

map.

¨ We say f is an immersion if it is an immersion at all p P M .

Applying the immersion theorem to pϕ1
βq´1 ˝ f ˝ ϕα for charts pUα, Vα, ϕαq

and pU 1
β, V

1
β, ϕ

1
βq around p and fppq respectively, we deduce:

Lemma 7.2.3. Let f : M Ñ N be a smooth map which is an immersion at p,
with M k-dimensional and N k1-dimensional. Then k ď k1 and there exists a
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chart pUα, Vα, ϕαq of M around p and a chart pU 1
α, V

1
α, ϕ

1
αq of N around fppq so

that the following diagram commutes

Rk Ą Uα M

Rk1

Ą U 1
β N,

ϕα

ιk f

ϕ1
β

with ιk the inclusion onto first k1 coordinates.

Remark 7.2.4. Note that a linear map being injective is an open condition, which
is reflected in the above lemma by the observation that if f looks like the standard
inclusion in some coordinates at p, then it does so near p, namely on all of ϕαpUαq.

Unlike being a diffeomorphism, being an immersion is a purely local condition.
This means that its image may be pathological. Of course, since an immersion
need not be injective it may intersect itself, see the first example of Figure 7.1.
However, even an injective immersion need not be a homeomorphism onto its
image, see the second example of Figure 7.1.
Example 7.2.5. One of the worst examples is the immersion

h : R ÝÑ T2 “ R2{Z2

x ÞÝÑ rx, θxs

with θ P p0, 1q irrational. This immersion has dense image in T2. To see it is an
immersion define h̃pxq : R Ñ R2 by x ÞÑ px, θxq and consider the commutative
diagram of vector spaces

TxR T
rhpxq

R2

ThpxqR2{Z2.

dxh̃

dxh
d

rhpxq
q

The linear map d
rhpxq

q is an isomorphism because the map rh is a local diffeomor-
phism, and the total derivative of rh at x is easily seen to be injective, dxh must
also be injective.

That is, we would like fpMq not to intersect the image ϕ1
βpU 1

βq of a chart again.
If f were a homeomorphism onto its image, then fpVαq would be open in fpMq

and this means that there is an open neighborhood V 1 in N such that V 1XfpMq “

fpVαq so by shrinking ϕ1
βpU 1

βq we could arrange that ϕ1
βpU 1

βq X fpMq “ fpVαq.
That such a open subset V 1 exists is proven by contradiction: if it did not
exist then there would be a sequence of points yi P fpMqzfpVαq converging to
y P fpMq, which contradicts the fact that fpVαq is open. In this case the charts
from the immersion theorem give the image of f the structure of an r-dimensional
submanifold of N . We will make this precise in a moment.
Remark 7.2.6. The advantage of the condition on an immersion being purely
local is that we can classify them up to regular homotopy using an h-principle,
as discussed in the first lecture.
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Figure 7.1 The image of two different immersions of R into R2.

7.2.1 Embeddings

Definition 7.2.7. An embedding is an injective immersion which is a homeo-
morphism onto its image.

Example 7.2.8. If m,n are integers such that gcdpm,nq “ 1, then the map

ẽ : R Q t ÞÝÑ pmt, ntq P R2

is easily seen to be an embedding. Taking the quotient by the action of Z2 on
R2 induces an injective smooth map e : R{Z Ñ R2{Z2 which is automatically
proper. To see this its differential is injective everywhere, we use the commutative
diagram of smooth maps

R R2

R{Z R2{Z2

ẽ

e

and fixing p P R we get a commutative diagram of linear maps

TpR TẽppqR2

TrpsR{Z TeprpsqR2{Z2.

dpe

drpse

The vertical maps are isomorphisms by a previous example, and the top map is
injective. Hence the bottom map is also injective.

This gives an example of many embeddings of circles into T2, one in each
homotopy class pm,nq P Z2 “ π1pT2q which gcdpm,nq “ 1. These are the only
elements of the fundamental group which can be represented by embeddings (if
we use the convention gcdp0, 0q “ 1) [Rol90, Theorem 2.C.2].

Proposition 7.2.9. A subset X Ă M is a submanifold if and only if it is the
image of an embedding.

Proof. For ð, observe that we can use the local charts provided by Lemma
7.2.3 to make epXq a submanifold. For ñ, it suffices to prove that the inclusion
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ι : X ãÑ M is an embedding. It is visibly a homeomorphism onto its image, and
by computing locally in the charts provided by the fact ι is an immersion, we see
that its differential dι is injective everywhere.

In the proof of Proposition 7.2.9, the charts used to make epXq into a
submanifold exhibit e : X Ñ epXq as a bijective smooth map which has bijective
differential at all x P X. By Theorem 7.1.3, e is not just a homeomorphism onto
its image but a diffeomorphism. Let us record this:

Corollary 7.2.10. If e : X ãÑ M is an embedding then it is a diffeomorphism
onto its image.

Let us discuss further the condition that an embedding is homeomorphism
onto its image. If the domain of an injective immersion X ãÑ M is compact, it
restricts to a continuous bijection X Ñ impXq of compact Hausdorff spaces and
hence is a homeomorphism onto its image. If the domain is not compact, we can
instead add the following condition:

Definition 7.2.11. A continuous f : X Ñ Y is proper if f´1pKq Ă X is compact
for all compact K Ă Y .

Intuitively, a proper map is one that “maps infinity to infinity.” One way
to see that a map is not proper is to recall that proper maps between locally
compact Hausdorff spaces are closed, allowing us to easily construct embeddings
that are not proper.

Theorem 7.2.12. A proper injective immersion is an embedding.

Proof. It suffices to prove that if e : X Ñ M is an proper injective immersion
then it is a homeomorphism onto its image. Since e is presumed continuous
and injective, we will use properness to deduce that e is open. Thus we need
to show that if W is open in X then epW q open in epXq. We will do so by
contradiction, and hence suppose there is a sequence y1, y2, . . . in epXq but not
in epW q, and converging to y P epW q. As ty, y1, y2, . . .u is compact in M , so is
its inverse image in X because e is proper. Thus it has an accumulation point,
and by passing to a subsequence we may assume that the e´1pyiq converge to
some z P X. Then epe´1pyiqq converges both to y P epW q and epzq P epXq so
y “ epzq and by injectivity of e thus e´1pyq “ z. But since W is open in X this
means that e´1pyiq P W for i large enough, contradicting yi R epW q.

Corollary 7.2.13. An injective immersion with compact domain is an embedding.

Proposition 7.2.14. A closed subset X is a submanifold if and only if the image
of a proper embedding.

Proof. For ð, we use that proper maps are closed. For ñ, suppose that K Ă M
is compact and tUiu is an open cover of ι´1pKq. Then there exists an open cover
tŨiu of XXK Ă M and since XXK is closed inside a compact it is compact, and
there is a finite subcover Ũ1, . . . , Ũn. The corresponding open subsets U1, . . . , Un
are finite subcover of ι´1pKq in X.
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7.3 Globalizing the submersion theorem

We can similarly globalize the submersion theorem [DK04a, Section 4.5].

Theorem 7.3.1 (Submersion theorem). Let U0 Ă Rk be open and a P U0.
Suppose we have a smooth map g : U0 Ñ Rk1 such that the total derivative
Dga of g at a is a surjective linear map. Then k1 ď k and there exist open
neighbourhoods U Ă U0 of a and V Ă Rk1 of gpaq and diffeomorphisms ϕ : Rk Ñ U
and ϕ1 : Rk1

Ñ V such that
(i) ψp0q “ a,

(ii) φp0q “ gpaq, and
(iii) the following diagram commutes

Rk U Ă U0 Ă Rk

Rp V Ă Rk1

,

πk1

–

ϕ

g

–

ϕ1

with πk1 the projection px1, . . . , xkq ÞÑ px1, . . . , xk1q.

Definition 7.3.2. Let f : M Ñ N be a smooth map.
¨ We say f is a submersion at p if dpf : TpM Ñ TfppqN is a surjective linear

map.
¨ We say f is a submersion if it is a submersion at all p P M .

As before, we get:

Lemma 7.3.3. Let f : M Ñ N be a smooth map which is a submersion at p,
with M k-dimensional and N k1-dimensional. Then k1 ď k and there exists a
chart pUα, Vα, ϕαq of M around p and a chart pU 1

α, V
1
α, ϕ

1
αq of N around fppq so

that the following diagram commutes

Rk Ą Uα M

Rk1

Ą U 1
β N,

ϕα

πk1 f

ϕ1
β

with πk1 the projection onto first k1 coordinates.

Remark 7.3.4. Note that a linear map being a submersion is open condition,
which is reflected in the above lemma by the observation that if f looks like the
standard projection in some coordinates at p, then it does so near p, namely on
all of ϕαpUαq.

However, its main use is that if we denote c :“ fppq it says that f´1pcq
is a pk ´ k1q-dimensional submanifold near p; in the charts it is just Uα X

tp0, . . . , 0, xk1`1, . . . , xkqu. Furthermore, as in these chart the tangent spaces to
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this subset are given by the kernel of the derivative of πk1 , the tangent space to
f´1pcq at p is given by the kernel of dpf when we identify it with a subspace of
TpM using the derivative of the inclusion map f´1pcq Ñ M . This leads to the
following definition and theorem:

Definition 7.3.5. Let f : M Ñ N be a smooth map. Then a point c P N is
called a regular value of f if f is a submersion at all x P f´1pcq.

Theorem 7.3.6 (Preimage theorem). If f : M Ñ N is a smooth map and c P N
a regular value, then f´1pcq is a pk ´ k1q-dimensional submanifold of M and
Tpf

´1pcq “ kerpdpf : TpM Ñ TfppqMq for all p P f´1pcq.

It is often more convenient to remember not the dimension of f´1pcq, but
how much this is smaller than the dimension of M ; this is the codimension and
in the previous theorem f´1pcq has codimension k1.
Example 7.3.7. If f : M Ñ N is a submersion, then all points in N are regular
values.

It may also be helpful to name those points in N that are not regular values.

Definition 7.3.8. Let f : M Ñ N be a smooth map. Then a point c P N is
called a critical value of f if it is not a regular value of f .

Example 7.3.9. The map Rk Ñ R given by

px1, . . . , xkq ÞÝÑ x2
1 ` . . .` x2

i ´ x2
i`1 ´ . . .´ x2

k

has 0 has its only critical value; all other t P R are regular values.

7.4 Problems

Problem 13 (Images of immersions). Are following subsets of R2 the image of an
immersion and/or an embedding R Ñ R2 (you should imagine them continuing
indefinitely)? You need to explain your reasoning for each example, but do not
need to give proofs.

(i) (ii)

(iii) (iv)
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Problem 14 (Submersions, immersions, and smooth maps).
(a) Suppose that f : M Ñ N is an immersion and h : P Ñ M is a continuous

map. Prove that h is smooth if and only if f ˝ h is.
(b) Suppose that f : M Ñ N is a surjective submersion and g : N Ñ P is a

continuous map. Prove that g is smooth if and only if g ˝ f is.

Problem 15 (Submersions with compact domain).
(a) Suppose f : M Ñ N is a submersion with M a compact smooth manifold

and N a connected smooth manifold. Show that f is surjective. (Hint:
show that its image is both open and closed.)

(b) Show that there exists no submersion from a compact smooth manifold
to a Euclidean space of positive dimension.

Problem 16 (A family of surfaces). Prove that the subspace

X “ tpx, y, zq | px4 ´ x2 ` y2q2 ` z2 “ ϵu Ă R3

is a 2-dimensional smooth submanifold for ϵ ą 0 sufficiently small. Sketch it.
What happens when we increase ϵ?

Problem 17 (Special orthogonal groups). Let Opnq Ă GLnpRq be the subgroup
of orthogonal matrices, i.e. A such that At “ A´1. This is known as the orthogonal
group.

(a) Using the submersion theorem to prove that Opnq is a 1
2npn´1q-dimensional

manifold.
(b) Prove that Opnq is a Lie group.
(c) Show that Opnq has two path components.

The path component SOpnq Ă Opnq containing the identity is a Lie group known
as the special orthogonal group.

Problem 18 (Some orthogonal Stiefel manifolds). Let V2pRnq be the subset of
pRnq2 of pairs pv1, v2q of vectors such that ||v1||2 “ 1 “ ||v2||2 and v1 ¨ v2 “ 0.

(a) Prove that V2pRnq is a smooth manifold.
(b) Prove that V2pR3q is diffeomorphic to the special orthogonal group SOp3q.
(c) LetWn be the subset of Cn of n-tuples pz1, . . . , znq satisfying z2

1`¨ ¨ ¨`z2
n “

0 and |z1|2 ` ¨ ¨ ¨ ` |zn|2 “ 2. Prove that Wn is a smooth manifold which
is diffeomorphic to V2pRnq.

Problem 19 (Configuration spaces in robotics). Fix an integer n ě 1 and real
numbers ri ą 0, 1 ď r ď n. We consider the space C of configurations of a robot
arm with n segments of lengths r1, . . . , rn. We take the attaching point of the
arm as the origin, and for simplicity assume that the segments are constrained
to move in the plane R2. That is, C is the subspace of Cn – R2n of points
pz1, . . . , znq such that |zi ´ zi´1| “ ri for 1 ď i ď n (with the convention that
z0 “ 0).
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(a) Use the submersion theorem to show that C is a submanifold of Cn. What
is its dimension?

(b) Show that C is diffeomorphic to pS1qn.
(c) Is it still a submanifold when we add the requirement that the segments of

the arm do not intersect outside the joints? That is, we take the subspace
D Ă C of those pz1, . . . , znq such that for all 1 ď i, j ď n satisfying
i ‰ j, j ´ 1 we have zi R ttzj´1 ` p1 ´ tqzj | t P r0, 1su (again with the
convention that z0 “ 0). You have to explain your answer or give a
counterexample, but do not need to give a full proof.

‚z2

r2

‚z0 “ 0

‚z1

r1

Figure 7.2 A point pz1, z2q in C for n “ 2, visualized as an arm with two segments.

Problem 20 (Embeddings between projective spaces). Prove that the following
are smooth embeddings:

(a) The standard inclusion Rn`1 Ñ Rn`2 induces a continuous map

i : RPn ÝÑ RPn`1

rx0 : ¨ ¨ ¨ : xns ÞÝÑ rx0 : ¨ ¨ ¨ : xn : 0s.

(b) The Segre embedding is the continuous map

S : CP 1 ˆ CP 1 ÝÑ CP 3

prx0 : x1s, ry0, y1sq ÞÝÑ prx0y0 : x1y0 : x0y1 : x1y1sq.

Generalize this to an embedding CP i ˆ CP j Ñ CP pi`1qpj`1q´1.
(c) Complexification Rn Ñ Cn induces a continuous map

j : RPn ÝÑ CPn

rx0 : . . . : xns ÞÝÑ rx0 : . . . : xns,

where the left hand side is an equivalence class of pn` 1q real numbers,
which is considered as an equivalence of pn` 1q complex numbers on the
right hand side.
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Quotients and coverings

In this lecture we discuss smooth manifolds which are evenly covered by another
smooth manifold. Such covering maps often arise as quotients by discrete groups,
and we follow with a discussion of quotients by Lie groups.

8.1 Covering spaces

In point-set topology, there is a notion of a covering of one topological space by
another. One should imagine many sheets of fabric covering a surface.

Definition 8.1.1. A continuous map p : E Ñ B is a covering map if each point
b P B has an open neighbourhood U such that p´1pUq can be written as a union
Ů

i Vi of disjoint open subsets of E, such that p|Vi : Vi Ñ U is a homeomorphism
for each i.

Example 8.1.2. Prototypical examples are

R ÝÑ S1 “ tz P C | |z| “ 1u

t ÞÝÑ e2πit,

where each z P S1 has infinite pre-image, and

S1 ÝÑ S1

z ÞÝÑ zn,

where each z P S1 has exactly n pre-images.
Is a cover of a smooth manifold again a smooth manifold? If p : E Ñ B is

a covering map and B is Hausdorff or locally Euclidean then so clearly so is E.
Similarly, E is second-countable when B is and p has countable fibres. Thus we
know when E is a topology manifold. It remains to lift the smooth structure on
B to one on E:

Theorem 8.1.3. If p : E Ñ B is a covering map such that p´1pbq is countable
for all b P B and B is a k-dimensional smooth manifold, then there is a unique
k-dimensional smooth atlas on E such that p : E Ñ B is a local diffeomorphism.

67
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Figure 8.1 A three-fold covering of S1 \ S1 by S1.

Proof. Let us first take care of point-set topological requirements. We start by
proving that E is Hausdorff when B is: e ‰ e1 P E with ppeq ‰ ppe1q can be
separated by p´1pUq and p´1pU 1q where U,U 1 Ă B are disjoint open subsets such
that ppeq P U , ppe1q P U 1. If e ‰ e1 P E but ppeq “ ppe1q, then they must lie in
different Vi’s and these open subsets separate them. To see that E is second
countable, we first observe that the condition on p´1pbq implies that each disjoint
union

Ů

i Vi as in Definition 8.1.1 is a countable one. Take tUju a countable basis
for the topology of B. By possible discarding some of the larger subsets, we
may without loss of generality assume that p´1pUjq is a countable union of open
subsets Vj,i of E homeomorphic to Ui. The countable collection tVj,iu is a basis
for the topology of E.

We shall give a chart around each e P E: pick U around b “ ppeq as in the
definition of a covering map, and a chart pUα, Vα, ϕαq around b in B such that
Vα Ă U . If Vi is such that e P Vi, then we produce a chart around e by taking
U 1
α,i “ Uα, taking V 1

α,i “ pp|Viq
´1pVαq and setting ϕ1

α,i to be

ϕ1
α,i : Rk Ą Uα

ϕα
ÝÑ Vα

pp|Vi
q´1

ÝÝÝÝÝÑ V 1
β Ă E.

The transition function between pU 1
α,i, V

1
α,i, ϕ

1
α,iq and pU 1

β,j , V
1
β,j , ϕ

1
β,jq is only non-

trivial if V 1
α,i X V 1

β,j ‰ ∅ and then it lies in Vi. Thus we can write ϕ1
α,i “

p|
´1
Vi

˝ ϕα and ϕ1
β,j “ p|

´1
Vi

˝ ϕβ, and the transition function is a restriction of
pp|

´1
Vi

˝ ϕβq´1 ˝ pp|
´1
Vi

˝ ϕαq “ ϕ´1
β ˝ ϕα and hence smooth. This completes the

construction of the smooth atlas on E.
To see that p is a local diffeomorphism with respect to this smooth atlas,

we use that with respect to coordinates given by the charts pUα, Vα, ϕαq and
pU 1

α,i, V
1
α,i, ϕ

1
α,iq it is the identity map between the equal open subsets U 1

α,i and
Uα of Rk.

To see that this smooth structure is uniquely determined by this property, we
must prove that the identity map of E is smooth with respect to any two smooth
structures A1,A2 on E such that p : E Ñ B is a local diffeomorphism. It suffices
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to verify this locally in E. The diagram

pVi,A1|Viq pVi,A2|Viq

Ui Ui

id

p|Vi–– pp|Vi
q´1

id

evidently commutes, and we can think of the left map as a diffeomorphism with
respect to A1|Vi and the right map as a diffeomorphism with respect to A2|Vi .
Since the bottom map is smooth, the top map must also be smooth.

In fact, many local diffeomorphisms arise this way:

Proposition 8.1.4. Suppose E and B are smooth manifolds, and p : E Ñ B is
a smooth map whose derivative is bijective at all points in E. If E is compact
then p is a covering map.

Proof. The conditions imply that E is a local diffeomorphism whose image is
a collection of components of B so we may as well assuming p is surjective by
discarding some components. For each b P B, p´1pbq is a finite set and for each
e P p´1pbq the fact that p is a local diffeomorphism gives us an open subset Ve
of E containing e such that p|Ve : Ve Ñ ppVeq is a diffeomorphism. Using the
fact that E is Hausdorff we may assume that the Ve are pairwise disjoint. Then
let U “

Ş

e ppVeq, which is an open neighbourhood of b because it is a finite
intersection of open subsets containing b.

We claim that p´1pUq is a union of the disjoint open subsets p´1pUq X Ve
of E, at least after shrinking U . If so, p|Ve provides not just a homeomorphism
p´1pUq X Ve – U but in fact a diffeomorphism and we would be done. We give a
proof of the claim by contradiction: suppose that no matter how much we shrink
U it is always the case that p´1pUqz

Ť

e Ve ‰ ∅. Then there exists a sequence
of xi P Ez

Ť

e Ve such that the xi converges to some x P E (since E is compact)
and the ppxiq converges to b. This means that x P p´1pbq, and hence xi lies in
some Ve for i large enough. This gives a contradiction.

Example 8.1.5. The Lie group SOpnq has a path-connected double cover Spinpnq

for n ě 3. Proposition 8.1.3 shows that Spinpnq has a unique smooth structure
making Spinpnq Ñ SOpnq a local diffeomorphism.

8.2 Quotients by discrete groups

Let us discuss an important source of examples of covering maps: quotients of
sufficiently nice group actions. Recall that we have an action of a discrete group
G on a topological X, we always require it to be continuous in the sense that the
map

GˆX ÝÑ X

pg, xq ÞÝÑ gx

is continuous. This is equivalent to each map g : X Ñ X being a homeomorphism.
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Definition 8.2.1. Suppose a (discrete) group G acts on a topological space X.
It acts freely if gx “ x for some x P X implies g “ e.

We first give a condition on a free action that guarantees the quotient map
q : X Ñ X{G is a covering map. The following strengthening of a free action will
suffice:

Definition 8.2.2. Suppose a (discrete) group G acts on a topological space X.
We say it is a covering action if each x P X has an open neighborhood U such
that gpUq X U ‰ ∅ if and only if g “ e.

Lemma 8.2.3. If the action of G on X is a covering action, then the quotient
map q : X Ñ X{G is a covering map.

Proof. For qpxq P X{G, take the image qpUq in X{G of U in Definition 8.2.2.
Then q´1pqpUqq “

Ť

g gU and this is a disjoint union because

gU X hU ‰ ∅ ðñ h´1gU X U ‰ ∅

and this implies h´1g “ e so g “ h. Furthermore, each gU is open as U is open
and g : X Ñ X is a homeomorphism. In particular we conclude that q´1pqpUqq

is open so qpUq is open by definition of the quotient topology.
To see that the restriction of q to a map gU Ñ qpUq is a homeomorphism,

we first observe that there is a commutative diagram

U gU

qpUq

g

–

g|U q|gU

with horizontal map a homeomorphism. Hence it suffices to prove that this only
for g “ e. As q|U : U Ñ qpUq is clearly a continuous bijection, it remains to see it
is open. But for W Ă U open, q|U pW q Ă qpUq is open if and only if q´1pq|U pW qq

is. Since q´1pq|U pW qq “
Ť

g gW this is true.

It is clear from the definition of the quotient topology that X{G is second-
countable if X is second-countable. However, it is not obvious that X{G is again
Hausdorff; this requires a stronger definition:

Definition 8.2.4. Suppose a (discrete) group G acts on a topological space X.
It acts properly if the map

GˆX ÝÑ X ˆX

pg, xq ÞÝÑ px, gxq

is proper, that is, preimages of compact subsets are compact.

Let us give some more easily verified conditions, under mild point-set topo-
logical hypotheses:
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Lemma 8.2.5. Suppose a (discrete) group G acts on a Hausdorff topological
space X. This action is proper if and only if gpKq X K ‰ ∅ for only finitely
many g P G whenever K Ă X is compact.

Proof. For ñ, suppose there exists a compact K Ă X so that there are infinitely
many gi so that gipKq XK ‰ ∅. Then the action map α : GˆX Ñ X ˆ x is not
proper because open cover of α´1pK ˆKq by the open subsets tgiu ˆX admits
no finite subcover.

For ð, note that a compact subset K 1 Ă X ˆX is contained in the compact
subset KˆK for K “ π1pK 1qYπ2pK 1q. Then αpKˆKq “

Ť

gPGtguˆpKXgpKqq

is a finite union of compact subsets so compact, and as a closed subset of this
α´1pK 1q is also compact.

Lemma 8.2.6. Suppose a (discrete) group G acts on a locally compact Hausdorff
topological space X. This action is proper if and only if any two (not necessarily
disjoint) x, x1 P X have open neighbourhoods U,U 1 such that gpUq X U 1 ‰ ∅ for
only finitely many g P G.

Proof. For ñ, we apply Lemma 8.2.5 to the union U Y U
1 of disjoint compact

closures of open neighbourhoods of x and x1, which exist since X is locally
compact Hausdorff.

For ð, let K Ă X be compact. We can pick for each p “ px, x1q P K open
neighbourhoods U of x and U 1 of x1 so that there are only finitely many g P G
so that gpUq X U 1 ‰ ∅. Since K is compact, it has a cover by finitely many
products of such open neighbourhoods. Suppose now that x P gpKq X K and
write x “ gpx1q. then px, x1q lies in one of these finitely many U ˆ U 1 and hence
g must be among the finite collection of corresponding elements of G

Note that smooth manifolds are always locally compact and Hausdorff.
Example 8.2.7. Zn acts freely and properly on Rn by translation.
Example 8.2.8. If X is locally compact Hausdorff and G is finite, then G acts
freely and properly if and only if it acts freely. To see this, observe that latter
implies that for each x all elements gx for g P G are distinct. Using the Hausdorff
property we can find for each g P G an open subset Ug around gx with the
property that Ug X Uh ‰ ∅ if and only if g “ h. Then U :“

Ş

g g
´1pUgq is

an open subset around x which satisfies gpUq X U ‰ ∅ if and only if g “ e.
A similar argument shows that any two x, x1 P X in distinct orbits have open
neighbourhoods U,U 1 such that gpUq X U 1 “ ∅ for all g P G.

Proposition 8.2.9. If G freely on a locally compact Hausdorff space X, then it
acts properly if and only if q : X Ñ X{G is a covering map and X{G is Hausdorff.

Proof. For ñ, if the action is free in addition to being proper, for each x P X
we can find an open neighbourhood V such that gpV q X V ‰ ∅ if and only if
g “ e. To see this, take x “ x1 in Lemma 8.2.6, V “ U X U 1 and shrink it
using the Hausdorff property if necessary. Thus we have a covering action and
by Lemma 8.2.3 says that the quotient map q : X Ñ X{G is a covering map.
It remains prove the quotient is Hausdorff. Take representatives x, x1 of two
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disjoint orbits, apply Lemma 8.2.6 and use the Hausdorff property to shrink
U,U 1 so that gpUq X U 1 “ ∅ for all g P G. Then q´1pqpUqq “

Ť

gPGgpUq and
q´1pqpU 1qq “

Ť

gPGgpU 1q are disjoint and open, so qpUq and qpU 1q are open sets
separating rxs and rx1s.

For ð we note that the right side Lemma 8.2.6 follows for x, x1 in distinct
orbits by finding disjoint open neighbourhoods W,W 1 of rxs, rx1s using that
X{G is Hausdorff, while for x, x1 in the same orbit it follows from the covering
property.

If X{G happens to be a smooth manifold, this gives a smooth structure on
X. We now want to go the other direction, taking X to be a smooth manifold
M and assuming that the action is compatible with the smooth structure in the
following sense:

Definition 8.2.10. We say that a group G acts smoothly on a smooth manifold
M if the action map GˆM Ñ M is smooth.

As G is discrete, this is equivalent to each g : M Ñ M being a diffeomorphism.
It is also equivalent to the following map being smooth

GˆM ÝÑ M ˆM

pg,mq ÞÝÑ pm, gmq.

Theorem 8.2.11. If a discrete group G acts freely, properly, and smoothly on a
k-dimensional smooth manifold M , then there is a unique k-dimensional smooth
atlas on M{G such that q : M Ñ M{G is a local diffeomorphism.

Proof. We know from Lemma 8.2.9 that q is a covering map, and that M{G is
Hausdorff and second countable. We next produce a smooth atlas on M{G. Let
us take for each orbit rps P M{G an open neighbourhood U as in Definition 8.1.1,
so that q´1pUq “

Ů

i Vi. Let us also take charts pUα, Vα, ϕαq such that Vα Ă Vi
for some i and rps P qpVαq. The charts in our atlas for M{G are then given by
the pUα, qpVαq, q|Vi ˝ ϕαq.

The transition function between pUα, qpVαq, q|Vi ˝ ϕαq an pUβ, qpVβq, qVj ˝ ϕβq

has non-empty domain and target if and only if qpVαqXqpVβq ‰ ∅, which happens
only if Vα X q´1pqpVαq X qpVβqq Ă Vi and Vβ X q´1pqpVαq X qpVβqq Ă gpViq for
some g P G. Hence for the sake of computing transition functions we may replace
q|Vj by q|gpViq. Then the transition function is given by

pq|gpViq ˝ ϕβq´1 ˝ pq|Vi ˝ ϕαq “ ϕ´1
β ˝ g ˝ ϕα,

which is smooth by the assumption that g : M Ñ M is a diffeomorphism. This
completes the construction of the smooth structure on M{G.

To see q is a local diffeomorphism with respect to this smooth structure, we use
that in the local coordinates given by the charts pUα, Vα, ϕαq and pUα, qpVαq, q˝ϕαq

it is the identity map of Uα Ă Rk.
To see that this smooth structure is uniquely determined by this property,

we must prove that the identity map of M{G is smooth with respect to any
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two smooth structures A1,A2 on M{G such that q : M Ñ M{G is a local
diffeomorphism. The diagram

M M

pM{G,A1q pM{G,A2q

q

id

q

id

evidently commutes, and we can think of the left map as a local diffeomorphism
with respect to A1, of the right map as a local diffeomorphism with respect to A2.
Since the top map is smooth, the top-right composite is. Since q is a submersion,
the bottom map must also be smooth.

Example 8.2.12. Since Zn acts freely, properly, and smoothly on Rn by translation,
Theorem 8.2.11 gives another way to construct the smooth structure on the n-
torus Tn “ Rn{Zn.
Example 8.2.13. Fix two coprime integers p and q. Let Z{p act on S3 “ tpz1, z2q |

|z1|2 ` |z2|2 “ 1u Ă C2 by

k ¨ pz1, z2q “ pe2πik{pz1, e
2πiqk{pz2q.

This is a free smooth action of the finite group Z{p on the 3-dimensional smooth
manifold S3, so by Theorem 8.2.11, Lpp, qq :“ S3{pZ{pq is again a 3-dimensional
smooth manifold. These are lens spaces. As an example, let us take Lp2, 1q. This
is the quotient of S3 by the equivalence relation generated by pz1, z2q „ p´z1,´z2q,
so is diffeomorphic to RP 3.
Example 8.2.14. Define the configuration space of n ordered particles in a manifold
M as

ConfnpMq :“ tpm1, . . . ,mnq P Mn | mi ‰ mj if i ‰ ju.

As an open subset of a finite product of manifolds, this has a canonical smooth
structure. The permutation action on Mn by the symmetric group Sn is proper
and smooth, but not free. The subset ConfnpMq exactly consists of all free orbits,
so the restriction of this action to ConfnpMq is smooth, proper, and free. Thus
the configuration space of n unordered particles

CnpMq :“ ConfnpMq{Sn

again has a canonical smooth structure.

8.3 Quotients by Lie groups

Above we gave conditions on an action of a discrete group G on a smooth manifold
M , so that the quotient M{G is again a smooth manifold. What can we say if
we instead we take G to be a Lie group? The definitions, when phrased correctly,
go through without modification: as before, we say that G acts smoothly on M
if the map

GˆM ÝÑ M ˆM

pg,mq ÞÝÑ pm, gmq
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is smooth, it acts properly if this map is proper, and acts freely if the action is
free. A generalization of Theorem 8.2.11 to Lie groups is the following, which we
shall not prove [Lee13, Theorem 21.10]:

Theorem 8.3.1. If a Lie group G of dimension r acts freely, properly, and
smoothly on a k-dimensional smooth manifold M , then there is a unique pk ´ rq-
dimensional smooth atlas on M{G such that q : M Ñ M{G is a submersion.

Example 8.3.2 (Complex projective space as quotients). The Lie group Cˆ of non-
zero complex numbers under multiplication acts freely, properly, and smoothly
on Cnzt0u. Its quotient

CPn “ pCnzt0uq{Cˆ

is thus a smooth manifold, giving a construction of the complex projective plane
without having to give charts by hand. We will leave it an exercise for the reader
to verify this construction is diffeomorphic to the previous one.

In many application we fix a Lie group G, as well as a Lie subgroup H Ă G,
which is a subgroup which is also a smooth submanifold. It is evident that the
action of H on G by multiplication is smooth and free. Furthermore, as H must
be closed [Lee13, Corollary 15.30] it follows that the action is proper. The above
theorem says that G{H is a smooth manifold and the quotient map

G ÝÑ G{H

is a submersion.

Example 8.3.3 (Orthogonal Stiefel manifolds). Recall that the orthogonal Stiefel
manifold V2pRnq is the submanifold of R2n given by pairs pu, vq of orthogonal
vectors in Rn of length 1. If we identify Opn´ 2q be the subgroup of Opnq as

Opn´ 2q Q A ÞÝÑ

„

A 0
0 id2

ȷ

which is also the subgroup which fixes the vectors en´1, en. This identifies it as
the stabiliser of this point of the transitive action of Opn0 on V2pRnq, so we get
an identification

V2pRnq – Opnq{Opn´ 2q.

This gives another construction of the left side as a smooth manifold, which is
diffeomorphic to its description as a submanifold. Replacing n´ 2 by n´ r, we
obtain more generally the orthogonal Stiefel manifold

VrpRnq :“ Opnq{Opn´ rq

of orthogonal frames of r vectors in Rn. Replacing orthogonal groups by general
linear groups we similarly obtain ordinary Stiefel manifolds.
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8.4 Problems

Problem 21 (Higher-dimensional lens spaces). Fix an integer p and integers
q1, . . . , qn coprime to p. The higher-dimensional lens space Lpp, q1, . . . , qnq is the
quotient of S2n´1 “ tpz1, . . . , znq | |z1|2 ` ¨ ¨ ¨ ` |zn|2 “ 1u Ă Cn by the smooth
action

k ¨ pz1, . . . , znq “ pe2πiq1k{pz1, . . . , e
2πiqnk{pznq.

Prove this admits a unique smooth structure such that the quotient map
q : S2n´1 Ñ Lpp, q1, . . . , qnq is a local diffeomorphism.

Problem 22 (Dold manifolds). Let Z{2 act on Sm ˆ CPn by multiplication by
´1 on Sm and by complex conjugation on CPn. Prove that

Dpm,nq :“ pSm ˆ CPnq{Z{2

is a smooth manifold. This is called a Dold manifold.

Problem 23 (Orthogonal Grassmannians). We can Oprq ˆ Opn ´ rq with a
subgroup of Opnq by

Oprq ˆ Opn´ rq Q pA,Bq ÞÝÑ

„

A 0
0 B

ȷ

P Opnq.

(a) Show that the quotient

GrrpRnq :“ Opnq{pOprq ˆ Opn´ rqq

is a smooth manifold.
(b) Use Gram–Schmidt to explain why we can think of GrrpRnq as a smooth

manifold of r-dimensional linear subspaces of Rn.
The smooth manifold GrrpRnq is called the orthogonal Grassmannian of r-planes
in Rn.
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Three further examples of manifolds

In these additional notes we describe three more manifolds, each interesting and
an example of a more general construction.

9.1 The Poincaré homology sphere

We start with one of the first manifolds ever described, due to Poincaré. For
more constructions, see [KS79].

9.1.1 The quaternions

Our construction starts with the quaternions H. These are an associative R-
algebra, generated as an R-vector space by elements 1, i, j, k which satisfy the
relations

i2 “ j2 “ k2 “ ´1, ij “ ´ji, ik “ ´ki, jk “ ´kj

ij “ k, jk “ i, ki “ j.

This is visibly not commutative, e.g. ij “ k but ji “ ´k. The elements which
commute with every other element, the center, is given by R ¨ 1. As a R-vector
space, it is 4-dimensional, with a basis given by 1, i, j, k.

This is a so-called division algebra, which means that algebraically it behaves
like a non-commutative four-dimensional version of the complex numbers. Firstly,
the quaternions have a conjugation operation

a` bi` cj ` dk :“ a´ bi´ dj ´ ck.

Lemma 9.1.1. Conjugation is linear and an antihomomorphism, i.e. satisfies
xy “ yx.

In terms of this, we define ||x||2 :“ xx. Explicitly, this is given by

||a` bi` cj ` dk|| :“
a

a2 ` b2 ` c2 ` d2,

and hence is visibly a norm (in fact the usual Euclidean one).

76
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Every non-zero element of H has a unique multiplicative inverse, which can
be written in terms of the conjugation and norm

x´1 “
x̄

||x||2
.

The 3-sphere as a Lie group

The subset S3 Ă H of quaternions with norm 1 is a smooth manifold; it is just
the subspace ta` bi` cj ` dk | a2 ` b2 ` c2 ` d2 “ 1u Ă H. The multiplication
and inversion of H restrict to S3. This uses the following lemma:

Lemma 9.1.2. ||xy|| “ ||x||||y||

Proof. Since the conjugation is an anti-homomorphism, we have

||xy||2 “ xyxy “ xyȳx̄ “ ||x||2||y||2.

This exactly says that the product of two elements of norm 1 has norm 1. It
also implies that the inverse of an element of norm 1 has norm 1: more generally,
if x ‰ 0 we have

1 “ ||1|| “ ||xx´1|| “ ||x||||x´1||,

so ||x´1|| “ ||x||´1.
To see that both multiplication and inverse are smooth maps on Hzt0u,

observe they are given by polynomials in a, b, c, d. In fact, inverse is particularly
easy: g´1 “ g. Hence their restriction to the submanifold S3 is also smooth, and
we conclude that S3 is a Lie group.
Remark 9.1.3. S1 and S3 are the only spheres that admit the structure of a Lie
group.
Example 9.1.4. In fact, this is isomorphic to the Lie group SUp2q of unitary
p2 ˆ 2q-matrices with complex entries and determinant 1. The correspondence is
given by thinking of a quaternion a ` bi ` cj ` dk P H, on which S3 acts, as a
pair pa ` bi, c ` diq of complex numbers, on which SUp2q acts. Explicitly, the
isomorphism of Lie groups is given by

S3 Q a` bi` cj ` dk ÞÝÑ

„

a` bi c` di
´c` di ´a´ bi

ȷ

P SUp2q.

9.1.2 The Poincaré homology sphere via the binary icosahedral group

It follows from our results about quotients of manifolds by discrete groups that if
G Ă S3 is a finite subgroup, S3{G admits a 3-dimensional smooth structure such
that the quotient map

S3 ÝÑ S3{G

is a local diffeomorphism.
Example 9.1.5. Taking G “ t˘1u, we obtain S3{t˘1u “ RP 3.
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Figure 9.1 Haeckel’s “Fig. 1: Circogonia icosahedra, n. sp., ˆ 80. The entire shell, with
twelve radial tubes and twenty triangular faces. In the centre of one face is the mouth, with
six teeth.” (from https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#
/media/File:Radiolaria_(Challenger)_Plate_117.jpg.

Our next goal is construct a particular rather large finite subgroup of S3. The
first observation is that for g P S3 the conjugation

S3 Q h ÞÝÑ ghg´1 P S3

preserves the subset of quaternions of the form bi` cj ` dk.
We can identify this subset with R3 through bi` cj ` dk ÐÑ pb, c, dq. Under

this identification the norm on H corresponds to the Euclidean norm, and thus
we get an action of S3 on R3 which is orthogonal. The resulting homomorphism
S3 Ñ SOp3q has kernel of order 2. That the kernel has order at least 2 is easy to
see: both x,´x P H map to the same linear transformation. We leave it as an
exercise to the reader that there are no further elements in the kernel.

Let the icosahedral group I Ă SOp3q be the subgroup of symmetries of the
icosahedron, and let I˚ be its inverse image in S3. I˚ has order 120. The quotient
manifold is the Poincaré homology sphere:

P :“ S3{I˚.

https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#/media/File:Radiolaria_(Challenger)_Plate_117.jpg
https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#/media/File:Radiolaria_(Challenger)_Plate_117.jpg
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Remark 9.1.6. Why is the Poincaré homology sphere interesting? As you might
expect, it was first constructed by Poincaré, though he did not construct it this
way. Poincaré produced it as a counterexample to the first version of the Poincaré
conjecture: it has the same homology as a 3-sphere, but it is not homeomorphic
to S3 because it has fundamental group isomorphic to I˚. The correct Poincaré
conjecture says that a 3-dimensional differentiable manifold that is homotopy
equivalent to S3 is diffeomorphic to it. This was eventually proven by Perelman
in a series of papers in 2002–2003, for which he received a Fields medal.1

Remark 9.1.7. For a while some scientists thought the cosmic microwave back-
ground radiation was most consistent with the universe having space-like direction
S3{I˚ instead of R3, though with the acquisition of more data this is no longer
the case.2

9.2 The K3-manifold

Our second example come from algebraic geometry, and is a particular case of a
general construction of a hypersurface in complex projective space.

Recall the complex projective spaces CP k, defined as

CP k “ pCk`1zt0uq{„,

where the equivalence relation „ is generated by pz0, . . . , zkq „ pλz0, . . . , λzkq for
λ P Czt0u. In other words, we are taking the quotient of the free action of the non-
zero invertible complex numbers Cˆ by scalar multiplication on Ck`1zt0u. We
denote the equivalence class of pz0, . . . , zkq by rz0 : ¨ ¨ ¨ : zks. It is a 2k-dimensional
smooth manifold, covered by the k ` 1 charts

ϕj : Ck ÝÑ CP k

pz1, . . . , zkq ÞÝÑ rz1 : ¨ ¨ ¨ : zj´1 : 1 : zj : ¨ ¨ ¨ : zks.

The image Vj of ϕj is given by trz0 : . . . : zks | zj ‰ 0u.
Suppose we are interested in subsets of CPn given by points which satisfy

some equation, e.g. fpz0, . . . , zkq “ 0. Whether or not a point rz0 : . . . : zks

satisfies this equation ought to be independent of the choice of representative,
and one way to guarantee this is the case is to assume that f is homogeneous:

fpλz0, . . . , λzkq “ λdfpz0, . . . , zkq

for some d ě 1. If so, if f vanishes on all representatives of rz0, . . . , zks when it
vanishes on one of them.

We shall now restrict our attention to such f which are polynomial, homoge-
neous polynomials. These are polynomials in z0, . . . , zk in which every term has
the same total degree d.

1See https://www.ams.org/notices/200310/fea-milnor.pdf for the history and context
of this problem.

2See e.g. http://www.ams.org/notices/200406/fea-weeks.pdf and https:
//mathoverflow.net/a/9717/798.

https://www.ams.org/notices/200310/fea-milnor.pdf
http://www.ams.org/notices/200406/fea-weeks.pdf
https://mathoverflow.net/a/9717/798
https://mathoverflow.net/a/9717/798
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Example 9.2.1. The polynomial z2
0 ` z2

1 of z0, z1 is homogeneous, but z0 ` z2
1 is

not.
We now use the submersion theorem to answer the following question: when

does the zero set of homogeneous polynomial describe a smooth submanifold of
CP k?

Theorem 9.2.2 (Hypersurfaces in complex projective spaces). Let p be a homo-
geneous polynomial of z0, . . . , zk such that

tpz0, . . . , zkq | ppz0, . . . , zkq “ 0u X

k
č

j“0

!

pz0, . . . , zkq

ˇ

ˇ

ˇ

B
Bzj
ppz0, . . . , zkq “ 0

)

“ t0u,

then the subspace

trz0 : . . . : zks | ppz0, . . . , zkq “ 0u Ă CP k

is a p2k ´ 2q-dimensional smooth submanifold.

This statement requires an explanation. We can identify the domain Ck`1 with
R2k by zj ÐÑ xj ` iyj , and similarly identify the target C with R2. Then p is not
only differentiable as a function R2k`2 Ñ R2, is in fact complex-differentiable as
a function Ck`1 Ñ C. That is, for each 1 ď i ď k the limit ppz0,...,zj`h,...,zkq

h with
as C Q h Ñ 0 exists, and these limits are the partial derivatives Bp

Bzj
pz0, . . . , zkq.

Proof. Let us write X :“ trz0 : . . . : zks | ppz0, . . . , zkq “ 0u. If suffices to prove
that X X Vj is a smooth submanifold for all 0 ď j ď k. To do so, we may pass to
the local coordinates provided by the chart ϕj , i.e. prove that ϕ´1

j pX X Vjq Ă Ck
is a smooth submanifold. This is given by the vanishing set of the polynomial
qj given by ppz1, . . . , zj´1, 1, zj , . . . , zkq of the k variables z1, . . . , zk (it is not
homogeneous).

We now ought to identify the domain Ck with R2k and the target C with
R2, and show that when qjpx1 ` iy1, . . . , xk ` iykq “ 0, the p2 ˆ 2kq-matrix of
partial derivatives of the real and imaginary part of qj with respect to x1, . . . , xk
and y1, . . . , yk is surjective. However, it is more convenient not to leave the
world of complex numbers, as qj is complex-differentiable with respect to the
k complex variables z1, . . . , zk. In this case, we can form a p1 ˆ kq-matrix of
complex numbers

”

Bqj

Bz1
pz1, . . . , zkq ¨ ¨ ¨

Bqj

Bzk
pz1, . . . , zkq.

ı

This is surjective if and only if the p2 ˆ 2kq-matrix with real entries mentioned
before is surjective.

Thus the condition is that when qj vanishes, at least one of the partial
derivatives of qj does not vanish. We will get a contradiction with the hypothesis
from the assumption that qj and all its partial derivatives vanish simultaneously.
We start by relating these vanishing for qj and partial derivatives back to p:

qj vanishes at pz1, . . . , zkq ðñ p vanishes at pz1, . . . , zj´1, 1, zj , . . . , zkq,
Bqj

Bzr
vanishes at pz1, . . . , zkq ðñ

Bp
Bzr1

vanishes at pz1, . . . , zj´1, 1, zj , . . . , zkq,
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with r1 “ r if r ă j and r1 “ r ` 1 if r ě j. This gives us information about all
partial derivatives except Bp

Bzj
.

To understand this remaining partial derivative, we use a fact due to Euler:
k

ÿ

j“0

Bp

Bzj
pz0, . . . , zkq ¨ zj “ d ¨ ppz0, . . . , zkq, (9.1)

with d the degree of p. To prove this, consider the function ppλz0, . . . , λzkq ´

λdppz0, . . . , zkq. This vanishes identically because p is homogeneous of degree d,
hence so its derivative with respect to λ. Evaluating this derivative at λ “ 1
gives (9.1). If we use this at the point pz1, . . . , zj´1, 1, zj , . . . , zkq, we know the
right hand side vanishes as do all terms on the left hand side expect one. We get
that

Bp

Bzj
pz1, . . . , zj´1, 1, zj , . . . , zkq “ 0,

which contradicts the hypothesis. This completes the proof.

Remark 9.2.3. Implicitly we used the complex version of the submersion theorem,
[DK04a, Section 3.7].

A smooth manifold obtained as in Theorem 9.2.2 is called a hypersurface.
The example which plays such an important role in algebraic geometry is the
K3-manifold,3 also known as the Fermat quartic. It is obtained by taking the
homogeneous polynomial p given by z4

0 ` z4
1 ` z4

2 ` z4
3 :

K3 :“ trz0 : ¨ ¨ ¨ : z3sq | z4
0 ` z4

1 ` z4
2 ` z4

3 “ 0u Ă CP 3.

It is easy to verify that the polynomial p satisfies the conditions in Theorem
9.2.2, so this is a 4-dimensional smooth manifold: if B

Bzj
ppz0, z1, z2, z3q “ 0 then

zj “ 0, so all partial derivatives vanish simultaneously only at the origin.
Remark 9.2.4. Why is the K3 manifold interesting? It plays an important role in
algebraic geometry and the study of 4-dimensional smooth manifolds.

When one does algebraic geometry over C, out of a smooth k-dimensional
variety one can extract a smooth 2k-dimensional manifold (“taking the analytic
topology”). In particular, the K3 manifold can be obtained this way from not one
but many algebraic surfaces. There are roughly three types of algebraic surfaces:
Fano surfaces (which are “easy”), surfaces of general type (which are “hard”),
and Calabi–Yau surfaces (which are “intermediate”). The latter class contains
only complex 2-dimensional tori and the K3 surfaces, and all K3 surfaces have
the same underlying 4-dimensional smooth manifold: the K3 manifold that we
constructed above.

Because it has an algebraic origin, the gauge-theoretic invariants used to
study exotic smooth structures on smooth 4-manifolds can be computed for K3
using more algebraic approaches. This gives a starting point for constructing
exotic smooth 4-manifolds: start with K3, make a modification to it, and study
how this changes the gauge-theoretic invariants.

3The name is due to Andre Weil, who motivated it by “In the second part of my report, we
deal with the Kähler varieties known as K3, named in honor of Kummer, Kähler, Kodaira and
of the beautiful mountain K2 in Kashmir.”
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9.3 The Whitehead manifold

Our final example is quite peculiar. It is an example of a 3-dimensional smooth
manifold which from the perspective of algebraic topology looks like R3, but is
not in fact diffeomorphic to it. It is an example of infinite phenomena leading to
pathological objects in differential topology.

We start with the following injective immersion S1ˆR2 Ñ R3 of an open torus.
Let us denote its complement in R3 by W1. This contains another, curiously
linked, open torus; its complement in R3 is denoted by W2. We can keep iterating
this procedure, finding a linked copy of S1 ˆ R2 in the previous copy of S1 ˆ R2,
and denoting its complement by Wn.

The Whitehead manifold is then defined to be increasing union

W :“
ď

n

Wn.

This is an open subset of R3 and hence a smooth 3-dimensional manifold. It is
the complement of the intersection of all the linked open tori, which is known as
the Whitehead continuum.
Remark 9.3.1. Why is the Whitehead manifold interesting? The Whitehead man-
ifold is a contractible 3-dimensional smooth manifold which is not diffeomorphic
or even homeomorphic to R3. (Surprisingly, it is homeomorpic to a union of two
copies of R3 intersecting in another copy of R3 [Gab11].)

The reason is that being contractible does not take into account the “topology
at infinity,” i.e. how W zKn behaves as for a sequence Kn of compact codimension
0 submanifolds exhausting W . This is a general phenomenon: if you want to
use algebraic topology to study non-compact manifolds you need to take into
account the topology at infinity.

9.4 Problems

Problem 24 (Klein quartic). Prove that the subspace

X “ trx : y : zs P CP 2 | x3y ` y3z ` z3x “ 0u Ă CP 2

is a 2-dimensional compact submanifold. It is called the Klein quartic. What is
its genus?

Problem 25 (Milnor manifolds). Let m ď n. Prove that the subspaces

Hpm,nq :“
#

prz0, . . . , zms, rw0, . . . , wnsq

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“0
zjwj “ 0

+

Ă CPm ˆ CPn

are 2pm ` n ´ 1q-dimensional smooth submanifolds. These are called Milnor
manifolds.



Chapter 10

Partitions of unity and the weak Whitney
embedding theorem

In this lecture we prove that every compact manifold can be embedded into a
Euclidean space, using partitions of unity.

10.1 The weak Whitney embedding theorem

We now prove that every compact smooth manifold M arises a smooth subman-
ifold of some RN , by constructing a smooth embedding M ãÑ RN . The result
is true also for non-compact smooth manifolds, but proving that requires more
care and will be done later. Thus we could have set up the theory by demanding
every smooth manifold is of this form, as [GP10] does.

The new tool in our argument is the existence of partitions of unity, and this
is one of the reasons that we demanded M was second-countable and Hausdorff.
Recall that the support supppηq Ď M of a continuous function η : M Ñ r0, 1s is
the closure of the open subset η´1pp0, 1sq.

Definition 10.1.1. Let W “ tWiuiPI be an open cover of M . Then a partition
of unity subordinate to W is a collection of smooth function ηi : M Ñ r0, 1s with
the following properties:

(i) supppηiq Ď Wi,
(ii) each p P M has an open neighbourhood on which only finitely many ηi

are non-zero,
(iii) for all p P M ,

ř

i ηippq “ 1.

Theorem 10.1.2. Every open cover W “ tWiuiPI of M admits a subordinate
partition of unity.

The main use of partitions of unity is to construct a function (or something
similar) on Wi, usually the codomain of a chart, multiply it with ηi and extend
the result by 0 elsewhere. The result is then defined on all of M .

Theorem 10.1.3 (Whitney). Every compact k-dimensional smooth manifold M
has an embedding into some Euclidean space RN .
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Proof. Since M is compact it can be covered by the codomains Vi of finitely
many charts pUi, Vi, ϕiq for 1 ď i ď r. Let ηi : M Ñ R be a subordinate partition
of unity subordinate to this cover. We then define

ηrppqϕ´1
r ppq :“

#

ηrppqϕ´1
r ppq if p P Vi,

0 otherwise.

(Thus ηrppqϕ´1
r ought to be interpreted as a compound symbol.) This is smooth

as the support of ηi is contained in Vi and ηi is smooth.
Then we define the following map

ρ : M ÝÑ Rrpk`1q

p ÞÝÑ pη1ppq, η1ppqϕ´1
1 ppq, . . . , ηrppq, ηrppqϕ´1

r ppqq.

Since each of the components of ρ is smooth, so is ρ.
We must now verify ρ is injective and has injective differential for all p P M

(it is automatically proper because M is compact). We start with injectivity and
suppose that ρppq “ ρpp1q. Since the ηi are a partition of unity we can pick an ηi
such that ηippq “ ηipp

1q ‰ 0. From this we deduce that both p and p1 are in Vi.
We can then divide the equation ηippqϕ´1

i ppq “ ηipp
1qϕ´1

i pp1q by ηippq ‰ 0 to get
ϕ´1
i ppq “ ϕ´1

i pp1q and apply the injective map ϕi to deduce p “ p1.
Next we verify ρ has injective differential everywhere. Let p P M be such that

ηippq ‰ 0 and set q “ ϕ´1
i ppq. Since projections are smooth and on η´1

i pp0, 1sq

division by ηi is a smooth map, the following is a smooth map η´1
i pp0, 1sq Ñ Rk:

q ÞÝÑ ρpqq
proj
ÞÝÑ ηipqqϕ´1

i pqq
divide
ÞÝÑ ϕ´1

i pqq.

It is visibly equal to ϕi, so it has bijective differential dpϕi at p. By the chain
rule we can write

dpϕi “ dρppqpdivide ˝ projq ˝ dpρ

and since the left hand side is bijective the term dpρ on the right hand side must
be injective.

Example 10.1.4. The embeddings produced by Theorem 10.1.3 have a target of
unnecessarily high dimension. For example, at best it produces an embedding of
Sn into R2n`2, even though we know Sn can be embedded into Rn`1. We shall
later prove that every compact k-dimensional manifold embeds into R2k`1.

10.1.1 Tangent bundles of submanifolds

Suppose M is a k-dimensional manifold and Z Ă M is a submanifold of codimen-
sion r. Then both M and Z have tangent bundles TM and TZ. The inclusion
i : Z ãÑ M is an injective map whose derivative is injective at all z P Z. Thus
the map di : TZ Ñ TM is injective; it maps at most one fibre to each TpM and
on that fibre it is injective. We claim that this allows us to think of TZ as a
subbundle of TM |Z . Indeed, taking E “ TZ, X “ Z, E1 “ TN , X 1 “ M and
G “ di in the previous lemma about images of bundle maps, we see that impdiq
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is a subbundle of TM |Z . Of course it is also true that kerpdiq is subbundle of
TZ, but it is 0-dimensional. This makes precise the statement that “TZ is a
subbundle of TM |Z .”

Example 10.1.5. By the Whitney embedding theorem, TM is a subbundle of
TRN |M , which is the trivial bundle of dimension N over M . We conclude that
the tangent bundle to a compact manifold is always a subbundle of a trivial
vector bundle.

10.2 Existence of partitions of unity

We now prove the existence of partitions of unity. Before doing so, we must
establish a few results about the point-set topology of M , which require that M
is second-countable and Hausdorff.

Lemma 10.2.1. M is a union of countable many open subsets with compact
closure.

Proof. Let tWiuiPI denote the countable basis for the topology of M and let
A “ tpUα, Vα, ϕαqu be the atlas of M . If there is a codomain Vα of a chart that
contains Wi, pick one and call it Vi. This gives a collection of open tViuiPI 1

indexed by a subset I 1 Ă I. We have
Ť

iPI 1 Vi “ M , because the Vα cover M
by definition of an atlas and Vα is a union of elements of the basis tWiuiPI by
definition of a basis for a topology.

Given a chart pUi, Vi, ϕiq for i P I 1, take all open balls Bϵj pxjq Ă Ui in its
domain such that ϵj ą 0 is rational, xj P Ui has rational coordinate, and the
closure Bϵj pxjq is contained in Ui. We denote these

W j
i :“ ϕipBϵj pxjqq,

indexed by some countable set Ji. The collection of all of these is a countable
union of countable sets, so is countable. We will prove that tW j

i uiPI 1,jPJi
is the

sought-after collection of open subsets.
To see that the W j

i cover M , we remark that for fixed i we have
Ť

jPJi
W j
i “ Vi

and then varying i we have
ď

iPI 1

ď

jPJi

W j
i “

ď

iPI 1

Vi “ M.

The image of the compact set Bϵj pxjq under ϕi is compact. Because M is
Hausdorff each compact subset is closed and thus the closure of ϕipBϵj pxjqq is
contained in ϕipBϵj pxjqq. Hence it is a closed subset of a compact set, so itself
compact.

Lemma 10.2.2. There are compact subsets Ki Ă M , indexed by integers i ě 0,
and open subsets Vi`1{2 Ă M such that K0 Ă V1{2 Ă K1 Ă V1`1{2 Ă ¨ ¨ ¨ and
Ť

iě0Ki “ M .
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Proof. LetM “
Ť

iPNWi withW i compact. We define theKi inductively, starting
with K0 “ W 0. Suppose we have defined Kn´1, then let N be the smallest
integer ě n such that Kn´1 Ă W1 Y ¨ ¨ ¨ YWN . Set Vn´1{2 :“ W1 Y ¨ ¨ ¨ YWN and
Kn :“ W 1 Y ¨ ¨ ¨ YWN .

If U is an open cover of X, we say taht a second open cover V is a refinement
if each V P V is contained in some U P U . One can deduce from the previous
lemma that M is paracompact, i.e. every open cover has a refinement to a locally
finite subcover and it is then a standard fact in point-set topology that partitions
of unity by continuous functions exist. We instead want partitions of unity by
smooth functions, so we must use somehow that M is a smooth manifold. We
first prove a slightly weaker version of Theorem 10.1.2 and along the way we will
prove that M is paracompact.

Proposition 10.2.3. Every open cover W “ tWiuiPI of M has a refinement
which admits a subordinate partition of unity.

Proof. Let K0 Ă V1{2 Ă K1 Ă V1`1{2 Ă ¨ ¨ ¨ be as above M and W “ tWiuiPI be
the open cover. Any p P M lies in a unique KnzKn´1, which has Vn`1{2zKn´1 as
an open neighborhood. We can then pick a chart pUβ, Vβ, ϕβq of M , a point z P Uβ ,
and δ ą 0, such that Bδpzq Ă Uβ , p “ ϕβpzq and ϕβpBδpzqq Ă Wi X Vn`1{2zKn´1
for some i.

Ranging over all p P M (and thus implicitly all n ě 0), the open sets
ϕβpBδ{3pzqq in particular cover the compact set Km`1zVm´1{2, hence there is
a finite subcover ϕβm

i
pBδm

i {3pzmi qq, 1 ď i ď jm of Km`1zVm´1{2. Taking the
tϕβm

i
pBδm

i {3pzmi qqu1ďiďjm for all m, these give a cover of M , as
ď

mě0
Km`1zVm´1{2 Ą

ď

mě0
Km`1zKm “ M.

By construction ϕβm
i

pBδm
i {3pzmi qq is contained in Wi, so this is a refinement of W .

It is locally finite since the open subsets ϕβm
i

pBδm
i

pzmi qq can only intersect the
open subset Vn`1{2zKn´1 for n “ m ´ 1,m. At this point we have proven that
M is paracompact.

In Problem 26 you will show that there exists a smooth function ρ̃mi : Uβm
i

Ñ

r0, 1s which vanishes outside Bδm
i {2pzmi q and is equal to 1 on Bδm

i {3pzmi q. We can
then define a smooth map rηmi : M Ñ r0, 1s by

rηmi ppq “

#

rρmi pϕ´1
βm

i
ppqq if p P Vβ,

0 otherwise.

Since the collection of open subsets ϕβm
i

pBδm
i {3pzmi qq covers M and the collec-

tion of open subsets ϕβm
i

pBδm
i

pzmi qq is locally finite, we have that

p ÞÝÑ
ÿ

η̃mi ppq

is locally equal to a finite sum of non-zero terms, so is a smooth map M Ñ Rą0.
We then define ηmi : M Ñ r0, 1s by

ηmi :“ rηmi
ř

rηmi
.
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This is the desired partition of unity subordinate to the refinement of W given
by the ϕβm

i
pBδm

i {3pzmi qq.

Remark 10.2.4. If M is compact, the proof of Theorem 10.1.2 greatly simplifies
as you can forget about the Ki and Vi`1{2’s.

The above construction has multiple functions with support in Wi. Instead,
it is often more convenient to have one function for each Wi in W.

Proof of Theorem 10.1.2. By the previous proposition we can find a refinement
W 1 “ tWjujPJ of W “ tWiuiPI and a partition of unity tη1

j : M Ñ r0, 1su

subordinate to it.
For j P J , fix a Wi such that W 1

j Ă Wi. This gives a function λ : J Ñ I. We
claim that

ηi :“
ÿ

jPJ´1piq

η1
j

gives the desired partition of unity. By property (ii), this is a locally finite sum
and hence a smooth function. By property (i), the sum of the ηi is 1 everywhere.
From property (i), we know that supppη1

jq Ă W 1
j and hence is also contained in

Wi. Now observe that

supppηiq “ η´1
i pp0, 1sq “

ď

jPJ´1piq

pη1
jq

´1pp0, 1sq.

By property (ii), the latter is a closure of a locally finite union of open subsets.
This is equal to the union of the closures, by an elementary argument in point-set
topology. So we conclude that

supppηiq “
ď

jPJ´1piq

pη1
jq

´1pp0, 1sq “
ď

jPJ´1piq

supppη1
jq Ă Wi.

This finishes the proof.

10.3 Problems

Problem 26 (A bump function).
(a) Prove that

f : R ÝÑ R

x ÞÝÑ

#

e´1{x2 if x ą 0,
0 if x ď 0

is smooth.
(b) Observe that gpxq “ fpxqfp1 ´xq is smooth, positive on p0, 1q, and 0 outside

of this interval. Prove that

hpxq “

şx
´8

gpyqdy
ş8

´8
gpyqdy

is smooth, equal to 0 when x ď 0 and equal to 1 when x ě 1.
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(c) Construct a smooth function on Rk which is 1 on an open neighborhood of
the origin and is supported in the unit ball.

Problem 27 (Charts from coordinate axes). Suppose that M is a k-dimensional
smooth manifold and e : M Ñ RN is a smooth embedding. Prove that for each
p P M there is an open subset U Ă M containing p and integers i1, . . . , ik in
t1, . . . , Nu such that

M Ą U ÝÑ Rk

p ÞÝÑ pπi1 ˝ eppq, . . . , πik ˝ eppqq

is a diffeomorphism onto an open subset. Here πij : RN Ñ R is the projection on
the ijth coordinate.



Chapter 11

Transversality and the improved preimage
theorem

In this lecture we improve the pre-image theorem to give a sufficient condition
under which pre-images of submanifolds are submanifolds. This will have many
applications, among them a generalization of the Whitney embedding theorem
to non-compact manifolds.

11.1 The preimage theorem restated

Recall that given a submanifold Z Ă M , with i : Z Ñ M denoting the inclusion,
we have that by considering the image of di we can consider TZ as a subbundle
of TM |Z . This makes precise the statement that “TZ is a subbundle of TM |Z .”

Many submanifolds arise through the pre-image theorem: we have a smooth
map f : M Ñ N with regular value c and Z “ f´1pcq. The pre-image theorem
said that Z is then pk ´ k1q-dimensional submanifold of M and Tpf

´1pcq “

kerpdpf : TpM Ñ TfppqMq for all p P f´1pcq. The latter part about the tangent
spaces to Z, can be improved to a statement about tangent bundles. The proof
is identical, but it is only now that we can phrase it:

Theorem 11.1.1 (Preimage theorem). If f : M Ñ N is a smooth map and c P N
a regular value, then Z :“ f´1pcq is a pk ´ k1q-dimensional submanifold of M
and TZ “ kerpdf : TM |Z Ñ TNq Ă TM |Z .

Example 11.1.2. Recall that Sn´1 can be written as g´1p1q with g : Rn Ñ R given
by px1, . . . , xnq ÞÑ x2

1 ` . . .` x2
n. The map g is smooth and has total derivative

r2x1, . . . , 2xns, so all non-zero real numbers are regular values of g. In particular,
Sn´1 is an pn´ 1q-dimensional differentiable manifold and TSn´1 is the kernel of
the total derivative maps; for x “ px1, . . . , xnq P Sn´1 the kernel of r2x1, . . . , 2xns

is just the pn´ 1q-dimensional plane xK of vectors orthogonal to x.

11.2 Transversality

The most important geometric notion in differential topology is transversality.
This condition tells you in terms of tangent spaces when submanifolds (or the
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image of a map and a submanifold) intersect nicely.

11.2.1 Submanifolds locally

We start by recalling the definition of a submanifold, and describe how in suitable
local coordinates all submanifolds are the inverse images of projection maps.

Suppose that we have a k1-dimensional differentiable manifold N with a
submanifold Z Ă N of codimension r (that is, Z is pk1 ´ rq-dimensional). Then
for each z P Z we have a local parametrization, that is, open subsets U Ă Rk1

and V Ă N as well as a diffeomorphism ϕ : U Ñ V so that ϕ´1pZ X V q “

U X pt0u ˆ Rk1´rq. That is, on U we can define πr : U Ñ Rr projecting onto the
first r coordinates and ϕ´1pZ X V q “ π´1

r p0q. Thus we see that

Z X V Ă V “ ϕpπ´1
r p0qq Ă V.

If we want to explicit understand TzZ Ă TzN , then we may as well identify
it in U by applying the linear isomorphism dzϕ

´1. Here it is the tangent space
to U X pt0u ˆ Rk1´rq at ϕ´1pzq, which is just t0u ˆ Rk1´r. Applying the inverse
dϕ´1pzqϕ of dzϕ´1, we see that TzZ is the following pk1 ´ rq-dimensional linear
subspace of TzN :

TzZ “ dϕ´1pzqϕpt0u ˆ Rk
1´rq Ă TzN. (11.1)

11.2.2 Improving the pre-image theorem

Now suppose we have a smooth map f : M Ñ N . We will give a criterion that
tells us when f´1pZq is a differentiable submanifold of M .

To find a local parametrization of f´1pZq Ă M near p P f´1pZq, we might
as well find one of f´1pZ X V q Ă f´1pV q Ă M . The advantage of passing to this
open subset is that on f´1pV q we can use projection to define the smooth map

g :“ f´1pV q Ă M
f

ÝÑ V Ă N
ϕ´1
ÝÑ U Ă Rk

1 πr
ÝÑ Rr.

This has the property that

g´1p0q “ f´1pϕpπ´1
r p0qqq “ f´1pϕpϕ´1pZ X V qqq “ f´1pZ X V q.

The pre-image theorem then tells us that f´1pZ X V q is a submanifold of
f´1pV q Ă M of codimension r whenever 0 is regular value of g. That is, g should
be a submersion at all p P f´1pZ X V q.

So we need to understand when dpg : TpM Ñ T0Rr is surjective. Writing

dpg “ dϕ´1fppqπr ˝ dfppqϕ
´1 ˝ dpf,

we first observe that for dpg to be surjective, impdfppqϕ
´1 ˝ dpfq should be a

linear subspace of Tϕ´1fppqRk
1

“ Rk1 which surjects onto T0Rr “ Rr under the
linear map dϕ´1fppqπr : Rk1

Ñ Rr. This is the case exactly when impdfppqϕ
´1 ˝
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dpfq ` kerpdϕ´1fppqπrq “ Rk1 . Using the fact that kerpdϕ´1fppqπrq “ t0u ˆ Rk1´r

we obtain the requirement

impdfppqϕ
´1 ˝ dpfq ` t0u ˆ Rk

1´r “ Rk
1

.

Let us apply the linear isomorphism dϕ´1fppqϕ to translate this back to a
statement about linear subspaces of the original tangent space TfppqN . By the
chain rule dϕ´1fppqϕ sends impdfppqϕ

´1 ˝ dpfq to impdpfq, and by (11.1) it sends
t0u ˆ Rk1´r to TfppqZ. Since a linear isomorphism preserves sums, we see that
dpg is surjective if and only if

impdpfq ` TfppqZ “ TfppqN.

Let us give this condition a name:

Definition 11.2.1. Let Z Ă N be a submanifold. We say that f : M Ñ N is
transverse to Z at p P f´1pZq, denoted f&pZ, when impdpfq ` TfppqZ “ TfppqN .

Definition 11.2.2. Let Z Ă N be a submanifold. We say that f : M Ñ N is
transverse to Z , denoted f&Z, when f is transverse to Z at all p P f´1pZq.

Example 11.2.3. A smooth map f : R Ñ R2 is transverse to Rˆ t0u if and only if
the derivative Bf2{Bt is non-zero whenever fptq crosses the x-axis.

fpxq “ px, x2 ´ 1q

f&R ˆ t0u

gpxq “ px, 1
3x

2px´ 3
2qq

g ­ &R ˆ t0u

Figure 11.1 Examples of smooth functions R Ñ R2.

Then the above discussion tells us that f : M Ñ N being transverse to Z at
all p P f´1pZ X V q implies that f´1pZ X V q “ g´1p0q is a submanifold. Varying
the local parametrizations, we see that f being transverse to Z implies f´1pZq is
a submanifold. We can say a bit more; by the pre-image theorem the tangent
space to f´1pZ X V q “ g´1p0q at p is given by the kernel of dpg, i.e. pdpgq´1p0q,
which is equal to pdpfq´1pTfppqZq.

Theorem 11.2.4 (Improved preimage theorem). Let Z Ă N a submanifold
of codimension r and suppose that f : M Ñ N that is transverse to Z. Then
f´1pZq Ă M is also a submanifold of codimension r and Tf´1pZq “ pdfq´1pTZq Ă

TM |f´1pZq.
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Remark 11.2.5. This is an improvement of the preimage theorem, because we can
recover the preimage theorem by take Z to be a point c. Since the tangent space
to the (rather boring) 0-dimensional manifolds c is 0-dimensional, f is transverse
to c at p P f´1pcq if and only if dpf is surjective.

Example 11.2.6. Suppose Z Ă N is a collection of points and M is of smaller
dimension than N . Then f : M Ñ N is transverse to Z if and only impfqXZ “ ∅,
as it is not possible for the sum of a 0-dimensional and ă k1-dimensional subspace
to equal a k1-dimensional vector space.

Example 11.2.7. Though f&Z implies that f´1pZq is a submanifold, the converse
is not true: the inclusion i : Z Ñ N is very much not transverse to Z, but
i´1pZq “ Z.

Remark 11.2.8. You may want to try to come up with the definition of two
smooth maps f : M1 Ñ N and g : M2 Ñ N being transverse, and then prove that
tpm1,m2q | fpm1q “ gpm2qu Ă M1 ˆM2 is a submanifold.

11.2.3 Transversality for submanifolds

The case that is of most geometric interest is when f is the inclusion j : Y Ñ N
of another submanifold. In that case, it is more convenient to forget about the
maps i : Z Ñ N and j : Y Ñ N and state the transversality condition in terms
of the submanifolds:

Definition 11.2.9. Let Y,Z Ă N be submanifolds. Then Y and Z are transverse
at p P Y X Z, denoted Y&pZ, if TpY ` TpZ “ TpN .

Definition 11.2.10. Let Y,Z Ă N be submanifolds. Then Y and Z are trans-
verse, denoted Y&Z, if Y and Z are transverse at all p P Y X Z.

Example 11.2.11. If Y X Z “ ∅, Y&Z because there are no points in p P Y X Z
at which any conditions are imposed.

The improved pre-image theorem says that if Y&Z then Y XZ is a submanifold
of Y , and hence a submanifold of N . (If this sounds surprising, you should go
through the definitions again and verify that a submanifold of a submanifold is a
submanifold). At each p P Y X Z, TppY X Zq “ TpY X TpZ. This in particular
implies that

codimpY X Zq “ codimpY q ` codimpY q.

You should think of Y&Z as saying that Y and Z intersect nicely. Let us make
this more precise:

Example 11.2.12. Two linear subspaces U and V in Rn of codimension r and s
respectively intersect transversally if and only if U X V is a linear subspace of
codimension r ` s.

The direction ñ is a consequence of the general formula for the codimension
of a transverse intersection. For the direction ð, we note that at each p P U X V
we can identity TpU and TpV with U and V again. To compute their sum U ` V
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transverse not transverse

Figure 11.2 Examples of 1-dimensional submanifolds of R2.

we use the inclusion-exclusion formula for the dimension of a sum of two linear
subspaces:

dimpU`V q “ dimpUq`dimpV q´dimpU`V q “ pn´rq`pn´sq´pn´r´sq “ n.

Hence U ` V “ Rn and U and V intersect transversally at p P U X V .
Any transverse intersection locally is of the form in Example 11.2.12 in the

right coordinates:

Lemma 11.2.13. Y&pZ if and only if there is a chart pUα, Vα, ϕαq such that
ϕ´1
α pY q and ϕ´1

α pZq are given by the intersection with Uα of two linear subspaces
intersecting transversally.

Proof. ð follows from transversality being preserved by diffeomorphisms, so we
focus on ñ. Since the intersection is non-empty the codimensions r and s of Y
and Z satisfiy r ` s ď k1.

The proof of the improved pre-image theorem provides a chart pU1, V1, ϕ1q in
which ϕ´1pZq “ U1Xpt0uˆRk1´rq. We may assume that ϕ1p0q “ p by translating.
Translated to this chart, Y&pZ says that T0ϕ

´1
1 pY q ` t0u ˆ Rk1´r “ Rk1 . Thus

by applying a linear isomorphism of Rk1 preserving t0u ˆ Rk1´r we may assume
that T0ϕ

´1
1 pY q “ Rk1´s ˆ t0u.

So it remains to fix ϕ´1
1 pY q. Consider the map π : ϕ´1

1 pY q Ñ Rk1´s ˆ t0u

given by restricting the projection map Rk1

Ñ Rk1´s ˆ t0u. The derivative of π
at 0 is the identity and hence bijective. Inverse function theorem then tells us
that π is a local diffeomorphism. Thus near the origin,

ϕ´1
1 pY q “ tpw, ρpwqq P Rk

1´s ˆ Rsu

for a smooth map ρ : Rk1´s Ñ Rs with ρp0q “ 0. Thus there exists an open
subset U2 of the origin in Rk1 so that the diffeomorphism ρ̄ : Rk1

Ñ Rk1 given
by ρ̄pw, vq “ pw, v ` ρpwqq maps U2 X pRk1´s ˆ t0uq onto a neighborhood of the
origin in ϕ´1

1 pY q. Note that ρ̄ preserves t0u ˆ Rk´r, we only translate in the last
s coordinates and s ď k1 ´ r as k1 ě r ` s. Thus the desired chart is

pU2, V2, ϕ2q :“ pU2, ϕ1 ˝ ρ̄pV2q, ϕ1 ˝ ρ̄q.
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11.3 Another construction of the Poincaré homology sphere

As an extended example, we will now give an alternative and at first sight
completely unrelated construction of the Poincaré homology sphere P “ S3{I˚,
which we first saw as an additional example.

To do so, we consider the map

f : C3 ÝÑ C
pz1, z2, z3q ÞÝÑ z2

1 ` z3
2 ` z5

3 .

We claim that
X “ f´1p0q X pC3z0q

is a codimension 2 submanifold of C3zt0u. We of course would like to use the
submersion theorem, and we could do by identifying the domain C3 with R6 by
zj ÐÑ xj ` iyj , and similarly identify the target C with R2. We would then need
to verify that the total derivative, a p2 ˆ 6q-matrix, is surjective.

However, it is much convenient to keep working with complex numbers: as a
polynomial, p is not only differentiable as a function R6 Ñ R2, is in fact complex-
differentiable as a function C3 Ñ C. We can compile these into a p1 ˆ 3q-matrix
of complex numbers

”

Bf
Bz1

pz1, z2, z3q
Bf
Bz2

pz1, z2, z3q
Bf
Bz3

pz1, z2, z3q

ı

.

This complex total derivative is surjective if and only if the total derivative is
surjective.

In our case, the complex total derivative is given by
“

2z1 3z2
2 5z4

3
‰

(11.2)

and hence surjective for all pz1, z2, z3q P C3zt0u. We conclude that X Ă C3zt0u

is a 4-dimensional smooth manifold, or equivalently has codimension 2.
To reduce the dimension by one, we will intersect with the sphere S5 :“

tpz1, z2, z3q | |z1|2 ` |z2|2 ` |z3|2 “ 1u, of codimension 1. We claim this is
transverse to X. To see this is the case, we use that the tangent bundle to X
at x “ pz1, z2, z3q P X is given by the kernel of the matrix (11.2); this has fibers
isomorphic to C2 – R4 so is 4-dimensional. A particular vector in this kernel is

w “ pz1{2, z2{3, z3{5q.

The tangent bundle to S5 at x P S5 is given by those vectors orthogonal to x; this
is 5-dimensional. It is convenient to work with complex numbers, and observe
that w “ pw1, w2, w3q P TxC3 being orthogonal to x is equivalent to

Repx ¨ wq “ 0.

Let us evaluate this on the above vector in TxX: we get

Repx ¨ wq “ |z1|2{2 ` |z2|2{3 ` |z3|2{5,
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and since |z1|2 ` |z2|2 ` |z3|2 “ 1, we see this is at least 1{5 so non-zero. Thus
TxX Ć TxS

5 and by a dimension count we conclude that TxX ` TxS
5 “ TxC3.

Thus f´1p0q X S5 is a submanifold of S5. Its codimension is 2 ` 1, so it is
3-dimensional. It is in fact diffeomorphic to the Poincaré homology sphere [KS79,
p. 128–132].
Remark 11.3.1. A smooth manifold which arises as the transverse intersection
of a zero set of a complex polynomial (here z2

1 ` z3
2 ` z5

3) with a small sphere
around a singularity (here we took the sphere of radius one around the origin), is
called a link of a singularity. These have been studied in detail, see e.g. [Mil68].
Particularly interesting are the Brieskorn spheres Σpk1, . . . , knq, constructed as
the links of the singularity at the origin of polynomials

zk1
1 ` ¨ ¨ ¨ ` zkn

n .

These give examples of smooth manifolds which are homeomorphic of spheres
but not diffeomorphic to them [Bri66]. For examples, the cases

Σp2, 2, 2, 3, 6k ´ 1q

give all examples of exotic 7-spheres up to diffeomorphism.

11.4 Problems

Problem 28 (Brieskorn manifolds). Verify that all Brieskorn spheres are p2n´3q-
dimensional manifolds.

Problem 29 (RP 3 as a link of a singularity). Recall the smooth manifold Wn

from a previous problem. Use the map

f : C2 ÝÑ C3

pw1, w2q ÞÝÑ pw2
1 ` w2

2, ipw
2
1 ´ w2

2q, 2iw1w2q

to produce a diffeomorphism RP 3 Ñ W3. Conclude that SOp3q is diffeomorphic
to RP 3.



Chapter 12

Stable and generic classes of smooth maps

It is a standard strategy to study the effect of small deformations on mathematical
objects. On the one hand, such deformations can make the object more generic
and hence easier to understand. On the other hand, small enough deformations
often preserve important properties. To start applying this strategy to certain
types of smooth maps, we will need to do the following:

(i) make precise what we mean by a “deformation,”
(ii) understand which types of smooth maps are “stable”, i.e. preserved by small

deformations, and
(iii) understand what a “generic smooth map” looks like.

12.1 Homotopies of smooth maps

A reasonable definition of deforming of a smooth map f0 is to situate it in a family
of smooth maps fs which depends smoothly on the parameter s. Restricting the
parameter s to lie in the closed interval r0, 1s, we get the following definition:

Definition 12.1.1. A homotopy is a smooth map H : M ˆ r0, 1s Ñ N .

Example 12.1.2. Out of a smooth map f : M Ñ N , we can construct a constant
homotopy H : M ˆ r0, 1s Ñ N by Hpp, tq :“ fppq. This homotopy does not
deform f at all!

We have not officially said what it means to have a smooth map with domain
M ˆ r0, 1s; we will later define manifolds with boundary, but for now it suffices to
say that it should extend to a smooth map whose domain is an open neighbourhood
of M ˆ r0, 1s in M ˆ R.

Since the restrictions of smooth maps are smooth, each f |Mˆttu : M Ñ N is
a smooth map. In particular this is the case for f0 :“ f |Mˆt0u and f1 :“ f |Mˆt1u

and we say that H is a homotopy from f0 to f1.

Definition 12.1.3. Two smooth maps f0, f1 : M Ñ N are homotopic, denoted
f0 „ f1, if there is a homotopy from f0 to f1.

Lemma 12.1.4. Homotopy is an equivalence relation of smooth maps M Ñ N .

96



12.2 Stable classes of maps 97

Proof. The constant homotopy shows it is reflexive. To see it is symmetric, note
that if H : Mˆr0, 1s Ñ N is a homotopy from f0 to f1 then H̄pp, tq :“ Hpp, 1´ tq
is a homotopy from f1 to f0. In Problem 30 you will show it is transitive.

12.2 Stable classes of maps

A class of smooth maps is stable if it is preserved by small perturbations, in the
following sense:

Definition 12.2.1. A subset U of the set of all smooth maps M Ñ N is stable
if for each f0 P U and smooth map H : M ˆ Rr Ñ N starting at f0 there exists
an ϵ ą 0 such that H|Mˆtxu P U for all ||x|| ă ϵ.

This definition has a straightforward consequence for homotopies:

Lemma 12.2.2. If U is stable then for each f0 P U and homotopy H : M ˆ

r0, 1s Ñ N starting at f0 there exists an ϵ ą 0 such that H|Mˆttu P U for all
t ă ϵ.

Proof. There exists a smooth map η : R Ñ r0, 1s such that ηptq “ 0 for t ď 0 and
η1ptq ą 0 for t ą 0. Now apply the condition in the definition of stable classes of
maps to H ˝ pid ˆ ηq : M ˆ R Ñ N .

Remark 12.2.3. If we were to go to the trouble of defining a suitable topology on
the set C8pM,Nq of smooth maps M Ñ N , open subsets of C8pM,Nq would
be stable.

This remark makes us suspect that subsets which are defined by “open
conditions” should be stable. Let us look at an example: in the space LinpRp,Rpq
of all linear maps Rp Ñ Rp the invertible linear maps are open (as they are
defined by the condition that the determinant is non-zero). This means that if
an invertible A P LinpRp,Rpq is perturbed slightly, it remains invertible. Since a
map f : M Ñ N is a local diffeomorphism if and only if all derivatives dpf are
invertible, one might expect that this condition should be preserved by a small
perturbation of f , as it gives rise to a small perturbation of each dpf . Thus, if
we could somehow “bound the determinant of the dpf” away from 0, any small
perturbation of f will remain a local diffeomorphism.

The problem with this vague argument is of course that one can’t make sense
of the determinant of a linear map between two different vector spaces. The idea
is to use the determinant in finitely many charts, and to guarantee M is covered
by finitely many charts we assume it is compact.

Let us now make it precise:

Theorem 12.2.4. If M is compact, then the following classes of smooth maps
f : M Ñ N are stable:

(i) local diffeomorphisms,
(ii) immersions,

(iii) submersions,
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(iv) maps transverse to a submanifold Z Ă N ,
(v) embeddings,

(vi) diffeomorphisms.

Proof. The case (i) is a special case of both (ii) and (iii). Case (ii) is very similar
to case (iii) and proven in Guillemin & Pollack, so we will only prove the latter.
Suppose f0 : M Ñ N is a submersion and H : M ˆ Rr Ñ N is a smooth map so
that H|Mˆt0u “ f0. Pick a finite collection of charts tpUi, Vi, ϕiqu, 1 ď i ď r, such
that

Ť

i Vi “ M and fpViq Ă V 1
jpiq for some chart pU 1

jpiq, V
1
jpiq, ϕ

1
jpiqq of N . Taking

a partition of unity ηi : M Ñ r0, 1s, we find compact subsets Ki :“ supppηiq Ă Vi
which also cover M . Each compact subset f0pKiq is contained in an open subset
V 1
jpiq. Hence there exists a δi ą 0 such that

HpKi ˆBδi
p0qq Ă V 1

jpiq.

For suppose no such δi ą 0 exists, then there is a sequence ppk, tkq with pk P Ki,
tk Ñ 0 and Hppk, tkq P NzV 1

jpiq. Since M is compact, without loss of generality
pk converges to p. Since NzV 1

jpiq is closed, we get

NzV 1
jpiq Q lim

k
Hppk, tkq “ Hpp, 0q “ f0ppq

and thus a contradiction to f0pKiq Ă V 1
jpiq. So if we take δ “ minpδi | 1 ď i ď

rq ą 0 we have that HpKi ˆBδp0qq Ă V 1
jpiq for all 1 ď i ď r.

This setup has the following goal: whether there is an ϵ P p0, δq such that
H|Mˆttu for all ||t|| ă ϵ is a submersion is equivalent to whether each of the
finitely many functions

f it :“ pϕ1
jpiqq

´1 ˝H|Kiˆttu ˝ ϕi

has a surjective total differential at all points in its domain for all ||t|| ă ϵ.
Each f it is a smooth map from the compact subset ϕ´1

i pKiq Ă Rk to the open
subset V 1

jpiq Ă Rk1 . Consider now the continuous function

ϕ´1
i pKiq ˆBδp0q Q pp, tq ÞÝÑ

maximum of absolute value of determinants
of pk1 ˆ k1q-submatrices of dpf it

.

The right hand side is positive if and only if there is a square submatrix of full
rank, which happens if and only if it is surjective. Hence we know that for t “ 0,
the total derivatives at all x P ϕ´1

i pKiq are surjective and hence the above function
is strictly positive. Since ϕ´1

i pKiq is compact, it is bounded away from 0 for t “ 0,
and by continuity thus for all t in some small ball Bϵip0q Ă Bδp0q with ϵi ą 0. The
argument this is similar to the above argument that HpKi ˆBδp0qq Ă V 1

jpiq for
some δi ą 0, and you should work it out yourself. Taking ϵ “ minpϵi | 1 ď i ď rq

gives the desired ϵ ą 0.
We may reduce the case (iv) to the case (iii) by picking finitely many local

parametrizations covering the intersection of Z with an open neighbourhood of
f0pMq. In the coordinates coming from each of these local parametrizations, Z
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is given by t0u ˆ Rr and by composing with the projection πk1´r onto the first
k1 ´ r coordinates we can rephrase f&Z in terms of πk1´r ˝ f being a submersion.

For (vi) we may reduce to the case that M and N are connected by considering
each connected component separately. But an embedding f : M Ñ N between
compact connected manifolds of the same dimension is the same as diffeomorphism.
Hence (vi) reduces to (v).

Furthermore, (v) reduces to (ii) as soon as we prove that there must exist an
ϵ ą 0 such that each H|Mˆttu is injective for t ă ϵ. Suppose this is not the case,
then we will derive a contradiction. Then if we define H̃ : M ˆ Rp Ñ N ˆ Rr by
H̃pp, tq “ pHpp, tq, tq we can find a collection of pairs pri, tiq, pp

1
i, tiq P MˆRr with

ti Ñ 0 , pi ‰ p1
i and H̃ppi, tiq “ H̃pp1

i, tiq. Using the fact that M is compact, by
passing to a subsequence we can assume that both sequences pi and p1

i converge
to p and p1 in M . Then f0ppq “ limHppi, tiq “ limHpp1

i, tiq “ f0pp1q and since
f0 is injective p “ p1. We may compute that

dpp,0qH̃ “

„

dpf0 ˚

0 id

ȷ

: TpM ‘ Rr Ñ Tf0ppqN ‘ Rr,

which is injective. Hence H̃ is an embedding near pp, 0q, so in particular injective
and hence ppi, tiq “ pp1

i, tiq for i large enough, contradicting the construction of
the sequences pi and p1

i.

Example 12.2.5. If Z is a compact submanifold of M , then any sufficiently small
perturbation of the inclusion map i : Z ãÑ M is still an embedding. Concretely,
when you pick any smooth function g : S1 Ñ R2, there exists some ϵ ą 0 such
that

it : S1 ÝÑ R2

p ÞÝÑ p` tgppq

is an embedding for t ă ϵ.

12.3 Generic classes of smooth maps

A class of smooth maps is generic if we can deform any smooth map to such a
map by an arbitrarily small perturbation. It will be technically convenient to
allow these perturbations to be indexed by Rr instead of R.

Definition 12.3.1. A subset D of the set of all smooth maps M Ñ N is generic
if for all f0 : M Ñ N there exists an r ě 0 and a smooth map H : M ˆ Rr Ñ N
such that M |Mˆt0u “ f0 and for all ϵ ą 0 there exists an x P Rr with ||x|| ă ϵ
such that H|Mˆtxu P D.

Remark 12.3.2. If we were to define a suitable topology on the set C8pM,Nq of
smooth maps M Ñ N , dense open subsets of C8pM,Nq would be generic.
Example 12.3.3. We will later prove that if the set of all smooth maps M Ñ

N transverse to Z is generic. Thus every smooth map f : M Ñ N can be
approximated by maps transverse to Z.
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The main tool to find generic classes of smooth maps is Sard’s theorem, often
applied to homotopies or families of maps but incredibly useful in general:

Theorem 12.3.4 (Sard). If f : M Ñ N is a smooth map, then the critical values
of f have measure zero.

We need to explain the statement: a subset C of Rp has measure zero if
there is a countable collection of rectangles Ri Ă Rp such that C Ă

Ť8
i“1Ri

and
ř8
i“1 volpRiq ă ϵ, and a subset C of M has measure zero if for each chart

tpUα, Vα, ϕαqu of M the subset ϕ´1
α pCq has measure zero.

Corollary 12.3.5. If fi : M Ñ N is a countable number of smooth maps, then
the set of c P N which are regular values for all fi is dense.

Proof. The countable union
Ť

i critpfiq Ă N of measure zero subsets has measure
zero, so it suffices to observe that the complement of a measure zero subset C is
dense. If it were not dense, C would have non-empty interior and in some chart
contain a small ball of some definite volume ą 0.

Let us give some first applications of Sard’s theorem:

Example 12.3.6. There are space-filling curves, continuous maps f : r0, 1s Ñ r0, 1s2

which are surjective. However, no smooth space-filling curve can exist: a regular
value of such a smooth map is a point in r0, 1s2 which is not in the image of f ,
and the regular values need to be dense in r0, 1s2 by Sard’s lemma.

The following is an elaboration of that idea:

Definition 12.3.7. A path-connected differentiable manifold M is said be to
m-connected if every smooth map f : Si Ñ M is homotopic to a constant map
for i ď m.

Remark 12.3.8. To connect this definition to a more familiar one in algebraic
topology involving continuous maps instead of smooth maps, one uses the fact
that every continuous map is homotopic to a smooth one.

Corollary 12.3.9. The sphere Sk is pk ´ 1q-connected.

Proof. As before, the regular values of smooth map f : Si Ñ Sk for i ď k ´ 1 are
those that are not in the image of f . Since these must be dense f must miss
some point x0 P Sk. We can then identify Skztx0u with Rk and consider f as a
smooth map f : Si Ñ Rk. This is homotopic to a constant map by the homotopy
H : Si ˆ r0, 1s Ñ Rk given by Hpp, tq “ tfppq.

Next chapter we will use Sard’s lemma to improve the Whitney embedding
theorem.
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12.4 The proof of Sard’s theorem

The following is the proof of Sard’s theorem, Theorem 12.3.4, which is essentially
a result in multivariable calculus and as such not part of the course proper. Its
proof is the standard one, and is included for completeness. It needs one fact
regarding sets of measure 0, a special case of Fubini’s theorem. This falls within
the realm of measure theory, so we will assert it without proof (but see Appendix
1 of [GP10] in the case C is closed).

Lemma 12.4.1. Suppose that we are given an open subset U Ă Rk`1 and a
subset C Ă U such that C X pttu ˆ Rkq has measure 0 for all t P R. Then C has
measure 0.

Theorem 12.4.2. The set of critical values of any smooth map f : M Ñ N has
measure 0.

Proof. When we proved that partitions of unity exist, we prove that there exists a
countable collection of charts tpUi, Vi, ϕiqu covering M and a countable collection
of charts tpU 1

ipjq
, V 1

ipjq
, ϕ1

ipjq
qu covering N such that fpViq Ă V 1

ipjq
. The set Critpfq

of critical values of f is equal to

Critpfq “
ď

i

ϕ1
jpiq

´

Critppϕ1
jpiqq

´1 ˝ f ˝ ϕiq
¯

.

We observed in the proof of Corollary 12.3.5 that subsets of measure 0 are closed
under taking countable unions, so it suffices to prove Sard’s theorem for each of
the functions on the right hand side. That is, it suffices to prove Sard’s theorem
for smooth maps f : U Ñ Rk1 with U Ă Rk open. We will prove this by induction
over k.

In the case k “ 0, there are either no critical values (when k1 “ 0) or a single
one (when k1 ą 0), so this initial case is true. For the induction step from k ´ 1
to k, we let C Ă U denote the set of critical points of f and filter it by

C Ą C1 Ą C2 Ą ¨ ¨ ¨ ,

letting Ci be the subset where all partial derivatives of order 1 ď r ď i vanish.
Now we will write C as pCzC1q Y

Ť

iě1Ci. We have to prove fpCq has measure
0. As fpCq “ fpCzC1q Y

Ť

iě1 fpCiq it suffices to prove that fpCzC1q and fpCiq
for i ě 1 have measure 0.

This is done in three steps:
The case fpCzC1q. If k1 “ 1 then C “ C1 and there is nothing to prove, so

assume k1 ě 2. At c P CzC1, Bfi
Bxj

pcq ‰ 0 for some i and j. Without loss of
generality (reordering the coordinate directions) we may assume i “ 1 and
j “ 1. Define a smooth map

h : U ÝÑ Rk

px1, . . . , xkq ÞÝÑ pf1pxq, x2, . . . , xkq,
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which is easily seen to have bijective total derivative at c. Applying the
inverse function theorem, we see it is a local diffeomorphism, i.e. there is an
open neighborhood V around c such that h restricts to a diffeomorphism
U Ą V Ñ hpV q Ă Rk1 .
Now consider the composition of its inverse with f

f ˝ h´1 : hpV q ÝÑ Rk
1

px1, . . . , xkq ÞÝÑ px1, f2phpxqq, . . . , fnphpxqqq.

This sends the manifold hpV q X pttu ˆ Rk´1q to ttu ˆ Rk1´1, and a point
pt, c1q is a critical point of f if and only if c1 is a critical point of

f̄t :“ pf2pt,´q, . . . , fnpt,´qq : hpV q X pttu ˆ Rk´1q ÝÑ ttu ˆ Rk
1´1.

Applying the inductive hypothesis to each of these, we see that the set of
critical values of f̄t has measure zero.
Letting Cpf̄tq denote the critical points of f̄t, the application of Fubini’s
theorem discussed above then tells us that

ď

t

ttu ˆ f̄tpCpf̄tqq

also has measure 0. But that union is exactly the subset of the critical
values of g ˝ h´1 where not all first order partial derivatives vanish. Since
h´1 is a diffeomorphism, these are also the subset of such critical values of
g|V . Thus fppCzC1qXV q has measure 0. Since a countable collection of V ’s
cover CzC1 (using second countability of M), we conclude that fpCzC1q

has measure 0.
The case fpCizCi`1q. Starting as in the previous case, at c P CizCi`1 we know

that Bi`1fj

Bxk1 ¨¨¨Bxki`1
‰ 0 for some j and k1, and without loss of generality we

can assume both are equal to 1. Then we define

h : U ÝÑ Rk

px1, . . . , xkq ÞÝÑ

ˆ

Bif1
Bxk2 ¨ ¨ ¨ Bxki`1

, x2, . . . , xk

˙

.

As before, h is a diffeomorphism onto its image when restricted to an open
neighborhood V of c. It also maps Ci into t0u ˆ Rk´1, because the first
entry involves an ith partial derivative. Thus f ˝h´1 only has critical points
of type Ci in t0u ˆ Rk´1, and we can apply the inductive hypothesis to
pf ˝ h´1q|t0uˆRk´1 to see its critical values have measure 0. An argument
as in the first step finishes the argument.

The case Ci. Finally, one proves that CN has measure 0 for N ą k{k1 ´1. Then
Ci “ pCizCi`1q Y ¨ ¨ ¨ Y pCN´1zCN q Y CN , all of which have measure 0. To
see this final case, it is convenient to assume U “ p0, 1qk, with f extending
to an open neighborhood of r0, 1sk. We may make this assumption because
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countably many rescaled versions of closed cubes with these properties cover
U . If c P CN , the Taylor approximation to order ď N of f at c vanishes, in
the sense that ||fpc` hq ´ fpcq|| ď D||h||N`1 for some constant D ą 0 and
||h|| ă ϵ0, cf. [DK04a, Theorem 2.8.3].
Since CN is closed in r0, 1sk it is compact, and the constants D and ϵ0
depend continuously on c P CN we may find constants D ą 0 and ϵ0 ą 0
that work for all c P CN . Then subdivide r0, 1sk into cubes with sides 1{L
where 1{L ă ϵ0{2. Then f must map of each the cubes that intersects
CN into a disk of radius ď Dp

?
k{LqN`1. Hence CN is contained in a

set of volume ď LkD1p
?
k{Lqk

1pN`1q. If N ą k{k1 ´ 1 the exponent L is
ă k ´ k1k{k1 “ 0, so goes this volume goes to 0 as L Ñ 8.

12.5 Problems

Problem 30 (Concatenation of homotopies).
(a) Suppose that H : Mˆr0, 1s Ñ N is a homotopy from f0 to f1. Construct a

different homotopy H̃ : M ˆ r0, 1s Ñ N from f0 to f1 such that H̃p´, tq “

f0 for t ă 1{4 and H̃p´, tq “ f1 for t ą 3{4. (Hint: use bump functions.)
(b) Use part (a) to show that the relation of homotopy is transitive, i.e. f0 „ f1

and f1 „ f2 implies f0 „ f2.

Problem 31 (The fundamental group). For a smooth manifold M with chosen
basepoint m0 P M , we consider the set of smooth maps γ : S1 Ñ M sending
1 P S1 to m0 P M . We say that two such smooth maps γ0, γ1 : S1 Ñ M are
homotopic relative endpoints if there is a homotopy H : M ˆ r0, 1s Ñ N from γ0
to γ1 such that Hp1, tq “ m0 for all t P r0, 1s.

(a) Prove that being homotopic relative to endpoints is an equivalence rela-
tion.

We denote the set of homotopy classes relative endpoints by π1pM,m0q, the
fundamental group M at m0. As the name suggests it has a group structure,
which you will construct below:

(b) Use the ideas of Problem 30 to prove that concatenation of loops gives a
well-defined map

π1pM,m0q ˆ π1pM,m0q ÝÑ π1pM,m0q.

(c) Show that concatenation makes π1pM,m0q into a group. (Hint: the
inverse is given by reversing loops.)
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Two applications of Sard’s theorem

In the previous lecture we proved Sard’s theorem: the set of critical values of a
smooth map f : M Ñ N has measure 0. Today we give two applications: (i) the
strong Whitney embedding theorem, (ii) the Brouwer fixed point theorem. This
is in Sections 1.§8, 2.§1 and 2.§2 of [GP10], and uses results from Appendices 1
and 2 of [GP10].

13.1 The strong Whitney embedding theorem

Let’s recall the weak Whitney embedding theorem: any compact manifold M can
be embedded into some Euclidean space. Today we prove the stronger statement
that any compact k-dimensional manifold M can be embedded into R2k`1, and
deduce from it that a non-compact k-dimensional manifold M can be embedded
into R2k`2.

13.1.1 The compact case

Theorem 13.1.1 (Strong Whitney embedding theorem). If M is a compact
k-dimensional smooth manifold, then there exists an embedding of M into R2k`1.

This is a direct consequence of the following proposition using the weak
Whitney embedding theorem and the fact that all injective immersions with
compact domain are embeddings, since every continuous map with compact
domain is proper.

Proposition 13.1.2. If M is a k-dimensional smooth manifold with an injective
immersion of M into RN for some N , then there exists an injective immersion
of M into R2k`1.

Proof. If N ď 2k ` 1 there is nothing to prove. If N ą 2k ` 1, we will show that
we can reduce N to N ´ 1. Let i : M Ñ RN denote the injective immersion and
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consider the following two smooth maps

f inj : M ˆMztpm,mq | m P Mu ÝÑ SN´1

pp, p1q ÞÝÑ
ippq ´ ipp1q

||ippq ´ ipp1q||
,

f tang : TMz0-section ÝÑ SN´1

v ÞÝÑ
dipvq

||dipvq||
.

These maps were chosen because of the meaning we can ascribe to their regular
values. For each x P SN´1 there is a linear projection πx : RN Ñ xK. If
x R impf injq then πx˝i is injective, and if x R impf tangq then the derivative of πx˝i
is injective. In particular, if x R impf injqYimpf tangq, then πx˝i : M Ñ xK – RN´1

is an injective immersion of M into a Euclidean space of lower dimension.
Both M ˆMztpm,mq | m P Mu and TMzM are 2k-dimensional. As N ´ 1 ą

2k, this means x is disjoint from the images of f inj and f tang if and only if x is a
regular value of f inj and f tang. By Sard’s theorem such joint regular values are
dense so must exist.

In fact, since the derivative is linear, to see that πx ˝ i has injective differential,
we only need to avoid the image of

f̄ tang : tv P TM | ||dipvq|| “ 1u ÝÑ SN´1

v ÞÝÑ dipvq.

Its domain is p2k´ 1q-dimensional, so we can go one dimension further if we only
care about guaranteeing that the derivative remains injective. We can do a bit
better by picking x to be a regular value of f inj : MˆMztpm,mq | m P Mu Ñ S2k.
In that case the intersection points of the immersion will be transverse. If M is
compact, then there must be a finite number of them since transverse intersection
points are isolated.

Corollary 13.1.3. If M is a compact k-dimensional smooth manifold, then there
exists an immersion of M into R2k with finitely many transverse intersections.

Example 13.1.4 (Whitney double point). We can always add more self-intersections,
by inserting in a local chart one of the following maps, due to Whitney [Whi44,
Section 1.2]. These are immersions with a single transverse double point that are
approximately linear outside a compact set:

αk : Rk ÝÑ R2k

px1, . . . , xkq ÞÝÑ

´ 1
u
, x1 ´ 2x1

u
,
x1x2
u

, x2,
x1x3
u

, x3, ¨ ¨ ¨ ,
x1xk
u

, xk

¯

with u “ p1 ` x2
1q ¨ ¨ ¨ p1 ` x2

kq. Their existence is used in the proof that every
compact k-dimensional smooth manifold embeds into R2k [Whi44, Theorem 5].
This is the best possible bound: RP 2n does not embed in R2n`1´1.
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13.1.2 Non-compact case

We continue with a discussion of the non-compact case. It is based on a double
application of Proposition 13.1.2 and the following lemma:

Lemma 13.1.5. Every smooth manifold M admits a proper smooth function
λ : M Ñ r0,8q.

Proof. Using our lemma about compact exhaustions, we can pick compact subsets
Ki and open subsets Vi`1{2 of M such that K0 Ă V1{2 Ă K1 Ă V1`1{2 Ă ¨ ¨ ¨

and
Ť

iKi “ M . Applying our result about the existence of partitions of unity,
let ηi : M Ñ r0, 1s be a partition of unity subordinate to the open cover by
Vi`1{2zKi´1. Then we define

λ : M ÝÑ r0,8q

p ÞÝÑ
ÿ

i

iηippq.

This sum is locally finite so smooth, and if λppq ď i then at least one of the ηj
for j ď i has to be non-zero, so p P Ki`1. Thus λ´1pr0, isq is a closed subset of
the compact set Ki`1 and hence λ is proper.

Theorem 13.1.6. If M is a k-dimensional smooth manifold, then there exists
an embedding of M into some Euclidean space RN .

Proof. Using once more our lemma about compact exhaustions, pick compact
subsets Ki and open subsets Vi`1{2 of M such that K0 Ă V1{2 Ă K1 Ă V1`1{2 Ă

¨ ¨ ¨ and
Ť

iKi “ M . Then Ki`1zVi´1{2 is compact, and hence can be covered by
finitely many charts. The proof of the weak Whitney embedding theorem then
provides an injective immersion of an open neighbourhood Wi of Ki`1zVi´1{2 in
Vi`3{2zKi´1 into some Euclidean space. By Proposition 13.1.2 we may assume
this Euclidean space is in fact R2k`1.

Thus we have an open cover by Wi Ă M so that WiXWj ‰ ∅ is only possible
if |i ´ j| ď 2, which come with injective immersion ρi : Wi Ñ R2k`1. Now pick
a partition of unity ηi : M Ñ r0, 1s subordinate to the Wi’s and define smooth
maps

p ÞÝÑ ηippqρippq :“
#

ηippqρippq if p P Wi,
0 otherwise.

We can then define for each i a new smooth map
ρ̃i : M ÝÑ R9p2k`2q

p ÞÝÑ pηippq, ηippqρippqq

put in the jth copy of R2k`2,
1 ď j ď 9, if i ” j
pmod 9q

and zeroes in all other entries, and take
ρ : M ÝÑ R1`9p2k`2q

p ÞÝÑ

˜

ÿ

i

iηippq,
ÿ

i

ρ̃ippq

¸

.
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This is smooth since each sum is locally finite.
This is proper because

ř

i iηippq is proper, as in Lemma 13.1.5. For each p
there is an open neighborhood on which only five terms in each sum are possibly
non-zero; if p P Wi then only the terms i´ 2, i´ 1, i, i` 1, i` 2 can be non-zero.
In the second entry all of these open subsets map to a different copy of R2k`2, so
the differential is injective by the same argument as used in the weak Whitney
embedding theorem.

For injectivity, we further observe that if p P Wi then i´ 2 ď
ř

i iηippq ď i` 2.
That is, if l :“

ř

i iηippq, then p P
Ť2
j“´2Wrls`j . From this we conclude that

if ρppq “ ρpp1q, then both p and p1 are in
Ť2
j“´2Wrls`j . On this open subset

only nine terms in the second sum are possibly non-zero, all of which map to
a different copy of R2k`2. Again we can apply the proof of the weak Whitney
embedding theorem to deduce injectivity.

In fact, we can now reduce the dimension again:

Corollary 13.1.7. If M is a k-dimensional smooth manifold, then there exists
an embedding of M into R2k`2.

Proof. We start with an embedding as in the previous lemma. Proposition
13.1.2 gives us an injective immersion of M into R2k`1. If we pick a proper
smooth function λ : M Ñ r0,8q as in Lemma 13.1.5, we get an embedding
i :“ pλ, eq : M Ñ R2k`2.

Remark 13.1.8. In fact, by the argument on pp. 53–54 of [GP10] you can decrease
the dimension once more to get an embedding M ãÑ R2k`1 by a projecting along
a suitable x P S2k`1.

13.2 Manifolds with boundary

A k-dimensional smooth manifold M is a second countable Hausdorff space with
a k-dimensional smooth atlas. The atlas provides a local identification of M with
an open subset of Rk, such that transition functions are smooth.

Unfortunately, using these definitions such reasonable spaces as Dn and
M ˆ r0, 1s are not smooth manifolds, because a point in BDn resp. M ˆ t0, 1u

does not admit an open neighbourhood homeomorphic to an open subset of Rk.
To allow these examples, we need to broaden our scope and consider manifolds
to have boundary. These are locally modelled on r0,8q ˆ Rk´1 instead of Rk.

13.2.1 Definitions

Definition 13.2.1. A k-dimensional smooth atlas with boundary for topological
space M is a collection of triples pUα, Vα, ϕαq consisting of open subsets Uα Ă

r0,8q ˆ Rk´1, Vα Ă M and homeomorphisms ϕα : Uα Ñ Vα, so that
Ť

Vα “ X
and all maps

ϕ´1
β ˝ ϕα : ϕ´1

α pVα X Vβq ÝÑ ϕ´1
β pVα X Vβq
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are smooth maps between open subsets of r0,8q ˆ Rk´1 (they are then automat-
ically diffeomorphisms since they have smooth inverses). The triples pUα, Vα, ϕαq

are called charts and the maps ϕ´1
β ˝ ϕα are called transition functions.

Here we use that we already know what a smooth map between open subsets
of r0,8q ˆ Rk´1 is; it is a function which locally extends to a smooth function
on an open subset of Rk. All of the previously discussed machinery goes through,
starting with the definitions:

Lemma 13.2.2. Every k-dimensional smooth atlas with boundary is contained
in a unique maximal k-dimensional smooth atlas with boundary.

Definition 13.2.3. A k-dimensional smooth manifold with boundary is a Haus-
dorff second countable topological space X with a maximal k-dimensional smooth
atlas with boundary.

Example 13.2.4. If M is a k-dimensional smooth manifold in the ordinary sense,
it is also a k-dimensional smooth manifold with boundary. Its boundary just
happens to be empty.

Example 13.2.5. If M is a pk ´ 1q-dimensional smooth manifold, then M ˆ r0, 1s

is a k-dimensional smooth manifold with boundary.

Suppose that a diffeomorphism between open subsets of r0,8q ˆ Rk´1 sends
a point in p0,8q ˆ Rk´1 to a point in t0u ˆ Rk´1. Its derivative is bijective, so
the inverse function says it is local diffeomorphism. This means that it must also
hit some points in p´8, 0q ˆRk´1, which is not allowed. Hence a diffeomorphism
must send points in t0u ˆ Rk´1 to points in t0u ˆ Rk´1. Hence the following is a
reasonable definition:

Definition 13.2.6. The boundary BM of a k-dimensional smooth manifold M
with boundary is the subset of those points that are in the image of t0u ˆ Rk´1

under a chart.

The charts of M restrict to charts for BM , and we get a smooth pk ´ 1q-
dimensional atlas for BM .

13.2.2 Theorems

Let us now explain the modifications that need to be made to the theory when
including manifolds with boundary. We will only state the results here, you
should read their proofs in 2.§1 of [GP10].

We can give the definitions of a smooth map between manifolds with boundary,
tangent bundles, and derivatives, as before. These behave with respect to the
boundary as follows: a smooth map f : M Ñ N between manifolds with boundary
restricts to a smooth map Bf : BM Ñ N . At p P BM , the tangent space TpBM is
a pk ´ 1q-dimensional linear subspace of TpM , and dpBf “ pdpfq|TpBM .

The pre-image theorem and Sard’s lemma generalize in the following manner:
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Theorem 13.2.7 (Pre-image theorem for manifolds with boundary). Let f : M Ñ

N be a smooth map with M a manifold with boundary, N a manifold without
boundary, and Z Ă N a submanifold without boundary. If f&Z and Bf&Z, then
f´1pZq Ă M is a manifold with boundary Bpf´1pZqq “ pBfq´1pZq. Moreover,
the codimension of f´1pZq is equal to the codimension of Z and Tf´1pZq “

df´1pTZq.

Theorem 13.2.8 (Sard’s theorem for manifolds with boundary). For any smooth
map f : M Ñ N with M a manifold with boundary and N a manifold without
boundary, the subset of points in N which are critical values of f or Bf has
measure 0.

13.3 The Brouwer fixed point theorem

The Brouwer fixed point theorem says that every continuous map F : Dn Ñ Dn

has a fixed point. This is deduced from the theorem that there are no continuous
maps f : Dn Ñ BDn which are the identity on BDn.

We will prove a version of this result, which is stronger because it concerns
all manifolds with boundary, but weaker because it concerns only smooth maps.
The latter is however easily remedied by the use of certain smooth approximation
results. To prove our generalisation we use another fact, which is proven in
Appendix 2 of [GP10] or the Appendix of [Mil97].

Theorem 13.3.1 (Classification of 1-dimensional manifolds). Every compact
connected 1-dimensional manifold is diffeomorphic to either S1 or r0, 1s.

Corollary 13.3.2. The boundary of every compact 1-dimensional manifold is an
even number of points.

Using this trivial observation, we prove Hirsch’s generalization of the Brouwer
fixed point theorem:

Theorem 13.3.3 (Hirsch). Let M be a compact manifold with boundary. Then
there is no smooth map M Ñ BM which is the identity on BM .

Proof. Suppose for the sake of contradiction that such an f : M Ñ BM does
exist. By Sard’s theorem we can pick an p P BM which is a regular value of
both f and Bf . This means that f´1ppq Ă M is a 1-dimensional manifold with
boundary. It is closed in a compact space hence compact, and thus by Theorem
13.3.1 has an even number of boundary points. But Bf´1ppq “ pBfq´1ppq “ tpu

since Bf “ idBM . This is a contradiction.

Remark 13.3.4. One easily generalizes this proof to say that there is no smooth
map M Ñ BM which is injective on BM .

Let us deduce from this the Brouwer fixed point theorem for smooth maps:

Corollary 13.3.5 (Smooth Brouwer fixed point theorem). If F : Dn Ñ Dn is a
smooth map, it has a fixed point.
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Proof. For a proof by contradiction, we suppose that F has no fixed points. Then

f : Dn ÝÑ BDn

x ÞÝÑ intersection with BDn of half-line starting at F pxq through x

is a well-defined smooth function f : Dn Ñ BDn that is the identity on BDn.

‚F pxq

‚x

‚fpxq

Figure 13.1 The map f in the proof of the Brouwer fixed point theorem.

Example 13.3.6. There is an anecdotal application of the Brouwer fixed point
theorem to physics. Trying to balance a pencil on a table, it seems intuitive that
there is an equilibrium point. You can of course prove this in an idealised setting,
but it seems hard if we use some realistic model of the forces acting upon and
within the pencil.

Suppose there is no equilibrium point, then the pencil would always fall with
eraser facing some direction. This gives a map from the upper hemisphere S2

`

to S1, which is clearly the identity on the boundary. The claim is that the
Brouwer fixed point theorem rules this out, so an equilibrium point must exist.
However, it is far from obvious that the described map is continuous (see the
section “Courant–Robbins Train” of [Ste11]).

13.4 Problems

Problem 32 (Classification of 1-dimensional manifolds). Read Appendix 2
of [GP10] and the Appendix of [Mil56b]. Which proof of the classification of
1-dimensional smooth manifolds do you prefer, and why?
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Transverse maps are generic

Today we prove a result announced in earlier: the set of smooth maps f : M Ñ N
transverse to Z Ă M is generic. As an application we deduce the tubular
neighbourhood theorem. This is 2.§3 of [GP10].

14.1 Transverse maps are generic

Recall the following definition:

Definition 14.1.1. A subset D of the set of all smooth maps M Ñ N is
generic if for all f0 : M Ñ N we can find a smooth map H : M ˆ Rr Ñ N with
H|Mˆt0u “ f0 so that for all ϵ ą 0 there exists an x P Rr with ||x|| ă ϵ such that
H|Mˆtxu P D.

The “perturbation” H : M ˆ Rr Ñ N is a particular example of a family of
smooth maps as below, where S “ Rr. This is just a change of perspective; we
think of F not as a single map M ˆ S Ñ N but a collection of maps M Ñ N
parametrized by S.

Definition 14.1.2. Let S be a smooth manifold, then a family of smooth maps
M Ñ N indexed by S is a smooth map F : M ˆ S Ñ N .

Since the restriction of a smooth map to a submanifold is smooth, fs :“
F |Mˆtsu is a smooth map for each s P S.

Theorem 14.1.3. Suppose that F : M ˆ S Ñ N is a family of smooth maps
M Ñ N , where M may have boundary but S and N do not. Let Z Ă N be a
submanifold without boundary. If F&Z and BF&Z, then there is a dense set of
s P S such that fs&Z and Bfs&Z.

As usual when applying Sard’s theorem, we will actually prove that the
complement of those s P S such that fs&Z and Bfs&Z has measure zero.

Proof. Let W “ f´1pZq Ă M ˆ S, a submanifold with boundary BW “ W X

pBM ˆSq by the improved preimage theorem. Thus we can ask for regular values
of the restriction π|W : W Ñ S of the projection M ˆ S Ñ S, as well as its
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restriction π|BW : BW Ñ S to the boundary. Such common regular values are
dense by Sard’s theorem.

We claim that fs&Z if and only if s is a regular value of π|W , and similarly
Bfs&Z if and only if s is a regular value of π|BW . Let us only prove the first
equivalence, the second one being similar.

Let us first use the hypothesis that F&Z, at pp, sq P W Ă M ˆ S mapping to
z P Z under F . Then the projections induce a linear isomorphism Tp,spM ˆSq –

TpM ‘ TsS, and transversality exactly means that

dpp,sqF pTpM ‘ TsSq ` TzZ “ TzN.

By the preimage theorem, we may describe Tpp,sqW as pdpp,sqF q´1pTzZq Ă TpM‘

TsS. The derivative dpp,sqπ|W : Tpp,sqW Ñ TsS is the restriction of projection
TpM ‘ TsS Ñ TsS to this subspace.

We next want to show that dpp,sqπ|W : Tpp,sqW Ñ TsS is surjective if and only
if dpp,sqF pTpMq ` TzZ “ TzN . This is the linear-algebraic lemma following this
proof, applied with U “ TpM , U 1 “ TsS, V “ TzN , W “ TzZ, T “ dpp,sqF .

Finally, observe that because dpp,sqF pTpMq “ dpfspTpMq, the statement
dpp,sqF pTpMq ` TzZ “ TzN is true if and only if fs&Z at z.

Lemma 14.1.4. If TA : U ‘U 1 Ñ V is a linear map of finite-dimensional vector
spaces, W Ă V such that ApU ‘ U 1q ` W “ V . Then π2 : A´1pW q Ñ U 1 is
surjective if and only if ApUq `W “ V .

Proof. For ñ; if π2 : A´1pW q Ñ U 1 is surjective, it admits a section s : U 1 Ñ

A´1pW q. Then we have

Apu` u1q `W “ Apu` u1q `Ap´spu1qq `W “ Apu` u1 ´ spu1qq,

and since π2pu` u1 ´ spu1qq “ 0, u` u1 ´ spu1q P U .
For ð, take u1 P U 1 and note that because ApUq ` W “ V we can find

u P U and w P W such that Apu1q “ Apuq ` w. Then u1 ´ u P A´1pW q and
π2pu1 ´ uq “ u1.

We will now prove the maps transverse to Z are generic by showing that
for every f0 : M Ñ N there exists a smooth map F : M ˆ Rr Ñ N such that
F |Mˆt0u “ f0 and which satisfies F&Z and BF&Z. To construct F we shall
embed N into an Euclidean space Rr using the weak Whitney embedding theorem,
and consider the rather uninteresting family

F̃ : M ˆ Rr ÝÑ Rr

pp, sq ÞÝÑ f0ppq ` s

This is obviously a submersion so transverse to the submanifold Z Ă N Ă Rr, and
by the previous theorem there is a dense set of s P Rr such that f̃s :“ F̃ |Mˆtsu is
transverse to Z. The problem is now that f̃s does not map M into N any more.
To fix this, we shall use the following theorem to “project back into N”:
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Theorem 14.1.5 (Regular neighbourhood theorem). For every submanifold
N ãÑ Rr without boundary, there exists an open neighbourhood U Ă Rr of N with
a submersion πN : U Ñ N that is the identity on N . At n P N Ă U , the linear
map dnπ : TnRr “ TnN ‘ TnN

K Ñ TnN is given by orthogonal projection onto
TnN .

Remark 14.1.6. In fact, if M is compact U can be obtained by picking a small
enough ϵ ą 0, letting U be the set of points of distance ă ϵ to N and πN be the
map sending x P U to the unique closest point in N (so implicitly we are saying
you can find an ϵ ą 0 such that this exists and is unique). This follows from
the proof of Theorem 14.2.4. For non-compact M , ϵ is replaced by a smooth
positive-valued function.

We shall prove the regular neighbourhood theorem in Section 14.2, and first
finish the proof of genericity.

Theorem 14.1.7. Suppose M is a manifold possibly with boundary, N is a
manifold without boundary and Z Ă N is a submanifold without boundary. If
f0 : M Ñ N is a smooth map, then there exists an r ě 0 and a smooth map
H : M ˆ Rr Ñ N starting at f0 so that for all ϵ ą 0 there exists an x P Rr with
||x|| ă ϵ such that H|Mˆtxu is transverse to Z.

Proof. Embed N into a Euclidean space Rr and identify N with its image in Rr.
Take U Ă Rr and πN : U Ñ N as in the regular neighbourhood theorem. Since
U Ă N is an open neighbourhood, we can find a smooth function ϵ : N Ñ p0,8q

such that for each p1 P N and x P Rr satisfying ||x|| ă ϵpp1q, p1 ` x P U , see ??.
Then we define the smooth map

F : M ˆ Rr ÝÑ N

pp, sq ÞÝÑ πN

ˆ

f0ppq ` ϵpf0ppqq
s

1 ` ||s||2

˙

.

By construction, F |Mˆt0u “ πN ˝ f0 “ f0 because πN is the identity on N .
Since πN is a submersion, F is a submersion if and only if the map MˆRr Ñ U

given by pp, sq ÞÑ f0ppq ` ϵpf0ppqq s
1`||s||2 is. But when we fix p P M this is a

diffeomorphism of Rr onto a little ball, so has surjective differential at each point
in M ˆ Rr. The same argument shows that BF : BM ˆ Rr Ñ N is a submersion.

Now that we have established that F and BF are submersions, they are clearly
transverse to Z and Theorem 14.1.3 gives the desired conclusion.

Picking a point s P Rr such that F |Mˆtsu&Z and BF |BMˆtsu&Z, the homotopy
H : M ˆ r0, 1s Ñ N given by pp, tq ÞÑ F pp, tsq proves:

Corollary 14.1.8. Suppose M is a manifold possibly with boundary, N is a
manifold without boundary and Z Ă N is a submanifold without boundary. Then
any smooth map f0 : M Ñ N is homotopic to f1 : M Ñ N satisfying f1&Z and
Bf1&Z.
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14.1.1 Isotoping submanifolds

In the introduction, we discussed how to deform embeddings. This is the notion
of isotopy, intuitively a one-parameter family of embeddings. Let us recall the
definition:

Definition 14.1.9. A homotopy H : M ˆ r0, 1s Ñ N is an isotopy if M ˆ r0, 1s Q

px, tq ÞÑ pHpm, tq, tq P N ˆ r0, 1s is an embedding.

This is implied by H being a smooth proper map such that H|Mˆttu is an
embedding for all t P r0, 1s, as then the map M ˆ r0, 1s Ñ N ˆ r0, 1s is a proper
injective immersion. Note that if M is compact, we may drop the hypothesis
that this map is proper.

Suppose we are given two submanifolds Y, Z Ă M without boundary, with Y
compact. We can then consider the inclusion i : Y ãÑ M as a smooth map. By
Theorem 14.1.7 we can find a map F : Y ˆ Rr Ñ M such that the set of s P Rr
such that F |Y ˆtsu : Y Ñ M is transverse to Z, is dense.

Since the class of embeddings is stable when the domain is compact, we can
find ϵ ą 0 such that F |Y ˆtsu : Y Ñ M is still an embedding if ||s|| ă ϵ. Take
such an s with H|Y ˆtsu&Z. Then the homotopy

H : Y ˆ r0, 1s ÝÑ M

py, tq ÞÝÑ F py, tsq

is an isotopy of embeddings of Y into M from i to an embedding transverse to
Z, a strengthening of Corollary 14.1.8.

Informally, the maps H|Y ˆttu tells us how to move submanifold Y to a
new position at which it is transverse to Z. If Y is r-dimensional and Z is
s-dimensional, satisfying r ` s ă k, then Y is transverse to Z if and only if
Y X Z “ ∅. Thus we have shown that in these conditions any two submanifolds
can be made disjoint by moving one of them.
Example 14.1.10. Suppose we take S1 “ tpx, y, 0q | x2 ` y2u Ă R3 and any
other embedding i : S1 Ñ R3. This gives us two submanifolds of R3 which are
diffeomorphic to S1. They may very well be linked in a complicated way in R3.
However, if we increase the dimension by 1 they become unlinked. That is, we
claim that we can isotope ipS1q Ă R4 in the complement of S1 Ă R4 so that it
becomes disjoint from the disk D2 Ă R4. This follows by applying the above
observations with Y “ ipS1q, Z “ D2zS1 and N “ R4zS1, as the dimensions of
Y and Z add up to 3 ă 4.

14.2 The regular neighbourhood theorem

It remains to prove Theorem 14.1.5. This uses a new vector bundle associated to
a submanifold Z Ă M , the normal bundle. Over Z we have two vector bundles,
the trivial bundle TM |Z and its subbundle TZ.

Definition 14.2.1. The normal bundle NZ is the vector bundle over Z given
by TM |Z{TZ.



14.2 The regular neighbourhood theorem 115

When M “ Rr and Z “ N , this admits a more concrete definition. In that
case TRr|N “ N ˆ Rr and comes with a preferred inner product on each fibre
(the restriction of usual Euclidean inner product). The orthogonal complements
pTpNqK assemble to a vector bundle TNK over N , explicitly given by

tpp, vq P N ˆ Rr | v K TpNu.

Orthogonal projection gives a map TRr|N Ñ TNK whose kernel is exactly TN .
Thus there is an induced isomorphism

TRr|N{TN
–

ÝÑ TNK

of vector bundles over N .
Example 14.2.2. Let us verify TNK is a vector bundle. Suppose we have a
local trivialization ϕ : N X V – U X Rk1

Ă Rr. For x P Rk1 , the bilinear
map pv, v1q ÞÑ xdxϕpvq, dxϕpv1qy is an inner product on TxRr. We can think of
this as a symmetric matrix Ax whose entries vary smoothly with x as follows:
v ¨Axv

1 “ xdxϕpvq, dxϕpv1qy. Every positive semidefinite symmetric matrix A has
a unique decomposition A “ BtB with B again positive semidefinite, and the
entries of B depend smoothly on those of A. Thus we can identify TNK with
the subbundle

tpx,B´1vq | x P Rk
1

, v P t0u ˆ Rk
1´ru Ă pRk

1

ˆ Rrq,

visibly admitting a local trivialization.
Furthermore, it is clear from this description that the transitions between

local trivializations are smooth, so TNK is a smooth vector bundle. In particular,
TNK is a manifold and the projection map π : TNK Ñ N is a submersion.

We now prove the regular neighbourhood theorem, which said that given a
N ãÑ Rr without boundary, there exists an open neighbourhood U Ă Rr of N
and a submersion πN : U Ñ N that is the identity on N . Furthermore, the linear
map dpπ : TpRr “ TpN ‘ TpN

K Ñ TpN is given by orthogonal projection onto
TpN .

Proof of Theorem 14.1.5. Define the smooth map

h : TNK ÝÑ Rr

pp, vq ÞÝÑ p` v.

Because TNK is r-dimensional, so is the tangent space Tpp,0qN
K. As the manifold

TNK contains the submanifolds N ˆ t0u and tpu ˆTpN
K, which intersect only at

pp, 0q, Tpp,0qN
K contains their tangent spaces at pp, 0q, given by TpN and TpN

K

respectively. This gives a linear map

TpN ‘ TpN
K ÝÑ Tpp,0qTN

K,

which we claim is an isomorphism. Since both sides have the same dimension, and
this map is an inclusion on each summand, it suffices to prove that TpN and TpNK
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intersect only in t0u. This follows from the fact that the map dpp,0qπ : Tpp,0qN
K Ñ

TpN is the identity on TpN and 0 on TpN
K

With respect to this direct sum decomposition, the linear map

dpp,0qh : Tpp,0qTN
K ÝÑ Rr

is given by sending the summand TpN onto TpN Ă TpRr and the summand
TpN

K to TpNK Ă TpRr. In particular, it is bijective.
By the inverse function theorem, it is a local diffeomorphism near N . As it is

an embedding on N , it is injective on an open neighbourhood V of N by Lemma
14.2.3 (take A “ N , M “ TNK, N “ Rr) and hence gives a diffeomorphism
h : V Ñ U for U :“ hpV q an open neighbourhood of N in Rr. Now set

πN :“ π ˝ h´1 : U ÝÑ V ÝÑ N.

Since πN is a composition of a diffeomorphism and a submersion, it is a submersion.
Since π and h are the identity on N , so is πN . To prove the addendum, it remains
to observe that dpp,0qπ : Tpp,0qTN

K – TpN ‘ TpN
K Ñ TpN is projection onto the

first summand.

Lemma 14.2.3. If A Ă M is closed and f : M Ñ N is a smooth map which is
a local diffeomorphism near A and injective on A, then f is injective near A.

Proof. We first this prove in the case that A is compact. For contradiction,
suppose there is pair of sequence of points pi P M , p1

i P M so that pi ‰ p1
i,

fppiq “ fpp1
iq, which get arbitrarily close to A. By compactness of A, we may

assume they converge: pi Ñ p P A and p1
i Ñ p1 P A. Then by continuity fppq “

fpp1q, so p “ p1 since f is injective on p. But since f is a local diffeomorphism
near p it is injective near p and hence pi “ p1

i for i large enough.
In the general case, take the subset D “ tpp, p1q P M ˆ M | p ‰ p1, fppq “

fpp1qu. By assumption on A, it is disjoint from AˆA. Its closure is contained in
the union of D with the diagonal, but the local diffeomorphism condition implies
that every point in the diagonal has an open neighbourhood disjoint from D.
Thus D is closed and its complement is open. By exhausting M with compact
subsets and applying the above argument, this open subset contains a product
neighbourhood Wp,q ˆW 1

p,q Ă M ˆM of each point pp, qq P AˆA; by replacing
Wp,q with Wp,q X W 1

q,p we may assume that Wp,q “ Wq,p for all pp, qq P A ˆ A.
Then

Ť

p,qWp,q Ă M is the desired open neighbourhood.

14.2.1 The tubular neighbourhood theorem

We will now slightly generalize Theorem 14.1.5, replacing Rr with an arbitrary
manifold and choosing a smaller but nicer neighbourhood:

Theorem 14.2.4 (Tubular neighbourhood theorem). For every submanifold
Z ãÑ N , there is an open neighbourhood W of Z in N and a diffeomorphism
ϕ : NZ ÝÑ W that is the identity on Z.
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Proof. Given an embedding N ãÑ Rr, let U , V and πN be as in the proof of the
regular neighbourhood theorem. We can then identify NZ with the orthogonal
complement TZK of TZ in TN . The only thing we will use of this observation is
that the orthogonal projection map TN |Z Ñ NZ has a section.

Define the smooth map

h̃ : NZ ÝÑ Rr

pp, vq ÞÝÑ p` v.

and take W 1 “ h̃´1pV q. The map πN ˝ h̃ has bijective differential at the 0-section,
because by the chain rule it is the composition of dph̃ : TpZ‘NZ – TpN Ñ TpN ,
which is the identity, and TpπN : TpRr – TpN ‘ TpN

K Ñ TpN the projection
onto the first summand. It also is the identity on N . By the same argument
as before, we find an open neighbourhood W 2 of the 0-section in NZ on which
πN ˝ h̃ is an embedding. We can find a smooth function ϵ : Z Ñ p0,8q such that

W “ tpp, vq P NZ | ||v|| ă ϵppqu Ă W 2,

where ||´|| is the norm from the inner product on TZK Ă Rr. The diffeomorphism
is given by

ϕ : νZ ÝÑ W

pp, vq ÞÝÑ

ˆ

p, ϵppq
v

1 ` ||v||2

˙

.

This completes the proof.

14.2.2 Collars

In a manifold M with boundary BM , the boundary admits particularly nice open
neighbourhoods:

Definition 14.2.5. A collar of BM is a open neighbourhood V Ă M of BM with
a diffeomorphism ϕ : V Ñ BM ˆ r0, 1q that is the identity on BM .

Theorem 14.2.6. Every manifold with boundary admits a collar.

We will construct the two components V : r0, 1q and V Ñ BM independently.

Lemma 14.2.7. There exists a smooth map χ : M Ñ r0,8q such that
(i) χ´1p0q “ BM and

(ii) for each p P BM there exists a v P TpMzTpBM with dχpvq ‰ 0.

Proof. Pick charts ϕα : Rk´1 ˆ r0,8q Ą Uα Ñ Vα Ă M whose codomains cover
M . The local coordinates gives a smooth function

fα : Vα ÝÑ r0,8q

p ÞÝÑ π2 ˝ ϕ´1
α ppq,
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with π2 : Rk´1 ˆ r0,8q Ñ r0,8q the projection onto the second coordinate.
Let us now pick a partition of unity subordinate to the open cover tVαu, given

by smooth functions λα : Vα Ñ r0, 1s. The function λαfα extends by zero to a
smooth function λαfα : M Ñ r0,8q. Then the function

χ : M ÝÑ r0,8q

p ÞÝÑ
ÿ

α

λαfαppq

has the desired properties. We will leave the verification of this to the reader.

Lemma 14.2.8. There exists an open neighbourhood U Ă M of BM with a
smooth map r : V Ñ BM that is the identity on BM .

Proof. The weak Whitney embedding theorem also holds for manifolds with
boundary, so we may pick an embedding e : M ãÑ RN and consider M as a
submanifold of Euclidean space. We may then apply the regular neighbourhood
theorem, Theorem 14.1.5, to BM , resulting in an open neighbourhood U Ă RN
of BM with a smooth map πBM : U Ñ BM that is the identity on BM . We then
have V :“ U XM and r “ πBM |V .

Proof of Theorem 14.2.6. We may combine χ|V and r to a smooth map

f :“ r ˆ χ|V : V ÝÑ M ˆ r0,8q.

By construction, this is the identity and has bijective derivative on BM . By
the inverse function theorem, it is thus a local diffeomorphism near BM . As a
consequence of Lemma 14.2.3, it is injective onto some smaller open neighbourhood
V 1 of BM . Picking a smooth function ϵ : BM Ñ p0,8q such that tpq, tq P

BM ˆ r0,8q | t P r0, ϵpqqqu Ă fpV 1q. Setting

U :“ f´1ptpq, tq P BM ˆ r0,8q | t P r0, ϵpqqquq

ϕ :“ f |U

is the desired diffeomorphism.

Collars are unique up to isotopy. They have great use in reducing questions
about manifolds with boundary to separate questions about the boundary and
the interior.

14.3 Problems

Problem 33 (Transversality and normal bundles). Let Y,Z Ă N be submanifolds.
Prove that Y&Z if and only if for all p P Y X Z, NpY XNpZ “ t0u.

Problem 34 (Smooth ϵ). Prove that N Ă Rr is a submanifold and U Ă Rr is
an open neighbourhood of N , there exists a smooth function ϵ : N Ñ p0,8q so
that p ` x P U for p P N and x P Rr with ||x|| ă ϵppq. (Hint: prove this exists
locally in N and use a partition of unity.)
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Problem 35 (Collared embeddings). Use collars to prove that there exists an
embedding e : M Ñ RN ˆ r0,8q such that e´1pRN ˆ t0uq “ BM .

Problem 36 (Smooth maps and submanifolds). Suppose that X Ă M is a
submanifold. Prove that a continuous map f : X Ñ N is smooth if and only if it
extends to a smooth amp f̃ : M Ñ N .

Problem 37 (Smooth approximation). It is a consequence of the Stone-Weierstrass
approximation theorem that for all open subsets U Ă Rk, compact subsets K Ă U ,
ϵ ą 0, and continuous maps f : U Ñ R, there exists a smooth map g : U Ñ R
such that |gpxq ´ fpxq| ă ϵ for all x P K.

(a) Prove that for each compact k-dimensional smooth manifold M , ϵ ą 0,
and continuous map f : M Ñ R, there exists a smooth map g : M Ñ R
such that |gpxq ´ fpxq| ă ϵ for all x P M .

(b) Is this result still true when we drop the assumption that M is compact?

Problem 38 (Gluing manifolds with boundary). Suppose that M0 and M1
are d-dimensional smooth manifolds, and that we are given a diffeomorphism
φ : BM0 Ñ BM1. Use the existence of collars to produce a smooth structure on
the topological space M0 YφM1 such that the inclusions M0 Ñ M0 YφM1 and
M1 Ñ M0 YφM1 are smooth embeddings.
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Mod 2 intersection theory

In this lecture we use a slight technical strengthening of the theorem that
transverse maps are generic to develop mod 2 intersection theory; this constructs
invariants by counting transverse intersection points.

15.1 A strongly relative transversality theorem

Two lectures ago we proved that if M and N are manifolds without boundary, and
Z Ă M is a submanifold without boundary, then any smooth map f0 : M Ñ N
can be homotoped to a map f1 : M Ñ N such that f1&Z.

Sometimes you already know that f0 is transverse to Z on an open neigh-
bourhood U of closed subset C Ă M , and you do not want to modify f0 near C.
In fact, you might want to control more precisely where you modify f0 and fix
a closed subset D Ă M (where we definitely want to modify f0) and an open
subset V Ă M containing DzU (outside of which we definitely do not want to
modify f0). Many results in differential topology admit such refined forms, which
are referred to as strongly relative results.

Theorem 15.1.1 (Strongly relative transversality theorem). Suppose that M is
a compact manifold with boundary, N is a manifold without boundary, and Z is
a submanifold without boundary. Fix the following data:

¨ a smooth map f0 : M Ñ N ,
¨ a closed subset C Ă M such that f0&Z and Bf0&Z on an open neighbour-

hood U of C,
¨ a closed subset D Ă M and open neighbourhood V Ă M containing DzU .

Then there is an open neighbourhood U 1 Ă M of C YD, as well as an r ě 0 and
a smooth map F : M ˆ Rr Ñ N with F |Mˆt0u “ f0 such that

(i) F |MzV ˆtsu “ f0|MzV for all s P Rr,
(ii) for each ϵ ą 0 there exists an s P Rr such that F |U 1ˆtsu and BF |U 1ˆtsu

are transverse to Z.

As preparation, we construct a smooth function which controls where we
manipulate f0:

120
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CU

D

V

Figure 15.1 The data in Theorem 15.1.1. Eventually U 1 will be an open neighbourhood of
C YD inside U Y V .

Lemma 15.1.2. Suppose we are given closed subsets C,D Ă M , an open
neighbourhood U Ă M of C and an open neighbourhood V Ă M of DzU . Then
there exists a smooth function γ : M Ñ r0, 1s with the following properties:

¨ it has support in V ,

¨ is 0 on an open neighbourhood of C, and

¨ is 1 on an open neighbourhood of DzU .

Proof. Take a partition of unity subordinate to V zC, U , and MzpC YDq; we call
them ηV zC , ηU and ηMzpCYDq. The function ηV zC : M Ñ r0, 1s is the desired γ.
By construction, it has support in V zC Ă V . Both supppηU q and supppηMzpCYDqq

are closed subsets not containing DzU , so the complement of their union contains
an open neighbourhood of DzU ; necessarily ηV zC “ 1 there. Similarly, only U
contains C so ηU “ 1 on C, and hence ηV zC “ 0 on C.

The proof is now a small variation on the proof that maps transverse to Z
are generic, using γ to control the size of deformations.

Proof of Theorem 15.1.1. Embed N into Rr and take a regular neighbourhood
πN : U Ñ N . We can find a smooth function ϵ : N Ñ p0,8q such that for each
p1 P N and x P Rr satisfying ||x|| ă ϵpp1q we have p1 ` x P U . Then we define the
smooth map

F : M ˆ Rr ÝÑ N

pp, sq ÞÝÑ πN

ˆ

f0ppq ` γppqϵpf0ppqq
s

1 ` ||s||2

˙

.
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By construction F |Mˆt0u “ πN ˝ f0 “ f0, because πN is the identity on N .
Furthermore fs “ f0 on the complement of V 1 :“ γ´1pp0, 1sq Ă V .

When we fix p P V 1 we get a submersion, and the argument of the previous
lecture tells us that for a dense set of s P Rr, we have that fs and Bfs are transverse
to Z at p P γ´1pp0, 1sq. Furthermore, f0 and Bf0 were already transverse to Z at
p P U , and since an open neighbourhood W Ă U of C is contained in MzV 1, the
same is true for fs and Bfs at p P W . We conclude that fs and Bfs are transverse
to Z at p P V 1 Y W . This is an open neighbourhood pDzUq Y C. Finally, if
we take s small enough, the stability of transverse maps will guarantee fs is
transverse to Z an open neighbourhood W 1 of a closed subset D1 of D contained
in U and satisfying C YD Ă V 1 YW YW 1.

To apply this result, it is helpful to know that f0 and Bf0 are transverse to Z
on an open neighbourhood U of C if and only if they are transverse to Z on C.
One direction is obvious, the other holds if Z is closed:

Lemma 15.1.3. If Z is closed and f0 and Bf0 are transverse to Z on a closed
subset C Ă M , then there exists an open neighbourhood U of C such that f0 and
Bf0 are transverse to Z.

The idea is essentially the same as the stability of maps transverse to C.

Proof. We prove that such an open neighbourhood exists for each p P C. If
p R f´1

0 pZq then Mzf´1
0 pZq works because Z is closed. If p P f´1

0 pZq, pick a local
parametrization ϕ : Rk1

Ą U 1 Ñ V 1 Ă N of Z near f0pxq. If Z is codimension r,
Z X V 1 “ ϕpt0u ˆ Rk1´rq. Then f0 is transverse to Z X V 1 at p1 if and only if the
derivative at p1 of πr ˝ ϕ´1 ˝ f0 is surjective. Because surjective linear maps are
open, if this is true at p then it must be true for all p1 in an open neighbourhood
of p.

Corollary 15.1.4. Suppose M,N,Z are all without boundary, M compact. If
f0, f1 : M Ñ N are homotopic and both transverse to Z, then there exists a
homotopy H : M ˆ r0, 1s Ñ N from f0 to f1 which is transverse to Z.

Proof. Apply Theorem 15.1.1 with f0 a given homotopy H̃ : Mˆr0, 1s Ñ N , C “

Mˆt0, 1u and D “ Mˆr0, 1s. The open neighbourhood U is provided by Lemma
15.1.3 and the open neighbourhood V is an open subset of M ˆ p0, 1q containing
M ˆ r0, 1szU . Pick an s P Rr such that F |Mˆr0,1sˆtsu and BF |Mˆr0,1sˆtsu are
transverse to Z. Then F |Mˆr0,1sˆtsu is the desired homotopy H.

15.2 Mod 2 intersection theory

Suppose that Y,Z Ă M are compact submanifolds and that dimpY q ` dimpZq “

dimpMq. If Y&Z, then Y XZ is a compact 0-dimensional submanifold and hence
a finite number of points. If Y is not transverse to Z, we know that we can make
it so by a homotopy or even an isotopy. However, the number of points in the
intersection make depend on the way we make Y transverse to Z, see Figure
15.2. However, a bit of experimentation suggests that whenever we change the
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number of intersection points, we either add or remove two points; the number of
intersection points mod 2 might be independent of the transverse perturbation!
Let us prove this in a bit more generality:

#Y X Z “ 1#Y X Z “ 3

Figure 15.2 Two transverse perturbations with a different number of intersection points.

Definition 15.2.1. Let Y be a compact manifold, M be a manifold, and Z Ă M
be a submanifold, all without boundary and satisfying dimpY q ` dimpZq “

dimpMq. Let f0 : Y Ñ M be a smooth map, then the mod 2 intersection number
I2pf0, Zq of f0 with Z is defined as follows: take f1 homotopic to f0 with f1&Z,
and set

I2pf0, Zq :“ #f´1
1 pZq pmod 2q.

Notation 15.2.2. If f0 is the inclusion of Y as a submanifold, we shall use the
notation I2pY,Zq :“ I2pf0, Zq.

Lemma 15.2.3. The number I2pf0, Zq P Z{2 is well-defined.

Proof. Suppose that f1 and f 1
1 are two different smooth maps homotopic to f0

and transverse to Z. Since homotopy is an equivalence relation, f1 is homotopic
to f 1

1. Then Corollary 15.1.4 provides a homotopy H : Y ˆ r0, 1s Ñ M from
f1 to f 1

1 which is transverse to Z. This means that H´1pZq is a 1-dimensional
submanifold of Y ˆ r0, 1s with boundary

BH´1pZq “ pBHq´1pZq “ pf´1
1 pZq ˆ t0uq Y ppf 1

1q´1pZq ˆ t0uq.

It is compact because Y ˆ r0, 1s is compact. Since #BH´1pZq is even by the
classification of compact 1-dimensional manifolds, we see that

#f´1
1 pZq ` #pf 1

1q´1pZq “ #BH´1pZq ” 0 pmod 2q.

Example 15.2.4. If M “ Rn, then I2pf, Zq vanishes when dimpY q ą 0. To see
this, observe that MzZ is non-empty and open, and hence contains a ball. By
composing f with translation and scaling we can homotope f so that its image
lies in this little ball and hence disjoint from Z.
Example 15.2.5. Let M be the Moebius strip, Y “ Z the central circle. Then
I2pY,Zq “ 1 because it is easy to find a small perturbation of Y which makes it
intersect Z transversally in a single point.

Here are some basic properties of this invariant of smooth maps Y Ñ M .
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Proposition 15.2.6. The mod 2 intersection number has the following properties:
(i) If f, g : Y Ñ M are homotopic then I2pf, Zq “ I2pg, Zq.

(ii) If f : Y Ñ M is homotopic to a constant map and dimpY q ą 0, then
I2pf, Zq “ 0.

(iii) If Y “ BW for a compact manifold W and f : BW Ñ M extends to a
smooth map W Ñ M then I2pf, Zq “ 0.

(iv) If we have a pair of smooth maps f : X Ñ Y , g : Y Ñ M with X
compact, dimpXq ` dimpZq “ dimpMq, and g transverse to Z, then
I2pf, g´1pZqq “ I2pg ˝ f, Zq.

Proof. Part (i) follows from the definitions and the fact that homotopy is an
equivalence relation. Part (ii) follows because such an f is homotopic to a map
disjoint from Z. Part (iii) follows from the fact that we may assume f transverse
to Z and then the extension can be also chosen transverse to Z. In this case
f´1pZq is the boundary of a compact 1-dimensional manifold and must be an
even number of points. Part (iv) follows by noting that we may assume that f is
transverse to g´1pZq and then both intersection numbers count the same set.

15.3 First applications of mod 2 intersection theory

We now give some easy applications of intersection theory, leaving more advanced
ones to the next lecture.

15.3.1 Contractible compact manifolds

Let’s start with an easy consequence. Recall that a manifold is contractible if its
identity is homotopic to a constant map.

Proposition 15.3.1. The point is the only contractible compact manifold (without
boundary).

Proof. Suppose Y is contractible but not a point. Then Proposition 15.2.6 (ii)
applied to id: Y Ñ Y implies 1 “ I2pid, tpuq “ 0 for any p P Y , an obvious
contradiction.

Remark 15.3.2. As the Whitehead manifold from the additional examples shows,
this is false without the compactness assumption.

15.3.2 The mod 2 degree of maps

When dimpY q “ dimpMq and M is connected, we can define:

Definition 15.3.3. The mod 2 degree deg2pfq of a smooth map f : Y Ñ M is
given by I2pf, tpuq for some p P M .

Lemma 15.3.4. This is well-defined.
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Proof. We claim that p ÞÑ I2pf, tpuq is locally constant. Indeed, we may assume
that f is transverse to tpu. Then by the inverse function theorem and the fact
that Y is compact, there exists an open neighbourhood U of p such that f´1pUq

is a finite disjoint union
Ůk
i“1 Vi with p|Vi : Vi Ñ U a diffeomorphism. This means

that the number of points in the pre-image of f is locally constant, hence so is
this number modulo 2.

Example 15.3.5. The identity map idM : M Ñ M has deg2pidM q “ 1.

Example 15.3.6. More generally, if ϕ : Y Ñ M is a diffeomorphism, then it is
transverse to all points in M and the pre-image consists of a single point, so
deg2pϕq “ 1.

Example 15.3.7. If q : E Ñ B is a covering map of degree d with B connected
and E compact, then deg2pfq ” d pmod 2q.

We can translate the properties of Proposition 15.2.6 into properties for deg2:

Proposition 15.3.8. Suppose Y is compact, dimpY q “ dimpMq, and M is
connected, then the mod 2 degree has the following properties:

(i) If f, g : Y Ñ M are homotopic then deg2pfq “ deg2pgq.

(ii) If f : Y Ñ M is homotopic to a constant map and dimpY q ą 0 then
deg2pfq “ 0.

(iii) If Y “ BW for a compact manifold W and f : BW Ñ M extends to a
smooth map W Ñ M then deg2pfq “ 0.

(iv) If we have a pair of smooth maps f : X Ñ Y , g : Y Ñ M with X and Y
compact, Y and M connected and dimpXq “ dimpY q “ dimpMq, then
deg2pg ˝ fq “ deg2pgq ¨ deg2pfq.

Proof. Only (iv) is not obvious. By homotoping g we can make it transverse to
p P M , and by homotoping f we can make it transverse to g´1ppq Ă Y . Then
g ˝ f is transverse to p and

deg2pg ˝ fq “ #pg ˝ fq´1ppq

“ #f´1pg´1ppqq

“
ÿ

qPg´1ppq

#f´1pqq

” #g´1ppq ¨ deg2pfq

“ deg2pgq ¨ deg2pfq,

where we have used that all values #f´1pqq pmod 2q are equal to deg2pfq by the
argument used to prove that deg2 is well-defined (this uses that Y is connected).
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15.3.3 Winding numbers

If M is compact manifold of dimension k and f : M Ñ Rk`1 is a smooth map,
then for x R impfq we can define a smooth map

wf,z : M ÝÑ Sk

x ÞÝÑ
fpxq ´ z

||fpxq ´ z||

and then let define the mod 2 winding number W2pf, zq of f around z to be
deg2pwf,zq. It only depends on the connected component of Rk`1zimpfq contain-
ing z.

If M “ BW with W compact and f extends to a smooth map F : W Ñ Rk`1,
we can often compute W2pf, zq in terms of F :

Proposition 15.3.9. W2pf, zq ” I2pF, zq pmod 2q.

W̄

V1 V2

V3

Proof. It suffices to prove that if z is a regular value of F then W2pf, zq “

#F´1pzq. Because z is a regular value, we can find a small open disk U around
z avoiding fpBW q, such that f´1pUq is a finite disjoint union

Ůr
i“1 Vi with

p|Vi : Vi Ñ U a diffeomorphism, with r “ #F´1pzq. Then W :“ W z
Ůr
i“1 Vi

is another compact manifold with boundary and F restricts to a smooth map
F :“ F |W : W Ñ Rk`1.

Since this avoids z, there is a smooth map

F : W ÝÑ Sk

x ÞÝÑ
F pxq ´ z

||F pxq ´ z||

and by Sard’s theorem we can find a p P Sk such that F and BF are transverse
to p. Hence F̄´1ppq is one-dimensional compact submanifold on W̄ , and its
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boundary is an even number of points. This implies that

0 ” #BF
´1

ppq pmod 2q

“ #w´1
f,zppq `

r
ÿ

i“1
#w´1

F |BVi,z
ppq

“ W2pf, zq `

r
ÿ

i“1
W2pF |BVi , zq.

Thus we may as well compute each W2pF |BVi , zq.
Since F |BVi is a diffeomorphism, given by the composition of the inclusion

i : BU ãÑ Rk`1 with a diffeomorphism, each of these is equal to W2pi, zq. Since
wi,z : BU Ñ Sk is given by a composition of translation and scaling, it is a
diffeomorphism; by Example 15.3.6 W2pi, zq “ 1. We conclude that W2pf, zq ” r
pmod 2q, as desired.

15.4 Problems

Problem 39 (Spheres are not products). Let M and N be compact connected
smooth manifolds of dimension k and n´ k respectively, and suppose that k ą 0
and n ´ k ą 0. Fixing q0 P N there is an inclusion iq0 : M Ñ M ˆ N given by
p ÞÑ pp, q0q.

(a) Prove that if Sn is diffeomorphic to M ˆ N then iq0 is homotopic to a
constant map.

(b) Prove that Sn is not diffeomorphic to M ˆN using intersection theory.

Problem 40 (Bordism-invariance of intersection numbers). A bordism is a
compact manifold W with boundary BW divided into two submanifolds B0W
and B1W . Suppose that we have a smooth map

F : W ÝÑ M

and a smooth submanifold Z Ă M so that dimpZq ` dimpW q “ dimpMq ` 1.
Prove that I2pF |B0W , Zq “ I2pF |B1W , Zq.
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Two applications of mod 2 intersection theory

We continue with our discussion of mod 2 intersection theory and its applications.
This includes some applications from [Mat03] and Section 2.§5 of [GP10].

16.1 The Borsuk–Ulam theorem

Recall that if M is compact smooth manifold of dimension k and f : M Ñ Rk`1

is a smooth map, then for x R impfq we can define a smooth map

wf,z : M ÝÑ Sk

x ÞÝÑ
fpxq ´ z

||fpxq ´ z||
.

The mod 2 winding number W2pf, zq of f around z is then deg2pwf,zq. As an
application of mod 2 winding numbers we will prove the Borsuk–Ulam theorem.
Before doing so, let us start with an easier example of how conditions on a smooth
map constrain its winding number:

Proposition 16.1.1. If a smooth map f : Sk Ñ Rk`1zt0u satisfies fp´xq “ fpxq,
then W2pf, 0q “ 0.

Proof. We start with the observation that f is homotopic as a smooth map
Sk Ñ Rk`1zt0u to f{||f || by pp, tq ÞÑ f{p1 ´ t` t||f ||q, and that this satisfies the
same symmetry condition. Hence, without loss of generality we are dealing with
a smooth map f : Sk Ñ Sk. Then wf,0 “ f , and we are equivalently proving a
result about the degree of f . The symmetry condition implies that f factors as

Sn Sn

RPn

f

q
f̄

Since q is a double cover, deg2pqq ” 0 pmod 2q, and we get deg2pfq “ deg2pqq deg2pf̄q “

0 as well.

Theorem 16.1.2 (Borsuk–Ulam). If a smooth map f : Sk Ñ Rk`1zt0u satisfies
fp´xq “ ´fpxq, then W2pf, 0q “ 1.

128
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Proof. As above, without loss of generality we may assume we are dealing with a
smooth map f : Sk Ñ Sk, and we may use W2pf, 0q and deg2pfq interchangeably.
The proof is by induction over k, with the formal properties of the winding
number playing a major role in the induction step.

We start with the initial case k “ 0. Then f : S0 Ñ S0 is either the identity
id : S0 Ñ S0 or ´id. Both id and ´id are diffeomorphisms and hence have degree
1.

For the induction step, we assume the result is true for k ´ 1 and prove it
for k. We are given a smooth map f : Sk Ñ Sk satisfying fp´xq “ ´fpxq, and
define g :“ f |Sk´1 which also satisfies gp´xq “ ´gpxq. By Sard’s theorem there
exists an a P intpSk`q, with Sk` “ Sk X r0,8q ˆ Rk the upper hemisphere, which
is a regular value of both f and g. By symmetry ´a is also a regular value of
both f and g. We can use this to rewrite deg2pfq:

deg2pfq ” #f´1paq “
1
2p#f´1paq ` #f´1p´aqq.

To apply the induction hypothesis we want to go from Sk to something
diffeomorphic to Rk. Let π : Rk`1 Ñ aK – Rk by the orthogonal projection. That
g&ta,´au means that the image of g is disjoint from a and ´a and hence π ˝ g
avoids 0. Since furthermore f&ta,´au, π ˝ f |Sk

`
is transverse to 0 and we have

#pπ ˝f |Sk
`

q´1p0q “ #pf |Sk
`

q´1paq ` #pf |Sk
`

q´1p´aq “
1
2p#f´1paq ` #f´1p´aqq.

This means that deg2pfq ” #pπ ˝ f |Sk
`

q´1p0q.
Now recall that by a previous proposition about computing winding numbers

using extension, with W “ Sk`, F “ f |Sk
`

and z “ 0, we have that

#pπ ˝ f |Sk
`

q´1p0q ” W2pπ ˝ g, 0q pmod 2q.

As W2pπ ˝ g, 0q “ deg2pπ ˝ gq and since π is linear, π ˝ gp´xq “ ´π ˝ gpxq so that
the inductive hypothesis applies and thus deg2pπ ˝ gq “ 1.

16.1.1 Applications of the Borsuk–Ulam theorem

In this section deduces several famous consequences of Theorem 16.1.2.

Corollary 16.1.3. If a smooth map f : Sk Ñ Rk`1zt0u satisfies fp´xq “ ´fpxq,
then f intersects every line through the origin at least once.

Proof. If the image of f does not intersect ℓ, we compute that W2pf, 0q “ 0 using
an element p P Sk X ℓ, contradicting Theorem 16.1.2.

This corollary can be restated in a number of equivalent forms. We purpose-
fully are a bit whether the maps are smooth or not; by an application of the
Stone–Weierstrass approximation theorem the results for smooth maps imply
those for continuous maps.

Theorem 16.1.4. The following are equivalent:
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(i) If f : Sk Ñ Rk`1zt0u satisfies fp´xq “ ´fpxq, then f intersects every
line through the origin at least once.

(ii) If g : Sk Ñ Rk satisfies gp´xq “ ´gpxq, then g has a zero.
(iii) Every h : Sk Ñ Rk has an x such that hpxq “ hp´xq.
(iv) There is no F : Sk Ñ Sk´1 satisfying F p´xq “ ´F pxq.
(v) There is no G : Dk Ñ Sk´1 satisfying Gp´xq “ ´Gpxq for x P BDk.

Proof.
¨ We start with (i) ñ (ii). If g has no zero then

f : Sk ÝÑ Rk`1zt0u

x ÞÝÑ pgpxq, 0q

avoids the xk`1-axis, contradicting (i).
¨ For (ii) ñ (i), if f avoids ℓ and π : Rk`1 Ñ Rk, then taking gpxq “ π ˝ fpxq

would contradict (ii).
¨ For (ii) ñ (iii), take gpxq “ hpxq ´ hp´xq.
¨ For (iii) ñ (ii), there is an x such that ´gpxq “ gp´xq “ gpxq so gpxq “ 0.
¨ For (ii) ô (iv), we just normalize.
¨ For (iv) ñ (v), use that from such an G we could produce an F by picking

a diffeomorphism ϕ : Sk` Ñ Dk that is the identity on the boundary and
setting F pxq “ Gpϕpxqq for x P Sk` and F pxq “ ´Gpϕp´xqq for x P intpSk´q.

¨ For (v) ñ (iv) use that from such an F we could produce a G by taking
F |Sk

`
˝ ϕ´1 : Dk Ñ Sk´1.

Example 16.1.5. Theorem 16.1.4 (v) gives another proof that there is no contin-
uous map Dk Ñ BDk which is the identity on BDk, a special case of Hirsch’s
generalisation of the Brouwer fixed point theorem.

Part (iii) of Theorem 16.1.4 has several famous geometric applications; see
[Mat03] for even more:

Corollary 16.1.6 (Lusternik–Schnirelmann). If U0, . . . , Uk is an open cover of
Sk then there is an i P t0, . . . , ku such that Ui X p´Uiq ‰ ∅.

Here p´Uiq is of course the set tz P Sk | ´z P Uiu.

Proof. We first prove that if C0, . . . , Ck is a cover of Sk by closed sets then there
is an i such that Ci X p´Ciq ‰ ∅. Consider the continuous function

g : Sk ÝÑ Rk

x ÞÝÑ
`

pdpx,C1q, . . . , dpx,Cnq
˘

with dp´,´q the ordinary Euclidean metric on Rk`1. By Theorem 16.1.4 (iii)
there must be an x such that gpxq “ gp´xq. If the ith entry of gpxq is 0, then
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x,´x P Ci. If none of the entries of gpxq are 0, then x,´x R
Ťn
i“1Ci and hence

x,´x P Cn`1.
The version for open covers follows using the fact that a partition of unity

subordinate to an open cover U0, . . . , Uk of Sk such that all Ui X p´Uiq “ ∅ for
all i, provides a closed cover Ci :“ supppηiq of Sk by closed subsets with the same
property.

U2U1

Figure 16.1 A cover of S1 by two open subsets. The open subset U1 contains two antipodal
points.

Corollary 16.1.7 (Ham–Sandwich). Let M1, . . . ,Mn be bounded measurable
subsets of Rn of positive measure. Then there exists an affine hyperplane h Ă Rn
such that each of both of the half-spaces h˘ bounded by h we have µpMi X h`q “

µpMi X h´q for all 1 ď i ď n.

Proof. Without loss of generality M1, . . . ,Mn Ă B1p0q. For each x P Sk we can
define a subspace h`

x when xk`1 ‰ ˘1, h`
x :“ tpv1, . . . , vkq P Rk |

řk
i“1 xivi ě

xk`1u. Note that if x “ ek`1 we have h`
x “ ∅ and that if x “ ´ek`1 we have

h`
x “ Rk.

We define a function

g : Sk ÝÑ Rk

x ÞÝÑ pµpM1 X h`
x q, . . . , µpMk X h`

x qq.

We will leave it to Theorem 3.1.1 in [Mat03] the proof that this is continuous.
By Theorem 16.1.4 (iii) there must be an x such that gpxq “ gp´xq. Since h`

´x is
h´
x , this means that pµpM1 X h`

x q, . . . , µpMk X h`
x qq “ pµpM1 X h´

x q, . . . , µpMk X

h´
x qq.

In other words, you can slice even an irregular sandwich with a slice of ham
and a slice of cheese, such that the bread, ham and cheese are all divided in half.
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Figure 16.2 There exists a half-plane which contains half of both the red and the blue figure
(this is probably not it).

16.2 The Jordan–Brouwer separation theorem

16.2.1 Its proof

One can also use the ideas behind mod 2 intersection theory to deduce the famous
Jordan–Brouwer separation theorem. Section 2.§5 of [GP10] deduces it from
winding numbers, but I think this direct proof is clearer.

Theorem 16.2.1. If Z Ă Sn is a compact connected non-empty submanifold of
dimension n ´ 1, then SnzZ is a disjoint union of two connected open subsets,
each of which has closure a compact submanifold with boundary Z.

By removing a point from SnzZ, we reduce to the case RnzZ; in this case we
only get the second claim for one of the both components but since we could
have removed any point the same is true for the other component.
Example 16.2.2. In dimension 2 we are saying that a curve in the plane di-
vides it into two pieces. See https://www.maths.ed.ac.uk/˜v1ranick/papers/
jordan-revised for some examples of complicated curves if you think this is
obviously true.

Proof of Theorem 16.2.1. Pick an x0 P RnzZ. To simplify very end of the proof,
we will assume that x0 lies outside some closed disk around the origin containing
the compact subset Z.

We claim that there is locally constant assignment d : RnzZ Ñ Z{2, given at
x P RnzZ by picking a smooth path γ from x to x0 which is transverse to Z and
taking dpxq to be #γ´1pZq pmod 2q. Let us prove that this is well-defined.

To show that such a γ exists, observe that for each x P RnzZ there is an open
ball Bϵpxq Ă RnzZ around x. We define a smooth map

F : r0, 1s ˆBϵpxq ÝÑ Rn

pt, yq ÞÝÑ ty ` p1 ´ tqx0,

https://www.maths.ed.ac.uk/~v1ranick/papers/jordan-revised
https://www.maths.ed.ac.uk/~v1ranick/papers/jordan-revised


16.2 The Jordan–Brouwer separation theorem 133

which is visibly a submersion when restricted to fixed t P r0, 1s, so F&Z, BF&Z
(in fact, BF avoids Z all-together). By Theorem 14.1.3 there exists a dense set
of y P Bϵpxq such that F |r0,1sˆtyu&Z. Now we let γ be the concatenation of the
linear path from x to y and F |r0,1sˆtyu.

We claim that #γ´1pZq is independent of the choice of γ. Given two choices
γ, γ1, consider the map

G : p0, 1q ˆ r0, 1s ÝÑ Rn

pt, sq ÞÝÑ sγptq ` p1 ´ sqγ1ptq,

This is transverse to Z on an open neighbourhood of the closed subset

C “ p0, ϵs ˆ r0, 1s Y r1 ´ ϵ, 1q ˆ r0, 1s Y p0, 1q ˆ t0, 1

so by the strongly relative transversality theorem, Theorem 15.1.1, there is a
homotopic map which coincides with G near C and is tranverse to Z. Then
G´1pZq is a 1-dimensional submanifold, which is contained in some compact
subset of p0, 1q ˆ r0, 1s, since G avoids Z on p0, ϵ1q ˆ r0, 1s Y p1 ´ ϵ1, 1q ˆ r0, 1s for
some ϵ1 ą 0. Hence it is a compact 1-dimensional submanifold, and hence its
boundary contains an even number of points by Theorem 13.3.1. This implies
that the difference between #γ´1pZq and #pγ1q´1pZq is even.

Z

‚x

‚x1

‚x0

Figure 16.3 Proving that d : RnzZ Ñ Z{2 takes both values.

By construction, this function d is constant on connected components. To
see it takes both values, look at a chart exhibiting Z as a submanifold, i.e. a
diffeomorphism ϕ : Rn Ă U Ñ V Ă Rn such that ϕ´1pZ X V q “ pt0u ˆ Rn´1q X

U . Suppose that d takes value 0 on say ϕppp´8, 0q ˆ Rn´1q X Uq. Then by
concatenating γ with the image under ϕ of a straight line segment connecting a
point x in p´8, 0q ˆ Rn´1 with a point x1 in p0,8q ˆ Rn´1 we see that d takes
value 1 on ϕppp0,8q ˆ Rn´1q X Uq. That is, crossing Z changes d by 1. We
conclude that RnzZ has at least 2 connected components.
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To show it has exactly two connected components we need to use that Z is
connected. For any fixed x P RnzZ, let V Ă Z be the subset of points z P Z such
that any open neighbourhood U of z in Rn contains a point which has a path
to x avoiding Z. This is closed and open by looking at charts exhibiting Z as a
submanifold, and is non-empty by looking at a point in Z closest to x. Thus, V
is union of connected components of Z and hence all of Z.

Now let us look at opposite sides of Z in a fixed chart; by the above argument,
each x P RnzZ can be connected to a point within this chart by a path avoiding
Z. This includes x0 and so can be used to divide the points of RnzZ into two
path-components (possibly empty); those that connect to x0 and those that do
not. Hence RnzZ has at most two connected components and hence exactly two,
given by d´1p0q and d´1p1q respectively.

To see that the closure of d´1p0q is a manifold with boundary we need to
find charts near boundary points. Note that for each local trivialization of Z,
exactly one of ϕppp´8, 0q ˆRn´1q XUq and ϕppp0,8q ˆRn´1q XUq lies in d´1p0q,
say the latter, and then ϕ|pr0,8qˆRn´1qXUq is the desired chart near the boundary.
The same argument applies to d´1p1q.

Finally, any points x with ||x|| ě ||x0|| can be connected to x0 by a path
avoiding Z, so the closure d´1p1q is bounded and hence compact.

Let us reflect on the proof. What did we really use about Rn? Only that it is
connected and simply-connected. That is, for the definition of d we only need to
be able connect x to x0 by some path γ. To show it is well-defined, we need that
any two choices γ and γ1 are homotopic relative to their endpoints. Thus, the
same proof gives the following generalization of the Jordan-Brouwer separation
theorem:

Theorem 16.2.3. Suppose M is a simply-connected connected compact manifold
of dimension n and Z Ă M is a compact connected non-empty submanifold of
dimension n ´ 1, then MzZ is a disjoint union of two connected open subsets,
each of which has closure a compact submanifold with boundary Z.

16.2.2 The Schoenflies theorem

In particular, if i : Sk´1 ãÑ Sk is a smooth embedding then ipSk´1q divides Sk
into two connected components, and the closure of each of these is a compact
submanifold with boundary. What are these manifolds with boundary? Of course,
taking i to be the standard inclusion we get two disks Dk. Can other manifolds
appear? The answer is “no” in low dimensions:

Theorem 16.2.4 (Schoenflies, Alexander). If k ď 3, for each embedding
i : Sk´1 ãÑ Sk the closures of both components of SkzSk´1 are diffeomorphic
to Dk.

You can find a proof for k “ 3 in [Hat07, Theorem 3.3], which you should be
able to adapt to k “ 2 without much difficulty.

However, in high dimensions there can be. One of the successes of differential
topology is the determination of dimensions in which this can happen in terms
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of other well-studied objects in algebraic topology (the groups of exotic spheres).
In particular, in dimension ď 140 we have [BHHM17]:

Theorem 16.2.5. If 5 ď k ď 140, for each embedding i : Sk´1 ãÑ Sk the
closures of both components of SkzSk´1 are diffeomorphic to Dk if and only if
k “ 5, 6, 12, 56, 61.

There is one dimension remaining for k ď 140: k “ 4. One of the big
remaining open questions of manifold theory asks about this case:

Conjecture 16.2.6 (Smooth Schoenflies conjecture in dimension 4). Given an
embedding i : S3 ãÑ S4, the closures of both components of S4zS3 are diffeomorphic
to D4.

16.2.3 Codimension one knots

Just we called (isotopy classes of) embeddings of S1 in S3 are knots, we refer to
(isotopy classes of) embeddings Sk´r ãÑ Sk as codimension r knots. The most
interesting case is, unsurprisingly, codimension 2. What about codimension 1?

If for each embedding i : Sk´1 ãÑ Sk the closure of one of the components of
SkzSk´1 are diffeomorphic to Dk, there exists only one embedding Sk´1 Ñ Sk

up to isotopy:

Theorem 16.2.7. If an embedding i : Sk´1 ãÑ Sk has the property that the
closure of one of the components of SkzSk´1 is diffeomorphic to Dk, then i is
isotopic to the standard inclusion Sk´1 Ñ Sk.

It will follow from:

Proposition 16.2.8. Every embedding Sk´1 ãÑ Rk which extends to an embed-
ding Dk ãÑ Rk is isotopic to either the standard inclusion i, or i composed with
a reflection.

Proof. We prove that every embedding Dk ãÑ Rk is isotopic to one given by
applying invertible linear map A P GLkpRq to Dk. The result follows from the
observation that the two different connected components of GLkpRq contain the
identity and a reflection respectively.

We claim that embeddings Dk ãÑ Rk up to isotopy are in bijection with
injective immersions Rk ãÑ Rk up to homotopy through injective immersions.
This bijection is given in one direction by the composing with the embedding
i : Dk ãÑ Rk, and in the other by composing with the injective immersion
h : Rk ãÑ Dk given by z ÞÑ z

1`||z||2 . It is easy to see that h ˝ i is isotopic to idDk ,
and i ˝ h admits an homotopy through injective immersions to idRk .

Now apply Lemma 16.2.9, which classifies injective immersions Rk ãÑ Rk up
to homotopy through injective immersions.

Lemma 16.2.9. Every injective immersion f : Rk ãÑ Rk is homotopic through
injective immersions to an invertible linear transformation.
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Proof sketch. Identify r0, 1s with r1,8s and take

H : Rn ˆ r1,8s ÝÑ Rn

px, tq ÞÝÑ

#

1
t ¨ hptxq if t ă 8,
D0hpxq if t “ 8.

To see that this is smooth at t “ 8 apply Taylor’s theorem.

We can now complete the argument:

Proof of Theorem 16.2.7. We may assume ek`1 P SkzSk´1 is not in the image of
the extension, and removing this point, we may as well work in Rk. The result
follows by observing that the embeddings Sk´1 ãÑ Sk given by i and i composed
with a reflection are isotopic, as the action of GLkpRq on Sn extends to an action
of GLk`1pRq and there is an element of GLkpRq with determinant `1 which acts
on i by reflection.

Thus Theorem 16.2.5 tells us the following about the existence of codimension
one knots.

Corollary 16.2.10. If 4 ‰ k ď 140 and k “ 0, 1, 2, 3, 5, 6, 12, 56, 61, then every
embedding Sk´1 ãÑ Sk is isotopic to the standard inclusion.

16.3 Problems

Problem 41. Use the Jordan–Brouwer separation theorem to prove that if
M Ă Rk is a compact codimension 1 submanifold, then its normal bundle NM
is trivial.

Problem 42. Adapt the proof of Lemma 16.2.9 to prove that every diffeomor-
phism of Rk is isotopic to an invertible linear transformation.
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Orientations and integral intersection theory

The next part of these lecture will be devoted defining de Rham cohomology,
developing computational tools for it, and drawing interesting topological conclu-
sions from it. A prerequisite for some of this material will be the notion of an
orientation. We define this today, and give a taste of Chapter 3 of [GP10], which
we will not cover in detail in the course.

Convention 17.0.1. All vector spaces are finite-dimensional and over R unless
mentioned otherwise.

17.1 What is an orientation on a manifold?

We start with an intuitive description of orientations, before giving rigorous
definitions:

an orientation of a manifold is “a smooth family of orientations of
each of the tangent spaces TpM .”

An orientation on a vector space such as TpM specifies for each of its ordered
bases whether it is “positively oriented” or “negatively oriented,” with the
following requirement: if one ordered basis can be obtained from another by
applying an invertible matrix A to each of its vectors, then they are similarly
oriented if and only if detpAq ą 0. Since GLnpRq has two path components, this
is equivalent to saying homotopic bases are similarly oriented and reflecting a
single basis vector changes the orientation of the basis.

That an orientation depends smoothly on p P M means that if you move a
positively oriented basis around M , it stays positive (and of course the same is
true for negatively oriented bases).
Example 17.1.1. For the circle S1, an orientation is a choice of “positive direction”
along the circle. There are two such choices: counterclockwise and clockwise.
Example 17.1.2. The real projective plane RP 2 admits no orientation. Suppose
it did, then starting with a basis e1, e2 at some point, say positively oriented,
we can move it around RP 2 and return to e1,´e2. This must simultaneously
be positively oriented (since moving a basis around shouldn’t change how it’s
oriented) and negatively oriented (since it is obtained from a positively oriented
by reflecting a basis vector). This gives a contradiction.
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� �

ă

ą

e1

e2

e1´e2

Figure 17.1 Moving a basis around RP 2 can return it with opposite orientation.

You can find more examples in the following table:

orientable not orientable
spheres Sn real projective spaces RP 2n (n ě 1)

surfaces of genus g ě 1 Klein bottle
Lie groups
Lens spaces

Poincaré homology sphere
Complex projective spaces

Quaternionic projective spaces
K3 surface

Whitehead manifold

Example 17.1.3. An LCD display is made from a nematic crystal, consisting of
long thin filaments. These prefer to be aligned the same way, so locally such a
crystal has a order parameter given by a direction in R3. This is an element of
RP 2, a non-orientable manifold. 1

17.2 A recollection of multilinear algebra

Linear algebra concerns not only the study of vector spaces and linear maps
between them, but also of multilinear maps with various properties. This is
closely related to the study of tensor products and variations thereof.

17.2.1 Tensor products

Definition 17.2.1. A bilinear map is a function b : V ˆ V 1 Ñ W which is linear
in each variable.

Definition 17.2.2. The tensor product V bV 1 is the quotient of the free R-vector
space on the set V ˆ V 1, whose basis elements we shall denote pv, v1q, by the

1See http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf.

http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf
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Figure 17.2 An nematic crystal (from https://en.wikipedia.org/wiki/Liquid_crystal).

subspace spanned by the elements

ppv1 ` v2q, v1q ´ pv1, v
1q ´ pv2, v

1q,

pv, pv1
1 ` v1

2qq ´ pv, v1
1q ´ pv, v1

2q,

pav, wq ´ apv, wq,

pv, awq ´ apv, wq.

We will denote the equivalence class of pv, wq by v b w.

Example 17.2.3. The tensor product Rk b Rl has a basis given by ei b e1
j for

1 ď i ď k, 1 ď j ď l.
The relations are designed to make

b0 : V ˆ V 1 ÝÑ V b V 1

pv, v1q ÞÝÑ v b v1

bilinear. It is in fact the initial bilinear map:

Lemma 17.2.4. For every bilinear map b : V ˆ V 1 Ñ W there is a unique linear
map β : V b V 1 Ñ W such that b “ β ˝ b0.

Proof. There is a unique linear map RrV ˆ V 1s Ñ W given by pv, v1q ÞÑ bpv, v1q.
Since b is bilinear this factors over V bV 1, determining a linear map β : V bV 1 Ñ

W satisfying bpv, v1q “ βpv b v1q “ βpb0pv, v1qq. Since V b V 1 is generated by the
elements b0pv, v1q, this determines β uniquely.

Remark 17.2.5. This universal property satisfied by the tensor product determines
it uniquely up to linear isomorphism.

There is a similar correspondence of multilinear maps V1 ˆ ¨ ¨ ¨ ˆ Vk Ñ W
with linear map V1 b ¨ ¨ ¨ b Vk Ñ W .

https://en.wikipedia.org/wiki/Liquid_crystal
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Example 17.2.6. The universal property tells us what tensor product of a single
or no vector spaces is. A multilinear map V Ñ W is just a linear map, so a
tensor product of a single vector space V is just V again.

The empty product of sets is a point, because such a product receives a unique
map from every other set. A multilinear map from an empty product is hence a
map from a point to V , with no condition imposed, so just an element of V . This
is the same as a linear map R Ñ V . Hence an empty tensor product is R itself.

17.2.2 Alternating multilinear maps

When all vector spaces Vi in the domain of a multilinear map are the same V ,
we can require additional symmetry properties. Of specific interest to us are the
alternating multilinear maps, though the story for symmetric multilinear maps is
similar:

Definition 17.2.7. An alternating multilinear map is a multilinear map w : V k Ñ

W which satisfies wpvσp1q, . . . , vσpkqq “ p´1qϵpσqwpv1, . . . , vkq for all v1, . . . , vk P V
and permutations σ of t1, . . . , ku. Here ϵpσq P Z{2 is the sign of the permutation.

Example 17.2.8. The sign of a permutation is uniquely determined by demanding
it is a homomorphism and it sends a transposition to the unique non-identity
element of Z{2.

There is also an initial alternating multilinear map.

Definition 17.2.9. The kth exterior power ΛkV is the quotient of V bk by the
subspace spanned by the elements

vσp1q b ¨ ¨ ¨ b vσpkq ´ p´1qϵpσqv1 b . . .b vk with σ P Σk.

We will denote the image of v1 b ¨ ¨ ¨ b vk by v1 ^ ¨ ¨ ¨ ^ vk.

Example 17.2.10. Λ2Rn has a basis ei ^ ej for 1 ď i ă j ď n. It is a well-known
mistake to think that every element of an exterior product is of the form v1 ^ v2.
This is not the case, e.g. e1 ^ e2 ` e3 ^ e4 can’t be written this way.

Example 17.2.11. Λ0V is the quotient of pV qb0 “ R by the trivial subspace, so is
equal to R.

The subspace in Definition 18.2.9 is designed to make

w0 : V k ÝÑ ΛkV
pv1, . . . , vkq ÞÝÑ v1 ^ ¨ ¨ ¨ ^ vk

alternating multilinear. This satisfies:

Lemma 17.2.12. For every alternating multilinear map w : V k Ñ W there is a
unique linear map ω : ΛkV Ñ W such that w “ ω ˝ w0.
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Remark 17.2.13. This universal property tells us that the map V bk Ñ ΛkV corre-
sponding to a natural assignment of an alternating multilinear map wpbq : V k Ñ

W to each multilinear map b : V k Ñ W . This is given by anti-symmetrizing:

wpbqpv1, . . . , vkq “
1
n!

ÿ

σPΣk

bpvσp1q, . . . , vσpkqq.

The construction of ΛkV is natural in V : whenever we have a linear map
A : V Ñ V 1, there is an alternating multilinear map

V ˆk ÝÑ ΛkpV 1q

pv1, . . . , vkq ÞÝÑ Apv1q ^ ¨ ¨ ¨ ^Apvkq,

which induces a unique linear map ΛkpAq : ΛkpV q Ñ ΛkpV 1q. This is explicitly
given by

ΛkpAqpv1 ^ ¨ ¨ ¨ ^ vkq “ Apv1q ^ ¨ ¨ ¨ ^Apvkq.

From this formula or the universal property one easily deduces the following:

Lemma 17.2.14.
¨ ΛkpBAq “ ΛkpBqΛkpAq,
¨ Λkpidq “ id.

17.2.3 The top exterior power and orientations

Let us take a closer look at the case V “ Rk. Then ΛkRk has a basis with a
single element e1 ^ ¨ ¨ ¨ ^ ek, i.e. it is one-dimensional.
Example 17.2.15. For k “ 2, R2 b R2 is spanned by e1 b e1, e1 b e2, e2 b e1
and e2 b e2. In Λ2pR2q some additional antisymmetry rules are imposed. These
for example say e1 ^ e2 “ ´e2 ^ e1. But they also say e1 ^ e1 “ ´e1 ^ e1 so
e1 ^ e1 “ 0, and similarly e2 ^ e2 “ 0. Thus Λ2pR2q is indeed 1-dimensional
spanned by e1 ^ e2.

Thus for each linear mapA : Rk Ñ Rk, the induced linear map ΛkpAq : ΛkpRkq Ñ

ΛkpRkq is given by multiplication with a number, which for now we denote dpAq.
Example 17.2.16. For a matrix

A “

„

a b
c d

ȷ

we can compute dpAq by determining which multiple of e1 ^ e2 the element
Λ2pAqpe1 ^ e2q is equal to. The latter is given by

Ape1q ^Ape2q “ pae1 ` ce2q ^ pbe1 ` de2q

“ abe1 ^ e1 ` ade1 ^ e2 ` cbe2 ^ e1 ` cde2 ^ e2

“ pad´ bcqe1 ^ e2.

As the previous example shows, you are already familiar with the number
dpAq.
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Lemma 17.2.17. dpAq “ detpAq.

Sketch of proof. There are two ways to prove this.
You could use that the determinant is uniquely determined a small number

of properties, namely that detpBAq “ detpBq detpAq and its value on elementary
matrices, upper-diagonal matrices, and permutation matrices. Indeed, using
elementary matrices and permutation matrices you can row reduce all matrices
to upper-diagonal ones. You then just need to verify that dpBAq “ dpBqdpAq,
which follows from ΛkpBAq “ ΛkpBqΛkpAq, and that d takes the same value as
det on elementary matrices, upper-diagonal matrices and permutation matrices.

Alternatively, you could just compute Ape1q^¨ ¨ ¨^Apekq directly. By linearity
in each entry and observing that those terms where a basis vector is repeated are
0, you get

Ape1q ^ ¨ ¨ ¨ ^Apekq “
ÿ

σ

˜

k
ź

i“1
Aiσpiq

¸

eσp1q ^ ¨ ¨ ¨ ^ eσpkq

“
ÿ

σ

˜

k
ź

i“1
p´1qϵpσqAiσpiq

¸

e1 ^ ¨ ¨ ¨ ^ ek

“ detpAqe1 ^ ¨ ¨ ¨ ^ ek.

An invertible matrix detpAq is a composition of rotations and an upper-
diagonal matrix with positive entries on the diagonal if and only if its determinant
is positive. If the determinant is negative, then it is a composition of such matrices
with a reflection in a hyperplane. If we think intuitively of an orientation has a
notion of “handedness” (of “chirality” if you want a fancier term), then rotations
and upper-diagonal matrices with positive entries on the diagonal should preserve
this, but reflection should reverse this. This makes the following definition
reasonable:

Definition 17.2.18. An orientation of a finite-dimensional R-vector space V
is a choice of a non-zero element of ΛdimpV qpV q up to scaling by a positive real
number.

This definition is set up so that an invertible linear map A preserves an
orientation if and only if detpAq ą 0.

17.3 Orientations

17.3.1 Fiberwise constructions

We have already seen how natural constructions on vector spaces lead to natural
construction on vector bundles, by repeating this construction fiberwise:

We proved that these constructions produce vector bundles by going to local
trivializations, and then observing that the corresponding constructions on general
linear maps are continuous or even smooth in the entries.

Let us repeat this with the top exterior power:
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vector spaces vector bundles
direct sum V ‘ V 1 direct sum E ‘ E1

quotient V {V 1 quotient E{E1

image impA : V Ñ V 1q image impG : E Ñ E1q (if rank constant)
kernel kerpA : V Ñ V 1q kernel kerpG : E Ñ E1q (if rank constant)

Definition 17.3.1. Let p : E Ñ X be a vector bundle of dimension k. Then
its top exterior power Λkppq : ΛkpEq Ñ X is the vector bundle of dimension
1 given by

Ů

xPX ΛkpExq. We topologize this as follows: for every local triv-
ializations ψ : p´1pUq “

Ů

xPU Ex Ñ U ˆ Rk we define declare that the local
trivialization pΛkppqq´1pUq “

Ů

xPU ΛkpExq Ñ U ˆ ΛkpRkq given by taking
px, vq ÞÑ px,Λkpψxqpvqq is a homeomorphism.

The transition functions of ΛkpEq are given by the determinant of the transi-
tion functions of E. Thus ΛkpEq will be a smooth vector bundle if E is a smooth
vector bundle. Using this observation and similar ones for other exterior power
or tensor products we can extend our table as follows:

vector spaces vector bundles

top exterior power ΛdimpV qpV q top exterior power ΛdimpEqpEq

tensor product V b V 1 tensor product E b E1

exterior power ΛrpV q exterior power ΛrpEq

symmetric power SymrpV q symmetric power SymrpEq

dual V ˚ dual E˚

17.3.2 Riemannian metrics

When thinking about smooth vector bundles it is sometimes helpful to have a
Riemannian metric around:

Definition 17.3.2. A Riemannian metric is a section g of pE b Eq˚ such that
on each fiber gx : Ex b Ex Ñ R is a positive definite symmetric bilinear form.

Lemma 17.3.3. Every smooth vector bundle p : E Ñ X admits a Riemannian
metric, and this is unique up to homotopy.

Proof. For each local trivialization ψ : p´1pUq Ñ U ˆ Rk we can define on U the
pullback along ψ´1 of the standard Riemann metric: for v, v1 P Ex,

pψ´1q˚gstdpv, v1q :“ gstdpψ´1
x pvq, ψ´1

x pv1qq.

Now take a partition of unity subordinate to an open cover of X by open
subsets U of a local trivialization; ηi : M Ñ r0, 1s supported in Ui. Then we
define

g :“
ÿ

i

ηi ¨ pψ´1
i q˚gstd.
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This is positive define and symmetric since these properties are preserved by
convex linear combinations. For uniqueness, observe we can linearly interpolate
between any two Riemannian metric.

The main application of this is:

Lemma 17.3.4. If E1 Ă E is a subbundle, then there is another subbundle
E2 Ă E such that E1 ‘ E2 – E. This subbundle E2 is isomorphic to E{E1.

Proof. Equip E with a Riemannian metric. Then we can take E2 “ pE1qK, given
by fibers pE1qK

x :“ pE1
xqK. To get the second part, we observe that the map of

vector bundles E Ñ pE1qK given on fibers by orthogonal projection Ex Ñ pE1qK
x

with kernel given by E1 and hence induces an isomorphism E{E1 Ñ pE1qK.

17.3.3 Orientations of vector bundles

Recall that a map which picks a single element of each fiber is called a section:

Definition 17.3.5. A section of a smooth vector bundle p : E Ñ X is a smooth
map s : X Ñ E such that p ˝ s “ idX .

Example 17.3.6. Every smooth vector bundle has a 0-section s0 : X Ñ E picking
out the 0 in each fiber.
Example 17.3.7. A smooth section of TM is also known as a smooth vector field.

When we have a section s : X Ñ E of a smooth vector bundle and a smooth
function g : X Ñ R, we can use fiberwise scalar multiplication to produce a new
section g ¨ s.

Definition 17.3.8. An orientation of a smooth vector bundle p : E Ñ B is an
everywhere non-zero section s of ΛdimpEqE, up to the equivalence relation of
scalar multiplication by an everywhere positive smooth function.

Thus, an orientation on E is smooth choice of non-zero elements of each
ΛdimpEqEx up to scaling, that is, a smooth choice of orientation of each of vector
spaces Ex.
Example 17.3.9. Trivial vector bundles always admit an orientation.
Example 17.3.10. A much more interesting example is the Moebius strip, i.e. the
tautological bundle over RP 1. We use the following straightforward observation:
every section s of a smooth vector bundle p : E Ñ B is homotopic to the 0-section.
Indeed, take H : B ˆ r0, 1s Ñ E given by

pp, tq ÞÝÑ t ¨ sppq.

Using this we prove that the tautological bundle γ over RP 1 (the one whose total
space is the Moebius strip) does not admit an orientation. Let us identify RP 1

with the 0-section. If this bundle did admit an orientation, there would be an
everywhere non-zero section s and we would have I2ps,RP 1q “ 0. But we also
know that I2ps,RP 1q “ I2pRP 1,RP 1q, and latter is 1 by exhibiting a particular
section transverse to the 0-section. This gives a contradiction.
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A vector bundle E is said to be orientable if it admits an orientation.

Lemma 17.3.11. A vector bundle E is orientable if ΛdimpEqE is isomorphic to
a trivial line bundle. Furthermore, an orientation is a trivialization of ΛdimpEqE
up to scalar multiplication by a smooth positive function.

Proof. Indeed, a representative s : X Ñ ΛdimpEqE of an orientation furnishes an
isomorphism

X ˆ R –
ÝÑ ΛdimpEqE

pb, tq ÞÝÑ t ¨ spbq.

Conversely, an isomorphism ϕ : ΛdimpEq – X ˆ R gives an everywhere non-
vanishing section s : X Ñ ΛdimpEq by x ÞÑ ϕ´1px, 1q.

If E is orientable, how many orientations does it admit? Given an orientation
represented by s, any other orientation s1 differs by scalar multiplication of s with
an everywhere non-zero smooth function f . If we multiply f with an everywhere
positive smooth function we get the same s1, so the orientations are given by the
set of everywhere non-zero smooth functions up to multiplication by everywhere
positive smooth function. In other words, for each connected component of X
we have to pick a choice of sign. We conclude that:

Lemma 17.3.12. Let π0pXq denote the set of connected components of X, then
if E is orientable the set of orientations is (non-canonically) given by the set of
functions

π0pBq ÝÑ t˘1u.

Given orientations for smooth vector bundles E,E1 over X, you can produce
a direct sum orientation on E ‘ E1. The observation you need is that there is a
natural isomorphism

ΛdimpEqE b ΛdimpE1qE1 –
ÝÑ ΛdimpEq`dimpE1qpE ‘ E1q

pv1 ^ ¨ ¨ ¨ ^ vdimpEqq b pv1
1 ^ ¨ ¨ ¨ ^ v1

dimpE1qq ÞÝÑ v1 ^ ¨ ¨ ¨ ^ vdimpEq ^ v1
1 ^ ¨ ¨ ¨ ^ v1

dimpE1q.

Thus trivializations of ΛdimpEqE and ΛdimpE1qE1 give a trivialization of ΛdimpEqEb

ΛdimpE1qE1. Conversely, if E “ E1 ‘E2 with E and E1 oriented, the trivializations
of E and E1 give isomorphisms

B ˆ R – ΛdimpE1q`dimpE2qpE1 ‘ E2q – ΛdimpE1qE1 b ΛdimpE2qE2 – ΛdimpE2qE2,

so an orientation of E2.

17.3.4 Orientations of manifolds

If M is a k-dimensional manifold, then TM is a k-dimensional smooth vector
bundle M and hence ΛkTM is a 1-dimensional smooth vector bundle M , called
the orientation line bundle.

Definition 17.3.13. An orientation of M is an orientation of TM .
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Remark 17.3.14. An orientation of M is equivalent to a choice of “oriented” atlas
inside its maximal atlas, where all transition functions are required to have total
derivatives with positive determinant.

Let us give two examples of manifolds that are orientable and one which is
not:
Example 17.3.15. If M “ S1, the tangent bundle is isomorphic to a trivial
bundle and since ΛdimpEqE “ E for any 1-dimensional vector bundle so is its top
exterior power. It hence admits exactly two orientations. These correspond to
the clockwise and counterclockwise directions of the circle.
Example 17.3.16. If M “ ˚, we have that Λ0TM “ R, so the point admits exactly
two orientations. However, the one represented by 1 P R should obviously be our
preferred choice.
Example 17.3.17. We claim that RP 2 admits no orientation. If it did then so
would TRP 2|RP 1 . This vector bundle is isomorphic to TRP 1 ‘NRP 1 – R ‘ γ,
with γ the canonical bundle over RP 1. This means its orientation line bundle
is Λ2pR ‘ γq – γ and we proved above that γ does not admit an everywhere
non-vanishing section, i.e. is not trivializable.

There are several constructions which produce new orientations on manifold
form old ones:
Example 17.3.18. Given a manifold M with orientation, we can produce another
orientation by multiplying a representative section s : M Ñ ΛkTM with ´1. This
is called reversing the orientation and we shall occasionally use the notion ´M
for this.
Example 17.3.19. If M and N are manifolds with orientations, then we get a
direct sum orientation on M ˆN , as Tpp,p1qpM ˆNq – TpM ‘ Tp1N .

To phrase this in terms of vector bundles, we need a generalization of the
restriction of vector bundles: given any map f : X 1 Ñ X we can pull back a
vector bundle p : E Ñ X to X 1 by setting f˚E “

Ů

x1PX Efpx1q. In the language
of vector bundles we have T pM ˆNq – π˚

1TM ‘ π˚
2TN .

Example 17.3.20. If Z Ă N is a submanifold and both N and Z are oriented,
then the isomorphism TN |Z – NZ ‘ TZ shows that NZ also comes with an
orientation.
Example 17.3.21. Suppose we have a smooth map f : M Ñ N with M and N
oriented, and Z Ă M an oriented submanifold such that f&Z. Then f´1pZq is
a submanifold and its tangent bundle satisfies f˚NZ ‘ Tf´1pZq – TM |f´1pZq.
Since both TM |f´1pZq and f˚NZ comes with orientations, we get an orientation
of Tf´1pZq.

17.3.5 Induced orientation on the boundary

If M is a manifold with boundary BM , then its boundary BM inherits an
orientation, canonically so once we fix a single convention. To do so, it is
convenient to pick a Riemannian metric on M , that is, on TM . Then the
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restriction TM |BM inherits a Riemannian metric and thus splits as TBM ‘

pTBMqK, the latter being a line bundle.
From our discussion of collars, we know that there exist a smooth function

χ : M Ñ r0,8q such that χ´1p0q “ BM and for each p P BM , dpχ is non-vanishing
on some vector v P TpMzTpBM . This vector v decomposes as a sum of a vector
vB P TpBM and a vector vK P pTpBMqK. Since χ is constant on BM , vB is zero so
vK is non-zero. Hence the restriction dpχ : pTpBMqK Ñ R is non-zero.

We call a vector v P pTpBMqK such that dpχpvq ă 0 outward pointing. Such a
vector is unique up to scaling by a positive real number. In particular, there is a
canonical section n of pTM |BM qK given at p P BM by the unique element np of
pTpBMqK such that dpχpnpq “ 1.

Every vector v P V provides a linear map v ^ ´ : Λk´1pV q Ñ ΛkpV q. This
generalizes to a map of vector bundles

Λk´1pTBMq ÝÑ ΛkpTM |BM q

w ÞÝÑ n^ w

of vector bundles, by thinking of Λk´1pTBMq as a linear subspace of Λk´1pTM |BM q

using the inclusion of TBM into TM |BM .

Lemma 17.3.22. If an orientation of M is represented by the section s of
ΛkTM , then there is a unique orientation of M which is represented by a section
s̄ of Λk´1TBM satisfying n^ s̄ “ s.

Proof. For each p P BM , fix a basis e1, . . . , ek´1 of TpBM . By adding np we get a
basis of TpM . Then s̄ppq is by definition c̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1 for some c̄ P R, and
sppq similarly is cppq ¨ np ^ e1 ^ ¨ ¨ ¨ ^ ek´1 for some cppq P R. From the equation

np ^ pc̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1q “ cppq ¨ np ^ e1 ^ ¨ ¨ ¨ ^ ek´1

we read off c̄ppq “ cppq, so s̄ is uniquely determined by n and s.
Firstly s̄, up to multiplication by a positive smooth function, is independent

of the choice of representative s: if s changes by multiplying it with positive
smooth function, so does s̄.

Next, we have to verify the orientation is independent of the choice of Rie-
mannian metric g and smooth function χ. Modifying the latter just changes n
by scalar multiplication by a positive smooth function, and hence has the same
effect on s̄. If we vary g, then np gets replaced by n1

p “ anp `
řk´1
i“1 aiei with

a ą 0 so

n1
p ^ pc̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1q “ a ¨ np ^ pc̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1q,

and again s̄ just changes by scalar multiplication by a positive smooth function.

Definition 17.3.23. If M is oriented, we shall consider BM as oriented by the
orientation produced in the previous lemma. We refer to this as the induced
orientation.
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Example 17.3.24. There is a preferred choice of orientation on r0, 1s, namely using
1 P Λ1Tpr0, 1s – Tpr0, 1s – R. Then

Br0, 1s – t1u ´ t0u,

where, for an oriented manifold N , ´N denotes the same manifold with opposite
orientation.

More generally, if M is oriented without boundary, then

Bpr0, 1s ˆMq “ M ˆ t1u ´M ˆ t0u.

However, if we do BpMˆr0, 1sq we get p´1qdimpMqpMˆt1u´Mˆt0uq. This is an
unfortunate clash of our conventions for orientations and notation for homotopies.
Example 17.3.25. Generalizing Example 18.3.21 to the case that M has boundary
and f&Z, Bf&Z we get that Bf´1pZq “ pBfq´1pZq comes with two orientations:
one as the boundary of an oriented manifold and one as the inverse image of an
oriented manifold. These are not equal but satisfy

Bf´1pZq “ p´1qcodimpZqpBfq´1pZq.

17.4 Integral intersection theory

Chapter 3 of [GP10] upgrades the mod 2 intersection theory to an integral version.
The main input is the observation that

Br0, 1s – t1u ´ t0u

and the classification of compact 1-dimensional manifolds lead to the following
result:

Proposition 17.4.1. If M is a compact oriented 1-dimensional manifold, then
the number of positively-oriented points in BM is equal to the number of negatively-
oriented points.

So we can define intersection numbers with values in Z instead of Z{2:

Definition 17.4.2. Suppose that Y is a compact oriented manifold without
boundary, M is an oriented manifold and Z Ă M is an oriented submanifold
such that dimpY q ` dimpZq “ dimpMq.

Let f0 : Y Ñ M be a smooth map. Then the intersection number Ipf0, Zq is
defined as follows: take f1 homotopic to f0 and transverse to Z, and set

Ipf0, Zq “
ÿ

pPf´1
1 pZq

orientation of p.

One proceeds as before, using Proposition 18.4.1 in place of the fact that
the number of points in the boundary of a compact 1-dimensional manifold is
even, to prove that Ipf0, Zq is well-defined and establish its basic properties. You
can then easily define integral versions of the degree of a map and the winding
numbers, and use these to great effect.
Example 17.4.3. With these definitions in hand, the mod 2 linking numbers of
Section ?? generalize to integer linking numbers.
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17.5 Problems

Problem 43 (Codimension 1 submanifolds are orientable). Use the Jordan–
Brouwer separation theorem to prove that if M Ă Rk is a compact codimension
1 submanifold, then it is orientable.

Problem 44. Define a degree degpfq P Z of a smooth map f : M Ñ N between
compact oriented smooth manifolds of the same dimension, which reduces to
deg2pfq modulo 2.

Problem 45. Use partitions of unity to prove that any vector v P TpM is the
value at x of some smooth vector field X on M .



Chapter 18

Orientations and integral intersection theory

The next part of these lectures will be devoted defining de Rham cohomology,
developing computational tools for it, and drawing interesting topological conclu-
sions from it. A prerequisite for some of this material will be the notion of an
orientation. We define this today, and give a taste of integral intersection theory,
which we will not cover in detail in the course.

Convention 18.0.1. All vector spaces are finite-dimensional and over R unless
mentioned otherwise.

18.1 What is an orientation on a manifold?

We start with an intuitive description of orientations, before giving rigorous
definitions:

an orientation of a manifold is “a smooth family of orientations of
each of the tangent spaces TpM .”

An orientation on a vector space such as TpM specifies for each of its ordered
bases whether it is “positively oriented” or “negatively oriented,” with the follow-
ing requirement: if one ordered basis can be obtained from another by applying
an invertible matrix A to each of its vectors, then we say they are similarly
oriented if and only if detpAq ą 0. Since GLnpRq has two path components, this
is equivalent to saying homotopic bases are similarly oriented and reflecting a
single basis vector changes the orientation of the basis. That an orientation
depends smoothly on p P M means that if you move a positively oriented basis
around M , it stays positive (and of course the same is true for negatively oriented
bases).
Example 18.1.1. For the circle S1, an orientation is a choice of “positive direction”
along the circle. There are two such choices: counterclockwise and clockwise.
Example 18.1.2. The real projective plane RP 2 admits no orientation. Suppose
it did, then starting with a basis e1, e2 at some point, say positively oriented,
we can move it around RP 2 and return to e1,´e2. This must simultaneously
be positively oriented (since moving a basis around should not change how it is
oriented) and negatively oriented (since it is obtained from a positively oriented
by reflecting a basis vector). This gives a contradiction.

150
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Example 18.1.3. An LCD display is made from a nematic crystal, consisting of
long thin filaments. These prefer to be aligned the same way, so locally such a
crystal has a order parameter given by a direction in R3. This is an element of
RP 2, a non-orientable manifold. 1

� �

ă

ą

e1

e2

e1´e2

Figure 18.1 Moving a basis around RP 2 can return it with opposite orientation.

Figure 18.2 An nematic crystal (from https://en.wikipedia.org/wiki/Liquid_crystal).

You can find more examples in the following table:

18.2 A recollection of multilinear algebra

Linear algebra concerns not only the study of vector spaces and linear maps
between them, but also of multilinear maps with various properties. This is
closely related to the study of tensor products and variations thereof.

18.2.1 Tensor products

Definition 18.2.1. A bilinear map is a function b : V ˆ V 1 Ñ W which is linear
in each variable.

1See http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf.

https://en.wikipedia.org/wiki/Liquid_crystal
http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf
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orientable not orientable
spheres Sn real projective spaces RP 2n (n ě 1)

surfaces of genus g ě 1 Klein bottle
Lie groups
Lens spaces

Poincaré homology sphere
Complex projective spaces

Quaternionic projective spaces
K3 surface

Whitehead manifold

Definition 18.2.2. The tensor product V bW is the quotient of the free R-vector
space on the set V ˆ V 1, whose basis elements we shall denote pv, v1q, by the
subspace spanned by the elements

ppv1 ` v2q, v1q ´ pv1, v
1q ´ pv2, v

1q,

pv, pv1
1 ` v1

2qq ´ pv, v1
1q ´ pv, v1

2q,

pav, v1q ´ apv, v1q,

pv, av1q ´ apv, v1q.

We will denote the equivalence class of pv, v1q by v b v1.

Example 18.2.3. The tensor product Rk b Rk1 has a basis given by ei b e1
j for

1 ď i ď k, 1 ď j ď k1.

The relations are designed to make

b0 : V ˆW ÝÑ V b V 1

pv, v1q ÞÝÑ v b v1

bilinear. It is in fact the initial bilinear map:

Lemma 18.2.4. For every bilinear map b : V ˆ V 1 Ñ W there is a unique linear
map β : V b V 1 Ñ W such that b “ β ˝ b0.

Proof. There is a unique linear map RrV ˆ V 1s Ñ W given by pv, v1q ÞÑ bpv, v1q.
Since b is bilinear this factors over V bV 1, determining a linear map β : V bV 1 Ñ

W satisfying bpv, v1q “ βpv b v1q “ βpb0pv, v1qq. Since V b V 1 is generated by the
elements b0pv, v1q, this determines β uniquely.

Remark 18.2.5. This universal property satisfied by the tensor product determines
it uniquely up to linear isomorphism.

There is a similar one-to-one correspondence of multilinear maps V1 ˆ ¨ ¨ ¨ ˆ

Vk Ñ W with linear map V1 b ¨ ¨ ¨ b Vk Ñ W .
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Example 18.2.6. The universal property tells us what tensor product of a single
or no vector spaces is. A multilinear map V Ñ W is just a linear map, so a
tensor product of a single vector space V is just V again.

The empty product of sets is a point, because such a product receives a unique
map from every other set. A multilinear map from an empty product is hence a
map from a point to V , with no condition imposed, so just an element of V . This
is the same as a linear map R Ñ V . Hence an empty tensor product is R itself.

18.2.2 Alternating multilinear maps

When all vector spaces Vi in the domain of a multilinear map are the same V ,
we can require additional symmetry properties. Of specific interest to us are the
alternating multilinear maps, though the story for symmetric multilinear maps is
similar:

Definition 18.2.7. An alternating multilinear map is a multilinear map w : V k Ñ

W which satisfies wpvσp1q, . . . , vσpkqq “ p´1qϵpσqwpv1, . . . , vkq for all v1, . . . , vk P V
and permutations σ of t1, . . . , ku. Here ϵpσq P Z{2 is the sign of the permutation.

Example 18.2.8. The sign of a permutation is uniquely determined by demanding
it is a homomorphism and it sends a transposition to the unique non-identity
element of Z{2.

There is also an initial alternating multilinear map.

Definition 18.2.9. The kth exterior power ΛkV is the quotient of V bk by the
subspace spanned by the elements

vσp1q b ¨ ¨ ¨ b vσpkq ´ p´1qϵpσqv1 b . . .b vk with σ P Σk.

We will denote the image of v1 b ¨ ¨ ¨ b vk by v1 ^ ¨ ¨ ¨ ^ vk.

Example 18.2.10. Λ2Rn has a basis ei ^ ej for 1 ď i ă j ď n. It is a well-known
mistake to think that every element of an exterior product is of the form v1 ^ v2.
This is not the case, e.g. e1 ^ e2 ` e3 ^ e4 can’t be written this way.

Example 18.2.11. Λ0V is the quotient of pV qb0 “ R by the trivial subspace, so is
equal to R.

The subspace in Definition 18.2.9 is designed to make

w0 : V k ÝÑ ΛkV
pv1, . . . , vkq ÞÝÑ v1 ^ ¨ ¨ ¨ ^ vk

alternating multilinear. This satisfies:

Lemma 18.2.12. For every alternating multilinear map w : V k Ñ W there is a
unique linear map ω : ΛkV Ñ W such that w “ ω ˝ w0.
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Remark 18.2.13. This universal property tells us that there is a map V bk Ñ

ΛkV corresponding to a natural assignment of an alternating multilinear map
wpbq : V k Ñ W to each multilinear map b : V k Ñ W . It is given by anti-
symmetrizing:

wpbqpv1, . . . , vkq “
ÿ

σPΣk

bpvσp1q, . . . , vσpkqq.

The construction of ΛkV is natural in V : whenever we have a linear map
A : V Ñ V 1, there is an alternating multilinear map

V ˆk ÝÑ ΛkV 1

pv1, . . . , vkq ÞÝÑ Apv1q ^ ¨ ¨ ¨ ^Apvkq,

which induces a unique linear map ΛkA : ΛkV Ñ ΛkV 1. This is explicitly given
by

pΛkAqpv1 ^ ¨ ¨ ¨ ^ vkq “ Apv1q ^ ¨ ¨ ¨ ^Apvkq.

From this formula or the universal property one easily deduces the following:

Lemma 18.2.14.
¨ ΛkpBAq “ pΛkBqpΛkAq,
¨ Λkid “ id.

18.2.3 The top exterior power and orientations

Let us take a closer look at the case V “ Rk. Then ΛkRk has a basis given by
the single element e1 ^ ¨ ¨ ¨ ^ ek, so in particular is one-dimensional.
Example 18.2.15. For k “ 2, R2 b R2 is spanned by e1 b e1, e1 b e2, e2 b e1
and e2 b e2. In Λ2pR2q some additional antisymmetry rules are imposed. These
for example say e1 ^ e2 “ ´e2 ^ e1. But they also say e1 ^ e1 “ ´e1 ^ e1 so
e1 ^ e1 “ 0, and similarly e2 ^ e2 “ 0. Thus Λ2pR2q is indeed 1-dimensional
spanned by e1 ^ e2.

Thus for each linear mapA : Rk Ñ Rk, the induced linear map ΛkpAq : ΛkpRkq Ñ

ΛkpRkq is given by multiplication with a number, which for now we denote dpAq.
Example 18.2.16. For a matrix

A “

„

a b
c d

ȷ

we can compute dpAq by determining which multiple of e1 ^ e2 the element
Λ2pAqpe1 ^ e2q is equal to. The latter is given by

Ape1q ^Ape2q “ pae1 ` ce2q ^ pbe1 ` de2q

“ abe1 ^ e1 ` ade1 ^ e2 ` cbe2 ^ e1 ` cde2 ^ e2

“ pad´ bcqe1 ^ e2.

As the previous example shows, you are already familiar with the number
dpAq.
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Lemma 18.2.17. dpAq “ detpAq.

Sketch of proof. There are two ways to prove this.
You could use that the determinant is uniquely determined a small number

of properties, namely that detpBAq “ detpBq detpAq and its value on elementary
matrices, upper-diagonal matrices, and permutation matrices. Indeed, using
elementary matrices and permutation matrices you can row reduce all matrices
to upper-diagonal ones. You then just need to verify that dpBAq “ dpBqdpAq,
which follows from ΛkpBAq “ ΛkpBqΛkpAq, and that d takes the same value as
det on elementary matrices, upper-diagonal matrices and permutation matrices.

Alternatively, you could just compute Ape1q^¨ ¨ ¨^Apekq directly. By linearity
in each entry and observing that those terms where a basis vector is repeated are
0, you get

Ape1q ^ ¨ ¨ ¨ ^Apekq “
ÿ

σ

˜

k
ź

i“1
Aiσpiq

¸

eσp1q ^ ¨ ¨ ¨ ^ eσpkq

“
ÿ

σ

˜

k
ź

i“1
p´1qϵpσqAiσpiq

¸

e1 ^ ¨ ¨ ¨ ^ ek

“ detpAqe1 ^ ¨ ¨ ¨ ^ ek.

An invertible matrix detpAq is a composition of rotations and an upper-
diagonal matrix with positive entries on the diagonal if and only if its determinant
is positive. If the determinant is negative, then it is a composition of such a
matrix with a reflection in a hyperplane. If we think intuitively of an orientation
has a notion of “handedness” (of “chirality” if you want a fancier term), then
rotations and upper-diagonal matrices with positive entries on the diagonal
should preserve this, but reflection should reverse this. This makes the following
definition reasonable:

Definition 18.2.18. An orientation of a finite-dimensional R-vector space V
is a choice of a non-zero element of ΛdimpV qV up to scaling by a positive real
number.

This definition is set up so that an invertible linear map A preserves an
orientation if and only if detpAq ą 0.

18.3 Orientations

18.3.1 Fiberwise constructions

We have already seen how natural constructions on vector spaces lead to natural
construction on vector bundles, by repeating this construction fiberwise:

We proved that these constructions produce vector bundles by going to local
trivializations, and then observing that the corresponding constructions on general
linear maps are continuous or even smooth in the entries. Let us repeat this with
the top exterior power:
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vector spaces vector bundles
direct sum V ‘ V 1 direct sum E ‘ E1

quotient V {V 1 quotient E{E1

image impA : V Ñ V 1q image impG : E Ñ E1q (if rank constant)
kernel kerpA : V Ñ V 1q kernel kerpG : E Ñ E1q (if rank constant)

Definition 18.3.1. Let p : E Ñ X be a vector bundle of dimension k. Then
its top exterior power Λkppq : ΛkpEq Ñ X is the vector bundle of dimension
1 given by

Ů

xPX ΛkpExq. We topologise this as follows: for every local triv-
ializations ψ : p´1pUq “

Ů

xPU Ex Ñ U ˆ Rk we define declare that the local
trivialization pΛkppqq´1pUq “

Ů

xPU ΛkpExq Ñ U ˆ ΛkpRkq given by taking
px, vq ÞÑ px,Λkpψxqpvqq is a homeomorphism.

The transition functions of ΛkpEq are given by the determinant of the transi-
tion functions of E. Thus ΛkpEq will be a smooth vector bundle if E is a smooth
vector bundle. Using this observation and similar ones for other exterior power
or tensor products we can extend our table as follows:

vector spaces vector bundles

top exterior power ΛdimpV qpV q top exterior power ΛdimpEqpEq

tensor product V b V 1 tensor product E b E1

exterior power ΛrpV q exterior power ΛrpEq

symmetric power SymrpV q symmetric power SymrpEq

dual V ˚ dual E˚

18.3.2 Riemannian metrics

When thinking about smooth vector bundles it is sometimes helpful to have a
Riemannian metric around:

Definition 18.3.2. A Riemannian metric is a section g of pE b Eq˚ such that
on each fiber gx : Ex b Ex Ñ R is a positive definite symmetric bilinear form.

Lemma 18.3.3. Every smooth vector bundle p : E Ñ X admits a Riemannian
metric, and this is unique up to homotopy.

Proof. For each local trivialization ψ : p´1pUq Ñ U ˆ Rk we can define on U the
pullback along ψ´1 of the standard Riemann metric: for v, v1 P Ex,

pψ´1q˚gstdpv, v1q :“ gstdpψ´1
x pvq, ψ´1

x pv1qq.

Now take a partition of unity subordinate to an open cover of X by open subsets
U of a local trivialization; ηi : M Ñ r0, 1s supported in Ui. Then we define

g :“
ÿ

i

ηi ¨ pψ´1
i q˚gstd.
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This is positive define and symmetric since these properties are preserved by
convex linear combinations. For uniqueness, observe we can linearly interpolate
between any two Riemannian metric.

The main application of this is:

Lemma 18.3.4. If E1 Ă E is a subbundle, then there is another subbundle
E2 Ă E such that E1 ‘ E2 – E. This subbundle E2 is isomorphic to E{E1.

Proof. Equip E with a Riemannian metric. Then we can take E2 “ pE1qK, given
by fibres pE1qK

x :“ pE1
xqK. To get the second part, we observe that the map of

vector bundles E Ñ pE1qK given on fibres by orthogonal projection Ex Ñ pE1qK
x

with kernel given by E1 and hence induces an isomorphism E{E1 Ñ pE1qK.

18.3.3 Orientations of vector bundles

Recall that a map which picks a single element of each fibre is called a section:

Definition 18.3.5. A section of a smooth vector bundle p : E Ñ X is a smooth
map s : X Ñ E such that p ˝ s “ idX .

Example 18.3.6. Every smooth vector bundle has a 0-section s0 : X Ñ E picking
out the 0 in each fibre.
Example 18.3.7. A smooth section of TM is also known as a smooth vector field.

When we have a section s : X Ñ E of a smooth vector bundle and a smooth
function g : X Ñ R, we can use fiberwise scalar multiplication to produce a new
section g ¨ s.

Definition 18.3.8. An orientation of a smooth vector bundle p : E Ñ B is an
everywhere non-zero section s of ΛdimpEqE, up to the equivalence relation of
scalar multiplication by an everywhere positive smooth function.

Thus, an orientation on E is smooth choice of non-zero elements of each
ΛdimpEqEx up to scaling, that is, a smooth choice of orientation of each of vector
spaces Ex.
Example 18.3.9. Trivial vector bundles always admit an orientation.
Example 18.3.10. A more interesting example is the Moebius strip, i.e. the
tautological bundle over RP 1. We use the following straightforward observation:
every section s of a smooth vector bundle p : E Ñ B is homotopic to the 0-section.
Indeed, take H : B ˆ r0, 1s Ñ E given by

pp, tq ÞÝÑ t ¨ sppq.

Using this we prove that the tautological bundle γ over RP 1 (the one whose total
space is the Moebius strip) does not admit an orientation. Let us identify RP 1

with the 0-section. If this bundle did admit an orientation, there would be an
everywhere non-zero section s and we would have I2ps,RP 1q “ 0. But we also
know that I2ps,RP 1q “ I2pRP 1,RP 1q, and latter is 1 by exhibiting a particular
section transverse to the 0-section. This gives a contradiction.
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A vector bundle E is said to be orientable if it admits an orientation.

Lemma 18.3.11. A vector bundle E is orientable if ΛdimpEqE is isomorphic to
a trivial line bundle. Furthermore, an orientation is a trivialization of ΛdimpEqE
up to scalar multiplication by a smooth positive function.

Proof. Indeed, a representative s : X Ñ ΛdimpEqE of an orientation furnishes an
isomorphism

X ˆ R –
ÝÑ ΛdimpEqE

pb, tq ÞÝÑ t ¨ spbq.

Conversely, an isomorphism ϕ : ΛdimpEq – X ˆ R gives an everywhere non-
vanishing section s : X Ñ ΛdimpEq by x ÞÑ ϕ´1px, 1q.

If E is orientable, how many orientations does it admit? Given an orientation
represented by s, any other orientation s1 differs by scalar multiplication of s with
an everywhere non-zero smooth function f . If we multiply f with an everywhere
positive smooth function we get the same s1, so the orientations are given by the
set of everywhere non-zero smooth functions up to multiplication by everywhere
positive smooth function. In other words, for each connected component of X
we have to pick a choice of sign. We conclude that:

Lemma 18.3.12. Let π0pXq denote the set of connected components of X, then
if E is orientable the set of orientations is (non-canonically) given by the set of
functions

π0pBq ÝÑ t˘1u.

Given orientations for smooth vector bundles E,E1 over X, you can produce
a direct sum orientation on E ‘ E1. The observation you need is that there is a
natural isomorphism

ΛdimpEqE b ΛdimpE1qE1 –
ÝÑ ΛdimpEq`dimpE1qpE ‘ E1q

pv1 ^ ¨ ¨ ¨ ^ vdimpEqq b pv1
1 ^ ¨ ¨ ¨ ^ v1

dimpE1qq ÞÝÑ v1 ^ ¨ ¨ ¨ ^ vdimpEq ^ v1
1 ^ ¨ ¨ ¨ ^ v1

dimpE1q.

Thus trivializations of ΛdimpEqE and ΛdimpE1qE1 give a trivialization of ΛdimpEqEb

ΛdimpE1qE1.
Conversely, if E “ E1 ‘ E2 with E and E1 oriented, the trivializations of E

and E1 give isomorphisms

B ˆ R – ΛdimpE1q`dimpE2qpE1 ‘ E2q – ΛdimpE1qE1 b ΛdimpE2qE2 – ΛdimpE2qE2,

so an orientation of E2.

18.3.4 Orientations of manifolds

If M is a k-dimensional manifold, then TM is a k-dimensional smooth vector
bundle M and hence ΛkTM is a 1-dimensional smooth vector bundle M , called
the orientation line bundle.
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Definition 18.3.13. An orientation of M is an orientation of TM .

Remark 18.3.14. An orientation of M is equivalent to a choice of “oriented” atlas
inside its maximal atlas, where all transition functions are required to have total
derivatives with positive determinant.

Let us give two examples of manifolds that are orientable and one which is
not:
Example 18.3.15. If M “ S1, the tangent bundle is isomorphic to a trivial
bundle and since ΛdimpEqE “ E for any 1-dimensional vector bundle so is its top
exterior power. It hence admits exactly two orientations. These correspond to
the clockwise and counterclockwise directions of the circle.
Example 18.3.16. If M “ ˚, we have that Λ0TM “ R, so the point admits exactly
two orientations. However, the one represented by 1 P R should obviously be our
preferred choice.
Example 18.3.17. We claim that RP 2 admits no orientation. If it did then so
would TRP 2|RP 1 . This vector bundle is isomorphic to TRP 1 ‘NRP 1 – R ‘ γ,
with γ the canonical bundle over RP 1. This means its orientation line bundle
is Λ2pR ‘ γq – γ and we proved above that γ does not admit an everywhere
non-vanishing section, i.e. is not trivializable.

There are several constructions which produce new orientations on manifold
form old ones:
Example 18.3.18. Given a manifold M with orientation, we can produce another
orientation by multiplying a representative section s : M Ñ ΛkTM with ´1. This
is called reversing the orientation and we shall occasionally use the notion ´M
for this.
Example 18.3.19. If M and N are manifolds with orientations, then we get a
direct sum orientation on M ˆN , as Tpp,p1qpM ˆNq – TpM ‘ Tp1N .

To phrase this in terms of vector bundles, we need a generalization of the
restriction of vector bundles: given any map f : X 1 Ñ X we can pull back a
vector bundle p : E Ñ X to X 1 by setting f˚E “

Ů

x1PX Efpx1q. In the language
of vector bundles we have T pM ˆNq – π˚

1TM ‘ π˚
2TN .

Example 18.3.20. If Z Ă N is a submanifold and both N and Z are oriented,
then the isomorphism TN |Z – NZ ‘ TZ shows that NZ also comes with an
orientation.
Example 18.3.21. Suppose we have a smooth map f : M Ñ N with M and N
oriented, and Z Ă M an oriented submanifold such that f&Z. Then f´1pZq is
a submanifold and its tangent bundle satisfies f˚NZ ‘ Tf´1pZq – TM |f´1pZq.
Since both TM |f´1pZq and f˚NZ comes with orientations, we get an orientation
of Tf´1pZq.

18.3.5 Induced orientation on the boundary

If M is a manifold with boundary BM , then its boundary BM inherits an
orientation, canonically so once we fix a single convention. To do so, it is
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convenient to pick a Riemannian metric on M , that is, on TM . Then the
restriction TM |BM inherits a Riemannian metric and thus splits as TBM ‘

pTBMqK, the latter being a line bundle.
By Lemma 14.2.7, there exist a smooth function χ : M Ñ r0,8q such that

χ´1p0q “ BM and for each p P BM , dpχ is non-vanishing on some vector v P

TpMzTpBM . This vector v decomposes as a sum of a vector vB P TpBM and a
vector vK P pTpBMqK. Since χ is constant on BM , vB is zero so vK is non-zero.
Hence the restriction dpχ : pTpBMqK Ñ R is non-zero.

We call a vector v P pTpBMqK such that dpχpvq ă 0 outward pointing. Such a
vector is unique up to scaling by a positive real number. In particular, there is a
canonical section n of pTM |BM qK given at p P BM by the unique element np of
pTpBMqK such that dpχpnpq “ 1.

Every vector v P V provides a linear map v ^ ´ : Λk´1pV q Ñ ΛkpV q. This
generalizes to a map of vector bundles

Λk´1pTBMq ÝÑ ΛkpTM |BM q

w ÞÝÑ n^ w

of vector bundles, by thinking of Λk´1pTBMq as a linear subspace of Λk´1pTM |BM q

using the inclusion of TBM into TM |BM .

Lemma 18.3.22. If an orientation of M is represented by the section s of
ΛkTM , then there is a unique orientation of M which is represented by a section
s̄ of Λk´1TBM satisfying n^ s̄ “ s.

Proof. For each p P BM , fix a basis e1, . . . , ek´1 of TpBM . By adding np we get a
basis of TpM . Then s̄ppq is by definition c̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1 for some c̄ P R, and
sppq similarly is cppq ¨ np ^ e1 ^ ¨ ¨ ¨ ^ ek´1 for some cppq P R. From the equation

np ^ pc̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1q “ cppq ¨ np ^ e1 ^ ¨ ¨ ¨ ^ ek´1

we read off c̄ppq “ cppq, so s̄ is uniquely determined by n and s.
Firstly s̄, up to multiplication by a positive smooth function, is independent

of the choice of representative s: if s changes by multiplying it with positive
smooth function, so does s̄.

Next, we have to verify the orientation is independent of the choice of Rie-
mannian metric g and smooth function χ. Modifying the latter just changes n
by scalar multiplication by a positive smooth function, and hence has the same
effect on s̄. If we vary g, then np gets replaced by n1

p “ anp `
řk´1
i“1 aiei with

a ą 0 so

n1
p ^ pc̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1q “ a ¨ np ^ pc̄ppq ¨ e1 ^ ¨ ¨ ¨ ^ ek´1q,

and again s̄ just changes by scalar multiplication by a positive smooth function.

Definition 18.3.23. If M is oriented, we shall consider BM as oriented by the
orientation produced in the previous lemma. We refer to this as the induced
orientation.
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Example 18.3.24. There is a preferred choice of orientation on r0, 1s, namely using
1 P Λ1Tpr0, 1s – Tpr0, 1s – R. Then

Br0, 1s – t1u ´ t0u,

where, for an oriented manifold N , ´N denotes the same manifold with opposite
orientation.

More generally, if M is oriented without boundary, then

Bpr0, 1s ˆMq “ M ˆ t1u ´M ˆ t0u.

However, if we do BpMˆr0, 1sq we get p´1qdimpMqpMˆt1u´Mˆt0uq. This is an
unfortunate clash of our conventions for orientations and notation for homotopies.
Example 18.3.25. Generalizing Example 18.3.21 to the case that M has boundary
and f&Z, Bf&Z we get that Bf´1pZq “ pBfq´1pZq comes with two orientations:
one as the boundary of an oriented manifold and one as the inverse image of an
oriented manifold. These are not equal but satisfy

Bf´1pZq “ p´1qcodimpZqpBfq´1pZq.

18.4 Integral intersection theory

Chapter 3 of [GP10] upgrades the mod 2 intersection theory to an integral version.
The main input is the observation that

Br0, 1s – t1u ´ t0u

and the classification of compact 1-dimensional manifolds lead to the following
result:

Proposition 18.4.1. If M is a compact oriented 1-dimensional manifold, then
the number of positively-oriented points in BM is equal to the number of negatively-
oriented points.

So we can define intersection numbers with values in Z instead of Z{2:

Definition 18.4.2. Suppose that Y is a compact oriented manifold without
boundary, M is an oriented manifold and Z Ă M is an oriented submanifold
such that dimpY q ` dimpZq “ dimpMq.

Let f0 : Y Ñ M be a smooth map. Then the intersection number Ipf0, Zq is
defined as follows: take f1 homotopic to f0 and transverse to Z, and set

Ipf0, Zq “
ÿ

pPf´1
1 pZq

orientation of p.

One proceeds as before, using Proposition 18.4.1 in place of the fact that
the number of points in the boundary of a compact 1-dimensional manifold is
even, to prove that Ipf0, Zq is well-defined and establish its basic properties. You
can then easily define integral versions of the degree of a map and the winding
numbers, and use these to great effect.
Example 18.4.3. With these definitions in hand, the mod 2 linking numbers of
Section ?? generalize to integer linking numbers.
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18.5 Problems

Problem 46 (Codimension 1 submanifolds are orientable). Use the Jordan–
Brouwer separation theorem to prove that if M Ă Rk is a compact codimension
1 submanifold, then it is orientable.

Problem 47. Use partitions of unity to prove that any vector v P TpM is the
value at x of some smooth vector field X on M .



Chapter 19

Differential forms and integration

Today we define differential forms and one of their raisons-d’etre: integration.
This is Section 4.§4 of [GP10], but you should also take a look at Sections 4.§1–3
if you haven’t done so already.

19.1 Differential forms

We start with a discussion of differential forms, with a focus of forms of top
degree.

19.1.1 The definition of differential forms

The definition of 1-forms

Every smooth manifold has a tangent bundle TM , which you are already familiar
with, and a cotangent bundle T ˚M . The fibers T ˚

pM of the cotangent bundle,
called cotangent spaces, are the linear duals pTpMq˚ of the tangent spaces. If M
has dimension k, both are smooth vector bundles of dimension k.

Definition 19.1.1. A 1-form on M is a smooth section of T ˚M .

We can produce a 1-form from a smooth function f : M Ñ R. Recall that the
fibres TmM of the tangent bundle are derivations of germs EpM,mq near m of
smooth functions M Ñ R. In particular, these assign a number to each the germ
f of f . We get an element pdfqm of pTmMq˚ by taking

df : TmM ÝÑ R
X ÞÝÑ Xpfq.

This produces an element of TmM for each m, hence a section. To see it is
smooth we use charts:
Example 19.1.2. If ϕ : Rk Ą U Ñ V Ă M is a chart around p P M , its derivative
induces an isomorphism of Tϕ´1ppqRk with TpM . The former, one thinks of
as the R-vector space with basis given by partial derivatives B

Bx1
, . . . , B

Bxk
(this

is just alternative notation for the standard basis vector e1, . . . , ek, but now
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considered as elements of Tϕ´1ppqRk – Rkq. This in turn gives rise to a dual basis
dx1, . . . , dxk of T ˚

pM . Thus every 1-form α can be written in local coordinates as

αpxq “

k
ÿ

i“1
aipxqdxi.

We saw above that any smooth function f : M Ñ R gives rise to a 1-form df . In
terms of the above coordinates this is given by

T ˚
pM Q pdfqp :“

k
ÿ

i“1

Bf

Bxi
ppqdxi.

To see this, observe that pdfqp by construction evaluates on B
Bxi

to Bf
Bxi

ppq.

Example 19.1.3. The 1-form ´ydx` xdy on R2 restricts to a 1-form on S1 Ă R2

which is nowhere-vanishing.

The definition of p-forms

We extend the notion of a 1-form to a p-form as follows:

Definition 19.1.4. A p-form is a smooth section of ΛpT ˚M .

Example 19.1.5. As Λ0T ˚M “ R, a smooth 0-form is a smooth function. As
Λ1T ˚M “ T ˚M , this recovers the definition of a smooth 1-form given above.

Since the value at p P M of a smooth section of a smooth vector bundle E lie
in R-vector spaces Ep, so we can define addition of smooth sections by pointwise
addition. Similarly, we can scale a smooth section with any smooth real-valued
function. The result is either operation is again smooth section, making the set
ΓpM,Eq into a C8pM ;Rq-module. Since C8pM ;Rq contains R as the constant
functions, ΓpM,Eq is in particular an R-vector space.

Definition 19.1.6. ΩppMq is the R-vector space ΓpM,ΛpT ˚Mq of p-forms.

Definition 19.1.7. Ω˚pMq is the graded R-vector space of differential forms on
M , given by putting the p-forms ΩppMq in degree p. When the degree plays no
role, we refer to a p-form as a differential form of degree p.

Recalling that M is k-dimensional, we see that ΛpT ˚M “ 0 if p ą k, and
hence there are no non-zero differential forms of degree larger than the dimension
of M . In this lecture our main interest is the case p “ k. Then ΛkT ˚M is
one-dimensional, and we shall refer to the k-forms as top forms.
Example 19.1.8. A chart ϕ : Rk Ą U Ñ V Ă M induces a local trivialization of
TM . In turn, this gives a local trivializations of T ˚M and hence of ΛpT ˚M . For
this we see that each p-form ω P ΩppV q can be written in local coordinates as

ωpxq “
ÿ

I

aIpxqdxI
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where for each index set I “ 1 ď i1 ă . . . ă ip ď k, we write
dxI :“ dxi1 ^ ¨ ¨ ¨ ^ dxip ,

and aI : U Ñ R is a some smooth function. In particular, every top form can be
written in local coordinates as

ωpxq “ apxqdx1 ^ ¨ ¨ ¨ ^ dxk

for a smooth function a : U Ñ R.
Example 19.1.9. Recall that an orientation was an everywhere non-vanishing
section of ΛkTM , up to scaling by everywhere positive function. Recall that
a Riemannian metric is a smooth family of non-degenerate bilinear forms on
TM , and always exists. Such a Riemannian metric gives an isomorphism of
TM and T ˚M by sending a vector v P TpM to the linear functional w ÞÑ xw, vy

in T ˚
pM . This isomorphism induces an isomorphism between the line bundles

ΛkTM and ΛkT ˚M , and hence an orientation is also the same as an everywhere
non-vanishing top form up to scaling.

19.1.2 The wedge product

We defined a wedge product
^ : ΩppMq b ΩqpMq Ñ Ωp`qpMq,

induced by the corresponding wedge product on the exterior powers of the fiber.
This has the following property:

Theorem 19.1.10. The wedge product makes Ω˚pMq into a graded-commutative
R-algebra. That is, the wedge product has the following properties:

(1) It is unital with unit given by the function that is constant 1.
(2) It is bilinear.
(3) It is associative.
(4) If ω has degree p and ρ has degree q, then ω ^ ρ has degree p` q and

ω ^ ρ “ p´1qpqρ^ ω

Remark 19.1.11. Observe that Ω0pMq “ C8pM ;Rq, and the wedge product
Ω0pMq b ΩppMq Ñ ΩppMq is equal to the multiplication of the C8pM ;Rq-
module structure. Hence we can replace linearity by C8pM ;Rq-linearity.

We can use the wedge products to produce many top forms, e.g. by wedging
together k 1-forms as below:
Example 19.1.12. Given k smooth functions f1, . . . , fk : Rk Ñ R, we can produce
a top form

df1 ^ ¨ ¨ ¨ ^ dfk,

whose value in local coordinates is given by

pdf1 ^ ¨ ¨ ¨ ^ dfkqp “ det
ˆ

Bfj
Bxi

˙

dx1 ^ ¨ ¨ ¨ ^ dxk.

If you don’t see how to do this computation, please ask about it in office hours
or sections.
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19.1.3 Pullback of differential forms

One of the advantages of differential forms is that we can pull them back along
any smooth map, unlike vector fields, which can only be pushed forward along a
diffeomorphism:

Theorem 19.1.13. Each smooth map f : M Ñ N induces a map f˚ : Ω˚pNq Ñ

Ω˚pMq of graded-commutative R-algebras by applying to p-forms the map Λppdpfq˚

in each fiber. Pullback has the following properties:
(1) On functions (that is, 0-forms), f˚ is given by precomposition, f˚g “ g˝f .
(2) pg ˝ fq˚ “ f˚ ˝ g˚ and pidq˚ “ id.
(3) It commutes with wedge products:

f˚pω ^ ρq “ f˚pωq ^ f˚pρq.

(4) It commutes with taking derivatives of functions:

f˚dg “ dpf˚gq.

Example 19.1.14. Let’s compute some pullback in local coordinates. Suppose
f : Rk Ą U Ñ V Ă Rk1 is a smooth map and recall that dx1

i P Ω1pV q is the dual
to the vector field B

Bx1
i

that is constant equal to e1
i. Then

f˚dx1
i “ df˚x1

i1 “ dfi1
k

ÿ

i“1

Bfi1

Bxi
dxi,

with fi1 the i1th component of f .
A similar formula exists for p-forms, but we will focus on the case of top

forms. Suppose a p-form ω P ΩppV q is given by

ωpx1q “ apx1qdx1
1 ^ ¨ ¨ ¨ ^ dx1

k1 .

Since pullback commutes with wedge product, its pullback f˚ω P ΩppV 1q must
given by

f˚ωpxq “ apfpxqqf˚pdx1
1 ^ ¨ ¨ ¨ ^ dx1

k1q

“ apfpxqqf˚pdx1
1q ^ ¨ ¨ ¨ ^ f˚pdx1

k1q

and above we saw how to compute each term f˚pdx1
i1q in terms of the partial

derivatives of fi1 .
Given a submanifold X Ă M with inclusion denoted i : X ãÑ M , we can

restrict a p-form ω P ΩppMq to X:

Ω˚pMq Q ω ÞÝÑ i˚ω P ΩppXq.

If X is p-dimensional, this gives a top form on X.
Example 19.1.15. The restriction to S1 Ă R2 of the 1-form ω “ xdx ` ydy is
identically 0. This is because that ω is dg with g : R2 Ñ R given by 1

2px2 ` y2q.
Hence i˚ω “ i˚dg “ dpi˚gq and since i˚g constant equal to 1 its derivative
vanishes.
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19.2 Integration of differential forms

Our next goal is the integration of k-forms over k-dimensional manifolds. This
theory of integration has a number of features which may differ from what you
are used to:

(I) It is only defined for oriented manifolds.
(II) Over a k-dimensional oriented manifold, you can only integrate top

forms (so only k-forms, not functions).
(III) We will only define integration of compactly-supported top forms.

19.2.1 Integration on Rk

First suppose that
ω “ apxq dx1 ^ ¨ ¨ ¨ ^ dxk,

is a top form on an open subset U Ă Rk. Then, as the notation suggests, we
shall define

ż

U
ω “

ż

U
apxq dx1 ^ ¨ ¨ ¨ ^ dxk :“

ż

U
apxq dx1 ¨ ¨ ¨ dxk,

and to guarantee that the integral exist we assume a has compact support in
U . This is not really necessary as some integrals of functions without compact
support do converge, but it is the only case we shall use. For smooth compactly-
supported functions both the Riemann and Lebesgue integral exist and are equal,
so we don’t need to worry about the technical details too much.
Example 19.2.1. The order of the entries of dx1 ^ ¨ ¨ ¨ ^ dxk is important: if
U “ intpD2q and ω “ dy ^ dx, then (ignoring the compact support requirement)

ż

U
ω “

ż

intpD2q

dy ^ dx “ ´

ż

intpD2q

dx^ dy “ ´π.

How does the integral of a top form transform under a change of coordinates?
That is, suppose we have a diffeomorphism ψ : U 1 Ñ U . Then on the one hand,
we have by definition of the integral that

ż

U 1

ψ˚ω “

ż

U 1

ψ˚apx1qψ˚dx1 ^ ¨ ¨ ¨ ^ ψ˚dxk

“

ż

U 1

pa ˝ ψqpx1q dψ1 ^ ¨ ¨ ¨ ^ dψk

“

ż

U 1

pa ˝ ψqpx1q det
ˆ

Bψj
Bx1

i

˙

dx1
1 ^ ¨ ¨ ¨ ^ dx1

k,

and recognizing the matrix that we are taking the determinant of as the total
derivative of ψ, we get

ż

U 1

ψ˚ω “

ż

U 1

pa ˝ ψqpx1q detpDx1ψq dx1
1 ¨ ¨ ¨ dx1

k. (19.1)

On the other hand, the change-of-variables formula from multivariable calculus
[DK04b, Theorem 6.6.1] says:
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Theorem 19.2.2. With notation as above,
ż

U
apxqdx1 ¨ ¨ ¨ dxk “

ż

U 1

pa ˝ ψqpx1q |detpDx1ψq| dx1
1 ¨ ¨ ¨ dx1

k. (19.2)

Remark 19.2.3. To see that the absolute values signs belong in this formula,
observe that in the integral you use the values of a and the volumes of blocks,
without a sign.

That is, (19.1) and (19.2) could differ by a sign (or even worse if U has many
components) and to avoid this, we have to understand when the sign of detpDx1ψq

is positive. This determinant also appears as the multiple of e1 ^ ¨ ¨ ¨ ^ ek one
obtains when applying

ΛkpDx1ψq : ΛkTx1U 1 – R ¨ pe1 ^ ¨ ¨ ¨ ^ ekq ÝÑ ΛkTxU – R ¨ pe1 ^ ¨ ¨ ¨ ^ ekq

to e1 ^ ¨ ¨ ¨ ^ ek. We said that ψ preserves orientation if this multiple is positive.
That is, we conclude the following:

Corollary 19.2.4. If ω P ΩkpUq is a compactly-supported top form and ψ : Rk Ą

U 1 Ñ U Ă Rk is an orientation-preserving diffeomorphism, then
ż

U 1

ψ˚ω “

ż

U
ω.

19.2.2 Integration on manifolds

We shall define the integral of a compactly-supported top form ω over an oriented
manifold M in several steps.

Theorem 19.2.5. There is a unique construction of an integral of top forms on
oriented k-dimensional manifolds with the following properties:

(1) If the manifold has an orientation-preserving diffeomorphism to an open
subset of Rk, it is the integral defined above (note that this is independent
of the choice of such diffeomorphism by Corollary 19.2.4).

(2) If ω is supported in U Ă M then
ş

M ω “
ş

U ω.

(3) It is linear.

Proof. Desiderata (1) and (2) imply that if ω happens to be supported in the
image of an orientation-preserving chart ϕ : Rk Ą U Ñ V Ă M (using the
standard orientation on Uα inherited from Rk), we must define

ż

V
ω :“

ż

U
ϕ˚ω.

If M is oriented, we can find an open cover of M by charts ϕα : Rk Ą Uα Ñ

Vα Ă M so that all transition functions are orientation-preserving. Now pick
a partition of unity ηα subordinate to the Vα, and observe that ω “

ř

α ηαωα
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which is a finite sum because the support of ω is compact. Thus desideratum (3)
forces us to define

ż

M
ω :“

ÿ

α

ż

Vα

ηαωα,

which makes sense because it is a finite sum.
We need to verify that this is independent of the choice of open cover and

partition of unity. Take a second collection of charts ϕ1
β : Rk Ą U 1

β Ñ V 1
β Ă M

and a subordinate partition of unity ρ1
β. Using the fact that

ř

β ρ
1
β “ 1 and the

sums are finite so may be interchanged, we get
ÿ

α

ż

Vα

ηαω “
ÿ

α

ż

Vα

ηαp
ÿ

β

ρ1
βωq

“
ÿ

α

ÿ

β

ż

VαXV 1
β

ηαρ
1
βω,

and by symmetry this is also
ř

β

ş

V 1
β
ρ1
βω.

Example 19.2.6. If ´M denotes M with opposite orientation, then
ş

´M ω “

´
ş

M ω.
Example 19.2.7. If ω is a p-form for p ă k, we can’t integrate it over the
k-dimensional manifold M . However, we can integrate it over an oriented
submanifold X Ă M of dimension p:

ż

X
ω :“

ż

X
i˚ω

with i : X ãÑ M the inclusion.
Remark 19.2.8. From the construction in Theorem 19.2.5, we see that if you have
a preferred collection of tpUi, Vi, ϕqu of M such that

Ť

i Vi “ M , you can use only
these charts in your construction of the integral.

Using this definition, Corollary 19.2.4 generalizes to manifolds:

Corollary 19.2.9. If f : M Ñ N is an orientation-preserving diffeomorphism
and ω P ΩkpNq is a compactly-supported top form, then

ż

M
f˚ω “

ż

N
ω.

This definition of the integral is useful for proving theorems, but hard to use
in practical computations. In practice one does the following. We start with two
observations: the above construction goes through for Riemann-integrable forms,
not just smooth ones, and for manifolds with boundary (or even corners).

Now suppose one has a finite collection of orientation-preserving embeddings
φi : Rk Ą Ni Ñ M of submanifolds with boundary (or even corners), which only
intersect at their boundary. Then we can decompose a smooth ω as a finite sum
of Riemann-integrable forms

ř

i 1φipNiqω with 1φipNiq the indicator function of
φipNiq, and evaluate the integral as

ż

M
ω “

ÿ

i

ż

φipNiq

1φipNiqω “
ÿ

i

ż

Ni

φ˚
i ω.
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Example 19.2.10. This tells you that to compute the integral of a 2-form over S2,
you decompose S2 into the two hemisphere, parametrize these by a disk, and you
take the sum of the values of the integral of the pullback of the 2-form to both
disks. In other words, it’s what you have been doing in multivariable calculus all
along.
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The exterior derivative and Stokes’ theorem

Stokes theorem is a generalization of the formula
ż 1

0

Bf

Bx
dx “ fp1q ´ fp0q.

To state it, we first need to generalize the derivative of a function to differential
forms; the exterior derivative. The proof of Stokes’ theorem will then follow from
an easily proven version in charts. This material can be found in Sections 4.§5
and 4.§7 of [GP10].

20.1 The exterior derivative

As for the integral, we shall first define the exterior derivative on open subsets of
Rk and then extend it to arbitrary smooth manifolds using charts. Suppose we
are given a p-form on an open subset U Ă Rk,

ω “
ÿ

I

aIdxI ,

the sum ranging over all 1 ď i1 ă . . . ă ip ď k and dxI :“ dxi1 ^ ¨ ¨ ¨ ^dxip . Then
the exterior derivative is given by taking the ith partial derivative of each of the
coefficients and wedging with dxi:

dω “
ÿ

i

ÿ

I

BaI
Bxi

dxi ^ dxI .

Some of the terms in this sum vanish, when i is among the indexing set I.
More generally, signs appears when shuffling dxi into its standard position.
Example 20.1.1. If f : R3 Ą U Ñ R is a smooth function, i.e. a 0-form, then its
exterior derivative is

df “
Bf

Bx1
dx1 `

Bf

Bx2
dx2 `

Bf

Bx3
dx3.

This coincides with the definition we used before. This is related to the gradient
of the function f .

171
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Example 20.1.2. If we have a 1-form on U Ă R3,

α “ a1dx1 ` a2dx2 ` a3dx3,

then its exterior derivative is

dα “

ˆ

Ba1
Bx1

dx1 `
Ba1
Bx2

dx2 `
Ba1
Bx3

dx3

˙

^ dx1

`

ˆ

Ba2
Bx1

dx1 `
Ba2
Bx2

dx2 `
Ba2
Bx3

dx3

˙

^ dx2

`

ˆ

Ba3
Bx1

dx1 `
Ba3
Bx2

dx2 `
Ba3
Bx3

dx3

˙

^ dx3

“

ˆ

Ba2
Bx1

´
Ba1
Bx2

˙

dx1 ^ dx2 `

ˆ

Ba3
Bx1

´
Ba1
Bx3

˙

dx1 ^ dx3 `

ˆ

Ba3
Bx2

´
Ba2
Bx3

˙

dx2 ^ dx3.

This is related to the curl of the vector field with components pa1, a2, a3q.

Example 20.1.3. If we have a 2-form on U Ă R3,

ω “ a1dx2 ^ dx3 ´ a2dx1 ^ dx3 ` a3dx1 ^ dx2,

then its exterior derivative is

dω “

ˆ

Ba1
Bx1

`
Ba2
Bx2

`
Ba3
Bx3

˙

dx1 ^ dx2 ^ dx3.

This is related to the divergence of the vector field with components pa1, a2, a3q.

The exterior derivative has the following properties, and the following also
serves as a definition:

Theorem 20.1.4. The exterior derivative is the unique operation Ω˚pUq Ñ

Ω˚`1pUq with the following properties:
(i) For smooth functions f P Ω0pUq, df “

řk
i“1

Bf
Bxi
dxi.

(ii) It is linear, dpω ` νq “ dω ` dν.

(iii) It is a graded derivation for the wedge product, for a p-form ω and a q-form
ν, dpω ^ νq “ dpωq ^ ν ` p´1qpω ^ dpνq.

(iv) It is a differential, dpdωq “ 0.

Proof. We first verify that the exterior derivative satisfies the above properties.
Property (i) is true by definition, and property (ii) follows from the fact that
partial derivatives are linear. Properties (iii) and (iv) are slightly harder; the
former is essentially the product rule and the latter the fact that partial derivatives
commute.

By linearity of d and the fact that ^ distributes over finite sums, it suffices to
prove (iii) in the case that ω “ aIdxI and ν “ bJdxJ . Then ω^ν “ aIbJdxI^dxJ
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and we have that

dpω ^ νq “

k
ÿ

i“1

BpaIbJq

Bdxi
dxi ^ dxI ^ dxJ

“

k
ÿ

i“1

ˆ

BaI
Bdxi

bJdxi ^ dxI ^ dxJ ` aI
BbJ
Bdxi

dxi ^ dxI ^ dxJ

˙

“

˜

k
ÿ

i“1

BaI
Bdxi

dxi ^ dxI

¸

^ pbJdxJq ` p´1qpqaIdxI ^

˜

k
ÿ

i“1

BbJ
Bdxi

dxi ^ dxJ

¸

“ dpωq ^ ν ` p´1qpω ^ dpνq.

Similarly, it suffices to prove (iv) in the case that ω “ aIdxI . Since dpdxiq “ 0
(we are only taking partial derivatives of constant functions), we can use (iii)
twice to write

dpdpaIdxIqq “ dpdaIq ^ dxI ,

and hence it suffices to show that dpdaIq “ 0. But we have

dpdaIq “

k
ÿ

i“1

k
ÿ

j“1

B2aI
BxiBxj

dxi ^ dxj “
ÿ

1ďiăjďk

B2aI
BxiBxj

pdxi ^ dxj ` dxj ^ dxiq “ 0.

Here we have first used that partial derivatives of smooth functions commute,
and that dxi ^ dxi “ 0 and dxi ^ dxj ` dxj ^ dxi “ dxi ^ dxj ´ dxi ^ dxj “ 0.

The next goal is to prove uniqueness. Suppose that D : Ω˚pUq Ñ Ω˚`1pUq

satisfies the same property, then we must show that d “ D. But if we try to
prove d and D coincide on a general p-form

ω “
ÿ

I

aIdxI ,

then by (ii) it suffices to prove they coincide on aIdxI . By (iii) it then suffices
to prove they coincide on aI and each dxi. By (i), they indeed coincide on aI .
For dxi, observe that dxi “ dpxiq which equals Dpxiq by (i), so that by (iv)
dpdxiq “ 0 and Dpdxiq “ DpDpxiqq “ 0.

The exterior derivative commutes with pullback:

Proposition 20.1.5. If g : U 1 Ñ U is a smooth map between open subsets of
Euclidean spaces, then g˚d “ dg˚.

When g is a diffeomorphism, there is an elegant proof by observing that
pg´1q˚dg˚ has the same properties as d, so by uniqueness of the exterior derivative
has to be equal to it.

Proof. Recall that g˚ has the following properties: (i’) g˚df “ dpf ˝ gq, (ii’) it is
linear, (iii’) it commutes with wedge product. These formal properties imply the
proposition as follows: to prove that g˚d and dg˚ coincide on a general p-form

ω “
ÿ

I

aIdxI ,
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by (ii) and (ii’) it suffices to prove they coincide on each aIdxI . Then by (iii) and
(iii’) it suffices to prove they coincide on aI and each dxI . Property (i’) says they
coincide on aI . For dxi, we observe that g˚dpdxiq “ g˚0 “ 0 and to prove that the
other side also vanishes we write g˚dxi “ g˚dpxiq “ dg so dg˚dxi “ d2g “ 0.

Since d in particular commutes with pullback along a diffeomorphism, we can
extend to smooth manifolds of dimension k using charts. For ω P ΩppMq, dω is
defined near a point in M by picking a chart ϕ : Rk Ą U Ñ V Ă M and taking
pϕ´1q˚dϕ˚ω. The previously established properties all generalize to manifolds,
as they can be verified in a chart. This theorem serves as the definition of the
exterior derivative.

Theorem 20.1.6. There is an operation d : Ω˚p´q Ñ Ω˚`1p´q on differential
forms on manifolds uniquely determined by the following properties:

(i) On smooth functions, i.e. 0-forms, it is the ordinary derivative.
(ii) It is linear.

(iii) It is a derivation for the wedge product.
(iv) It is a differential, d2 “ 0.
(v) It commutes with pullbacks along smooth maps.

We also add one useful observation from the point of view of integration: if ω
is compactly-supported so is dω. Letting Ω˚

c p´q denote the compactly-supported
forms, we can restrict d to an operation Ω˚

c p´q Ñ Ω˚`1
c p´q. Note that the

pullback of a compactly-supported form is not in general compactly-supported;
this requires the map to the proper as supppg˚ωq Ă g´1psupppωqq and properness
is exactly the condition that the inverse image of a compact subset is compact.

20.2 Stokes’ theorem

Recall that last lecture we defined the integral of a compactly-supported top
form over an oriented manifold, using partitions of unity.

Theorem 20.2.1 (Stokes). Let ω P Ωk´1
c pMq be a compactly-supported pk ´ 1q-

form on an oriented smooth manifold M of dimension k with boundary BM ,
then

ż

M
dω “

ż

BM
ω.

In this theorem, we need BM to be oriented as well and to get this equation
to hold, we use our convention for the induced orientation on the boundary
(“outward-pointing first”).
Example 20.2.2. Let M “ r0, 1s with its standard orientation. Then Br0, 1s “

t0, 1u, where 1 has positive orientation and 0 has negative orientation. In this
case Stokes concerns 0-forms, i.e. functions, and says

ż 1

0

Bf

Bx
dx “

ż

r0,1s

df “

ż

Br0,1s

f “ fp1q ´ fp0q,

a formula that should be quite familiar.
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In fact, our proof will use the above result as input, a basic result in
single-variable calculus. We also use Fubini’s theorem on successive integra-
tion, e.g. [DK04b, Theorem 6.4.5].

Proof. Pick an open cover of M by the codomains Vα of a collection of charts
ϕα : r0,8q ˆ Rk´1 Ą Uα Ñ Vα Ă M . Also pick a subordinate partition of unity
ηα : M Ñ r0, 1s. Then ω “

ř

α ηαω, and this sum is finite because supppωq is
compact. Since both

ş

M and d are linear, we may thus assume that ω is supported
in Vα. Then so is dω and we have

ż

M
dω “

ż

Uα

ϕ˚
αdω and

ż

BM
ω “

ż

BUα

ϕ˚
αω.

Since ϕ˚
α commutes with d, we might as well replace ϕ˚

αω by ω to simplify
notation and extend this by 0 to a compactly-supported pk´ 1q-form on r0,8q ˆ

Rk´1. We have thus reduced our task to proving Stokes theorem in the special
case M “ r0,8q ˆ Rk´1.

Since both
ş

r0,8qˆRk´1 dω and
ş

t0uˆRk´1 ω are linear in ω, it suffices to prove
this for ω “ adxI with I “ 1 ă . . . ă î ă . . . ă k. Then dω “ p´1qi´1 Ba

Bxi
dx1 ^

¨ ¨ ¨ ^ dxk. There are two cases: (i) i “ 1, (ii) i ą 1.
Let’s start with the latter. Then ω restricts to 0 on BM (as it contains a dx1) so

we should get 0. Pick N sufficiently large so that supppaIq Ă r0, N sˆr´N,N sk´1,
then

ż

r0,8qˆRk´1
dω “

ż

r0,Nsˆr´N,Nsk´1
p´1qi´1 Ba

Bxi
dx1 ^ ¨ ¨ ¨ ^ dxk

“

ż

r0,Nsˆr´N,Nsk´2

˜

ż

r´N,Ns

Ba

Bxi
dxi

¸

dxI

“

ż

r0,Nsˆr´N,Nsk´2
papx1, . . . , N, . . . , xkq ´ apx1, . . . ,´N, . . . , xkqq dxI

“ 0 “

ż

t0uˆRk´1
ω.

Here we have used Fubini’s theorem, the fundamental theorem of analysis and
that a is supported in r0, N s ˆ r´N,N sk´1 so that both apx1, . . . , N, . . . , xkq and
apx1, . . . ,´N, . . . , xkq are 0.

The former case is similar, but has a different outcome. Pick N as before,
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then
ż

r0,8qˆRk´1
dω “

ż

r0,Nsˆr´N,Nsk´1

Ba

Bx1
dx1 ^ ¨ ¨ ¨ ^ dxk

“

ż

r´N,Nsk´1

˜

ż

r0,Ns

Ba

Bx1
dx1

¸

dxI

“

ż

r´N,Nsk´1
papN, x2, . . . , xkq ´ ap0, x2 . . . , xkqq dxI

“ ´

ż

r´N,Nsk´1
ap0, x2, . . . , xkqdx2 ^ ¨ ¨ ¨ ^ dxk

“

ż

t0uˆRk´1
ω.

Here we have used the same tools as before, as well as apN, x2, . . . , xkq “ 0.
Our convention on the orientation of the boundary was chosen exactly so that
the signs cancel in the last step: in the “outward-pointing first convention”, a
basis pv2, . . . , vkq of Txpt0u ˆ Rk´1q is positively oriented if p´e1, v2, . . . , vkq is,
that is p´e1q ^ v2 ^ ¨ ¨ ¨ ^ vk equals e1 ^ ¨ ¨ ¨ ^ ek up to scaling by a positive real
number. Hence the induced orientation on t0u ˆRk´1 as a boundary of the upper
half-plane is opposite to the usual orientation.

We now give a number of applications.

20.2.1 Integrating pullbacks

Suppose that W is a oriented smooth manifold of dimension k with boundary BW
and f : W Ñ M is a smooth map. Then if a compactly-supported pk ´ 1q-form
ω satisfies dω “ 0, we get that

ż

W
df˚ω “

ż

W
f˚pdωq “ 0,

but applying Stokes’ formula we also get
ż

W
df˚ω “

ż

BW
f˚ω.

In particular, if BW comes divided into a disjoint union BinW \ BoutW we
may artificially reverse the orientation on BinW (so it is “inward pointing first”)
and get the formula

ż

BoutW
f˚ω ´

ż

BinW
f˚ω “ 0.

We will use the following consequence in the next lecture:

Corollary 20.2.3. If f0 and f1 are homotopic smooth maps X Ñ M with X of
compact dimension k and ω P ΩkpMq satisfies dω “ 0, then

ż

X
f˚

1 ω “

ż

X
f˚

0 ω

for all compactly-supported k-forms ω.
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Proof. Suppose W “ Xˆr0, 1s, BinW “ Xˆt0u, BoutW “ Xˆt1u. Then we can
think of f : X ˆ r0, 1s Ñ M as a homotopy from f0 :“ f |Xˆt0u to f1 :“ f |Xˆt1u.
The orientation on X ˆ t0u and X ˆ t1u are now equal (instead of opposite, if
we had taken the usual convention) and we get the equation

ż

X
f˚

1 ω “

ż

BoutW
f˚ω “

ż

BinW
f˚ω “

ż

X
f˚

0 ω.

Thus the integral of the pullback along f of a closed form only depend on the
homotopy class of f .

20.3 Classical integral theorems

We now explain how the multivariable calculus theorems you have learned are
special cases of Stokes’ theorem. This is significantly harder than one might
expect, because the classical version is harder to state precisely. In particular,
we have to make precise the notions of “line element,” “surface element,” and
“volume element.”

That is, we need to explain how to integrate continuous functions f : X Ñ R
over a smooth submanifold X of Euclidean space. We will do following [DK04b,
Chapter 7]. As for integrals of differential forms, we can not just integrate in
charts due to the Jacobian term in the change-of-variables formula. To correct
for this, we need a density:

Definition 20.3.1. A density for a manifold M is an assignment to each chart
pUα, Vα, ϕαq of M a continuous function ρα : Uα Ñ R such that

ραpxq “ ρβpϕαβpxqq| detDxψαβ|.

We then define an integral of a continuous function f : M Ñ R analogously
to the integral of differential forms. We pick a partition of unity ηα : M Ñ R
with respect of the codomains Vα of charts, and set

ż

M
fdρ :“

ÿ

α

ż

Uα

ηαpϕαpxqqfpϕαpxqqραpxqdx1 ¨ ¨ ¨ dxk.

Definition 20.3.1 gives, by the same argument as in proof of that theorem, that
this is well-defined (i.e. independent of ηα).

If X Ă Rk is a r-dimensional smooth submanifold, then there is a canonical
choice of density, the Euclidean density: in this case we can make sense of the
total derivative of Dxϕα as a pk ˆ rq-matrix, and set

ρeucl
α pxq :“

a

detppDxϕαqtpDxϕαqq.

See [DK04b, Theorem 7.3.1] for a proof that this is a density.
The integrals of functions using “line elements,” “surface elements,” or “volume

elements” are exactly those with respect to the Euclidean density. We will now
identify integrals of differential forms as integrals of certain functions with respect
to the Euclidean density.
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Lemma 20.3.2. Suppose that M is a compact codimension 0 submanifold of
Rk with boundary BM , and ω P ΩkpMq. Define a smooth function f : M Ñ R by
νpxq “ fpxqdx1 ^ ¨ ¨ ¨ ^ dxk. We have

ż

M
ω “

ż

M
fdρeucl.

Lemma 20.3.3. Suppose that M is a compact codimension 0 submanifold of Rk
with boundary BM , and ω P Ωk´1pMq. Define a smooth vector field

V⃗ pxq “

»

—

–

a1pxq
...

akpxq

fi

ffi

fl

ωpxq “
řk
i“1p´1qi`1aidx1 ^ ¨ ¨ ¨ ^ xdxi ^ ¨ ¨ ¨ ^ dxk. We have

ż

BM
ω “

ż

BM
V⃗ ¨ n⃗dρeucl

where n⃗ is the outward pointing unit normal vector field to BM .

Example 20.3.4 (Divergence theorem). Let ω “ adx2^dx3´bdx1^dx3`cdx1^dx2
be a 2-form on R3 and M Ă R3 a codimension 0 submanifold with boundary
BM with induced orientation from the standard orientation on R3. Then Stokes’
theorem says that

ż

M
dω “

ż

BM
ω.

Using the above two lemma’s, we get
ż

M
divpV⃗ qdρeucl “

ż

BM
V⃗ ¨ n⃗dρeucl,

the classical statement of Gauss’ divergence theorem [DK04b, Theorem 7.8.5].
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De Rham cohomology

Today we introduce de Rham cohomology, a construction which we will study
for the next couple of lectures and is one of the basic constructions of algebraic
topology. It appears in Section 4.§6 of [GP10], but I also recommend you take a
look at the beginning of [BT82].

21.1 De Rham cohomology

21.1.1 Motivation from integration

Recall that Stokes’ theorem says that for oriented k-dimensional differentiable
manifolds M and compactly-supported pk ´ 1q-forms ω on M , we have

ż

M
dω “

ż

BM
ω.

Thus if M has no boundary,
ş

M dω “ 0 for any ω. This means that when
computing

ş

M ω, its values only depend on ω up to addition by dν. That
is, the possible values that can be obtained when integrating a k-form over a
k-dimensional compact oriented manifold M depend only on ΩkpMq{dΩk´1pMq.

One could ask a similar question about integrals over p-dimensional oriented
manifolds mapping to M : if X is such a manifold and f : X Ñ M is a smooth
map, we are interested in the integral

ş

X f
˚ω. The argument above tells you that

these integrals only depend on ΩppMq{dΩp´1pMq: we take p-forms modulo those
that are exterior derivatives of pp´ 1q-forms. A p-form of the latter type is said
to be exact.

It seems reasonable to restrict to those p-forms ω with the property if
ş

X f
˚ω

only depends on the homotopy class of X. As discussed at the end of the previous
lecture, from Stokes’ theorem applied to

ş

Xˆr0,1s
H˚dω with H : X ˆ r0, 1s Ñ M

a homotopy from f0 to f1, it follows that
ş

X f
˚
0 ω “

ş

X f
˚
1 ω if dω “ 0, as then

0 “
ş

W H˚dω “
ş

X f
˚
1 ω´

ş

X f
˚
0 ω. If dω “ 0 then ω is said to be closed. Observe

that when ω is a k-form then dω “ 0 for degree reasons, so any top form is closed.

179
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21.1.2 De Rham cohomology

The previous discussion tells us that the following groups can be interpreted
as encoding “all possible values of homotopy-invariant integrals over manifolds
mapping to M .” However, you should not take this to be the only motivation.
As you will soon see, de Rham cohomology is a powerful invariant of smooth
manifolds and smooth maps between them.

Definition 21.1.1. Let M be a manifold. The de Rham cohomology groups
H˚pMq are given by

HppMq :“ kerpd : ΩppMq Ñ Ωp`1pMqq

impd : Ωp´1pMq Ñ ΩppMqq
“

closed p-forms
exact p-forms .

The elements of H˚pMq are called cohomology classes and, as indicated, are
represented by closed forms up to exact forms; any two forms which differ by an
exact form are said to be cohomologous.

21.1.3 First properties of de Rham cohomology

Let us take a closer look at de Rham cohomology. Since ΩppMq are R-vector
spaces, so are the cohomology groups HppMq. We will soon see these R-vector
spaces contain a lot of interesting topological information about M . Before going
into the properties that allow us to extract this information, we do a few basic
examples to get some initial intuition for de Rham cohomology:
Example 21.1.2 (Vanishing above dimension). If M has dimension k, there are
no p-forms for p ą k and hence HppMq vanishes for p ą k.
Example 21.1.3 (H0). For p “ 0, our definition gives that H0pMq “ tf : M Ñ

R | df “ 0u. The condition df “ 0 means that f is locally constant. Thus these
functions have to be constant on each component of M , and letting π0pMq denote
the set of components of M we get that

H0pMq “ Rπ0pMq,

the vector space of R-valued functions on the set π0pMq.
Example 21.1.4 (Disjoint unions). Suppose that M is a disjoint union of Mi.
Then a p-form ω on M is a just a collection of p-forms ωi on each of the Mi.
Then ω is closed if and only if each ωi is, and exact if and only if each ωi is. We
conclude that

H˚pMq –
ź

i

H˚pMiq.

However, in practice M has finitely many components and the direct product
is finite. In this case the direct product may be replaced by the more familiar
direct sum.

Recall that we have defined a wedge product on differential forms, and
this has the property that if ω P ΩppMq and ν P ΩqpMq then dpω ^ νq “

dpωq ^ ν ` p´1qpω ^ dpνq.
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Lemma 21.1.5. The wedge product induces a graded-commutative product on
H˚pMq. That is, H˚pMq is a graded-commutative R-algebra.

Proof. Let ω P ΩppMq and ν P ΩqpMq represent cohomology classes. Then in
particular dω “ 0 and dν “ 0, and we see that

dpω ^ νq “ dpωq ^ ν ` p´1qpω ^ dpνq “ 0 ` 0 “ 0.

Thus ω ^ ν represents a cohomology class. This is independent of the choice of
representatives, because if ω ´ ω1 “ dα, then

ω ^ ν ´ ω1 ^ ν “ dpαq ^ ν “ dpα ^ νq

and similarly in the second entry.
The properties of this induced product—unitality, associativity, and graded-

commutativity—follow from those of the wedge product.

Example 21.1.6. The unit of the wedge product is the element of H0pMq represent
by the constant function M Ñ R with value 1.

21.1.4 Cohomology as a functor

Recall that we can pull back differential forms along any smooth map: given
g : M Ñ N we get g˚ : Ω˚pNq Ñ Ω˚pMq.

Lemma 21.1.7. The homomorphism g˚ induces a homomorphism of graded-
commutative R-algebras g˚ : H˚pNq Ñ H˚pMq which satisfies pf ˝ gq˚ “ g˚ ˝ f˚

and pidq˚ “ id.

Proof. We use that d commutes with g˚, so g˚ must preserve the kernel and
image of d. Let’s check this is in detail for kernels: if ω P ΩppNq satisfies dω “ 0,
then g˚ω P ΩppMq satisfies

dpg˚ωq “ g˚pdωq “ g˚0 “ 0.

The properties of pullback on cohomology follow from the corresponding properties
of pullback on forms.

It is appropriate at this point to mention the foundational framework used in
algebraic topology: category theory [Rie16]. A category C consists of a collection
of object obpCq and a collection of morphisms morpCq. Each of these morphisms
has a source and a target, and two morphisms f and g can be composed to g ˝f if
the target of the f is the source of g. This composition operations is associative,
and every object has an identity morphism which serves as a two-sided unit for
composition.

The standard way to picture a category is a collection of dots (objects) and
arrows between them (morphisms). One instance of such graphic representations
are the commutative diagrams we have been using (in the 40s people wrote down
the formulas, and it was difficult to parse statements).
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Example 21.1.8. The category of Top of topological spaces has objects given by
topological spaces, and morphisms given by continuous maps.
Example 21.1.9. The category Mfd of differentiable manifolds has objects given
by differentiable manifolds, and morphisms given by smooth maps.
Example 21.1.10. The category GrAlgR of graded-commutative R-algebras has
objects given by graded R-vector spaces with a graded-commutative product,
and morphisms given by grading-preserving homomorphisms.

An important application of categories is to express naturality of various con-
structions. For example, that they are compatible with composition is expressed
through the notion of a functor. A functor F : C Ñ D is a pair of assignments
obpF q : obpCq Ñ obpDq and morpF q : morpCq Ñ morpDq, compatible with source,
target, identity and composition. The former two mean that if f is a morphism
from C to C 1, then F pfq is a morphism from F pCq Ñ F pC 1q, and the latter two
mean that F pidq “ id and F pf ˝ gq “ F pfq ˝ F pgq.
Example 21.1.11. There is a forgetful functor U : Mfd Ñ Top sending each
differentiable manifold to its underlying topological spaces, and regarding each
smooth map as a continuous map.

It is not the case that cohomology is a functor H˚ : Mfd Ñ GrAlgR; it would
need to satisfy pf ˝gq˚ “ f˚ ˝g˚ but instead we have pf ˝gq˚ “ g˚ ˝f˚. This is no
problem, as we can formally change the direction of morphisms in Mfd by taking
the opposite category: Mfdop has the same objects and morphisms, but source
and target are reversed. Then Lemma 21.1.7 says that de Rham cohomology is a
functor

H˚ : Mfdop ÝÑ GrAlgR.
As an application of this, we make the following observation, which we will

strengthen in the next lecture:

Lemma 21.1.12. If g : M Ñ N is a diffeomorphism then g˚ : H˚pNq Ñ H˚pMq

is an isomorphism.

Proof. The inverse g´1 : N Ñ M induces a homomorphism pg´1q˚ : H˚pMq Ñ

H˚pNq. The fact that cohomology is a functor tells us that this satisfies g˚ ˝

pg´1q˚ “ pg´1 ˝ gq˚ “ pidq˚ “ id and similarly for the other composition.

21.2 First examples

Let us start with a first few computations in de Rham cohomology, before we
develop the techniques that allow us to systematically compute the cohomology
of many smooth manifolds.

21.2.1 The real line

We already know that H0pRq – R by Example 21.1.3 and that H˚pRq “ 0 for
˚ ą 1 by Example 21.1.2, so the only remaining unknown cohomology group is
H1pRq. Any element in it is represented by ω P Ω1pRq (satisfying dω “ 0, but
this is true for any such ω for degree reasons).
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Lemma 21.2.1. H1pRq “ 0.

Proof. We need to find an f such that ω “ df . Let us write ω “ apxqdx with
a : R Ñ R a smooth function, then

f : R ÝÑ R

x ÞÝÑ

ż x

0
apyqdy

satisfies dfpxq “
Bf
Bxdx “ apxqdx. That is, every closed 1-form is exact.

In the next lecture we will prove the Poincaré lemma, which says that for all
n ě 0

H˚pRnq “

#

R if ˚ “ 0,
0 otherwise.

21.2.2 The circle

For the circle S1, we are in a somewhat similar situation as for the real line:
H0pS1q “ R and H˚pS1q “ 0 for ˚ ą 1, so only H1pS1q remains unknown.

Lemma 21.2.2. H1pS1q “ R.

First proof. Let us write ω “ apθqdθ with a : S1 Ñ R a smooth function, then
the argument for the real line compels us to look at the function

f : r0, 2πs ÝÑ R

θ ÞÝÑ

ż θ

0
apeiϕqdϕ.

This gives a smooth function on S1 if and only if fp0q “ fp2πq.
This gives an obstruction to implementing to proving that H1pS1q vanishes

along the lines of the proof for R. But instead of giving up, we should take
advantage of this and use the obstruction to define an invariant. That is, we can
attempt to construct a linear functional on H1pRq by taking

w : H1pS1q ÝÑ R

ω “ apθqdθ ÞÝÑ

ż 2π

0
apeiϕqdϕ.

To check this is well-defined, we must verify it is independent of the representative
ω of the cohomology class rωs P H1pRq. As w is linear in ω, so it suffices to show
that wpωq “ 0 if ω “ df for a smooth function f : S1 Ñ R. This is true because
the integral is equal to fp2πq ´ fp0q “ 0 by the fundamental theorem of calculus.

If wpωq “ 0 then fp0q “ fp2πq, and gives a smooth function S1 Ñ R which
we can use to show that ω “ df like we did for R. Hence the result follows once
we show that w is surjective. Since w is linear it suffices to prove that it takes
a single non-zero value, and when we evaluate on the 1-form ω “ dθ we get
wpdθq “ 2π.
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Let’s give an alternative proof, which we will later generalize to the Mayer–
Vietoris exact sequence for cohomology.

Proof. Let U, V Ă S1 be an open cover by two open intervals and consider the
following diagram

0 Ω0pS1q Ω0pUq ‘ Ω0pV q Ω0pU X V q 0

0 Ω1pS1q Ω1pUq ‘ Ω1pV q Ω1pU X V q 0

i0

d

j0

d d

i1 j1

The left horizontal maps are induced by restrictions,

i0 : Ω0pS1q ÝÑ Ω0pUq ‘ Ω0pV q

f ÞÝÑ pf |U , f |V q,

and similarly for i1. The right horizontal maps are the difference of the restrictions,

j0 : Ω0pUq ‘ Ω0pV q ÝÑ Ω0pU X V q

pf, gq ÞÝÑ f |UXV ´ g|UXV ,

and similarly for j1.
We start with a 1-form ω P Ω1pS1q representing a cohomology class rωs,

and consider ipωq “ pω|U , ω|V q P Ω1pUq ‘ Ω1pV q. Since ω was closed, so are
both these restrictions. Since H1pUq and H1pV q vanish because both U and
V are diffeomorphic to R, both are exact. This gives us functions pλU , λV q P

Ω0pUq ‘ Ω0pV q.
Let us investigate to what extent

j0pλU , λV q “ λU |UXV ´ λV |UXV P Ω0pU X V q

depends on the choices we made. We made two:
(a) the functions pλU , λV q,
(b) a representative ω of rωs.

For (a), the functions λU and λV are unique up to the addition of constant
functions, i.e. closed 0-forms. Adding a constant to one of these changes j0pλU , λV q

by a constant.
For (b), a different representative is given by ω ` df with f P Ω0pS1q, and

picking this instead leads to replacing λU by ΛU ` f |U and λV by λV ` f|V , up
to constants. When we take j0pλU ` f |U , λV ` f |V q the terms f |UXV cancel out
and we get j0pλU , λV q

The conclusion is that the smooth function j0pλU , λV q P Ω0pU X V q is inde-
pendent of the choice of representative ω, and depends on λU and λV only up
to a constant. Since both ω|U and ω|V are equal to ω|UXV on U X V and the
exterior derivative is linear, we see that

dpjpλU , λV qq “ dpλU |UXV ´ λV |UXV q “ ω|UXV ´ ω|UXV “ 0,
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i.e. jpλU , λV q is closed, or equivalently a locally constant function on U X V .
Under the identification as Examples 21.1.4 and 21.1.3, it represents an element

pa0, a1q P H0pU X V q – R2.

That is well-defined up the addition of a constant, means that we may replace
pa0, a1q by pa0 ` c, a1 ` cq. The elements of the form pc, cq are exactly those in
the image of H0pUq ‘H0pV q under j0.

From this description, it follows that a1 ´ a0 P R is independent of the choice
of λU and λV ; an invariant of the original cohomology class rωs. Thus we have
constructed a map

w : H1pS1q ÝÑ
H0pU X V q

impj : H0pUq ‘H0pV q Ñ H0pU X V qq
– R.

Suppose now that wpωq “ 0. Then a0 “ a1 and this means that though the
functions λU and λV needs not be equal on UXV , the difference λU |UXV ´λV |UXV

is constant. We can thus replace λU by λU ´ a0 to get that λU |UXV “ λV |UXV .
Hence we can glue them to obtain a function λ on S1, which by construction
satisfies dλ “ ω.

This shows that H1pS1q is isomorphic to the image of w. To see that it is
surjective, as before we can evaluate on dθ.

Remark 21.2.3. The construction of w depends on a choice of isomorphism of the
codomain with R. You can pick this such that w “ w.

The previous proof amounts to the following: the maps i and j induce maps
on cohomology and using partitions of unity one can produce a diagonal map to
get the following diagram:

H1pS1q H1pUq ‘H1pV q H1pU X V q

H0pS1q H0pUq ‘H0pV q H0pU X V q

This diagram has the special property that it is exact: the kernel of each map is
the image of the previous one. Filling in what we already know, we get

H1pS1q H1pUq ‘H1pV q “ 0 H1pU X V q “ 0

H0pS1q “ R H0pUq ‘H0pV q “ R2 H0pU X V q “ R2p˚q

with starred map given by pa, bq ÞÝÑ pa´ b, a´ bq. This proves that H1pS1q, the
kernel of the map to H1pUq ‘H1pV q “ 0, is the image of the map H0pU X V q “

R2 Ñ H1pS1q whose kernel is exactly the 1-dimensional subspace spanned by
e1 ` e2. Hence H1pS1q – R.
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What the above proof does, is construct explicitly the identification

H1pS1q “ kerpH1pS1q Ñ H1pUq ‘H1pV qq

H0pU X V q

impj : H0pUq ‘H0pV q Ñ H0pU X V qq
– R.

–w

21.3 Problems

Problem 48. Verify that ωpdθq ‰ 0.

Problem 49 (Compactly-supported cohomology). Recall that Ωp
cpMq denotes

the compactly-supported p-forms. Since the exterior derivative d preserves the
condition that forms have compact support, there is also a compactly-supported
variation of de Rham cohomology which is occasionally useful:

Definition 21.3.1. The compactly-supported de Rham cohomology groups H˚
c pMq

are given by

Hp
c pMq :“ kerpd : Ωp

cpMq Ñ Ωp`1
c pMqq

impd : Ωp´1
c pMq Ñ Ωp

cpMqq
.

(a) Compute H˚
c pRq.

(b) Compute H˚
c pS1q. (Hint: this should require no work.)

Problem 50 (Extension by zero). Prove that if i : U Ñ M is the inclusion of an
open subset, the extension of forms by zero induces a map

H˚
c pUq ÝÑ H˚

c pMq

on compactly-supported cohomology.

Problem 51 (An infinitely-punctured plane). Prove that H1pCzZq is not finite-
dimensional.

Problem 52 (Transfer maps). Let M be a smooth manifold with a smooth free
action of a finite group G, with ag : M Ñ M denoting the action of the elements
g P G. Recall that M{G can be given the structure of a smooth manifold such
that quotient map q : M Ñ M{G is a local diffeomorphism.

(a) Let Ω˚pMqG Ă Ω˚pMq be the subspace given by those differential forms
that satisfy pagq˚ω “ ω for all g P G; the invariant forms. Prove that
Ω˚pMqG is a cochain complex with differential given by exterior derivative,
and prove that it is isomorphic as a cochain complex to Ω˚pM{Gq.

(b) Show that the map

Ω˚pMq Q ω ÞÝÑ
1

|G|

ÿ

gPG

pagq˚ω

gives a map of cochain complexes Ω˚pMq Ñ Ω˚pMqG. The induced map
on cohomology is called the transfer map.
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(c) What is the composition Ω˚pMqG Ñ Ω˚pMq Ñ Ω˚pMqG? Show that the
pullback map q˚ : H˚pM{Gq Ñ H˚pMq is injective.

(d) Let S3{I˚ be the Poincare homology sphere. Prove that H˚pS3{I˚q –

H˚pS3q.
(e) Explain how to obtain H˚pRP 3q from the above results without doing

any additional computation.



Chapter 22

The Poincaré lemma

Last lecture we introduced de Rham cohomology, and today we prove the Poincaré
lemma. This is proven in [GP10, Section 4.§6] and [BT82, Section 4].

22.1 The Poincaré lemma

The Poincaré lemma computes the cohomology of Rn. It is the backbone of all
further computations of cohomology groups.

22.1.1 The Poincaré lemma on Rn

In the previous chapter we defined a functor

H˚p´q : Mfdop ÝÑ GrAlgR,

sending a manifold M to the graded-commutative R-algebra H˚pMq of de Rham
cohomology groups

HppMq :“ kerpd : ΩppMq Ñ Ωp`1pMqq

impd : Ωp´1pMq Ñ ΩppMqq
“

closed p-forms
exact p-forms .

It sends a smooth map f : M Ñ N to the homomorphism f˚ : H˚pNq Ñ H˚pMq

induced by pullback of differential forms.
We also computed H˚pS1q and H˚pRq, obtaining the following computation

in the latter case

H˚pRq “

#

R if ˚ “ 0,
0 otherwise.

Our immediate goal is to extend this computation to Rn, by induction over
n. A more precise statement uses the projection

π : Rn´1 ˆ R ÝÑ Rn´1

px, tq ÞÝÑ x,

as well as the map st0 for t0 P R,

st0 : Rn´1 ÝÑ Rn´1 ˆ R
x ÞÝÑ px, t0q.

188
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These satisfy π ˝ st0 “ idRn´1 . It is of course not true that st0 ˝ π is the identity;
it is given by px, tq ÞÑ px, t0q. Nonetheless, on cohomology we have:

Theorem 22.1.1 (Poincaré lemma). For each t0 P R, the map s˚
t0 : H˚pRn´1 ˆ

Rq Ñ H˚pRn´1q is an isomorphism with inverse π˚.

By induction over n, starting with the case n “ 0 where R0 “ ˚ (so in
particular, we reprove the case n “ 1), one can use this to prove:

Corollary 22.1.2. We have that

H˚pRnq “

#

R if ˚ “ 0,
0 otherwise.

Proof of Theorem 22.1.1. Let us shorten st0 to s for the sake of brevity. Above
we observed that π ˝ s “ id so that we get s˚ ˝ π˚ “ id˚ “ id on H˚pRn´1q. It is
of course not true that s ˝ π “ id. However, we will still prove that the induced
maps on de Rham cohomology satisfy π˚ ˝ s˚ “ id on H˚pRn´1 ˆ Rq.

To do so, we will prove that there is a map K : Ω˚pRn´1 ˆRq Ñ Ω˚´1pRn´1 ˆ

Rq satisfying

id ´ π˚ ˝ s˚ “ p´1qp´1pdK ´Kdq. (22.1)

This tells us that on closed forms in Ω˚pRn´1 ˆ Rq, id and π˚ ˝ s˚ differ by an
exact form, and hence give the same cohomology class.

To define K, we use coordinates px1, . . . , xn´1, tq on Rn´1 ˆ R observe that
every p-form in R ˆ Rn´1 can be uniquely written as a linear combination of
p-forms of the following forms:

(i) aIpx, tqdxI with |I| “ p,

(ii) aJpx, tqdxJ ^ dt and |J | “ p´ 1.

The map K will be linear, so it is uniquely determined by demanding it satisfies

KpaIpx, tqdxIq “ 0 and KpaJpx, tqdxJ^dtqpx, tq “

ˆ
ż t

t0

aJpx, sqds

˙

dxJ .

We verify that p´1qp´1pdK ´Kdq “ id ´ π˚ ˝ s˚. First we do so for forms of
type (i). On such forms we have that π˚ ˝ s˚paIpx, tqdxIq “ aIpx, t0qdxI , so that

pid ´ π˚ ˝ s˚qpaIpx, tqdxIq “ papx, tq ´ apx, t0qqdxI .
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On the other hand, we have at px, tq

p´1qp´1pdK ´KdqpaIpx, tqdxIq

“ p´1qpK

˜

BaIpx, tq

Bt
dt^ dxI `

n´1
ÿ

i“1

BaIpx, tq

Bxi
dxi ^ dxI

¸

“ p´1qpK

ˆ

BaIpx, tq

Bt
dt^ dxI

˙

“ K

ˆ

BaIpx, tq

Bt
dxI ^ dt

˙

“

ˆ
ż t

t0

BaIpx, sq

Bt
ds

˙

dxI

“ paIpx, tq ´ aIpx, t0qqdxI .

We conclude that (22.1) holds on forms of type (i).
For forms of type (ii), we observe that π˚ ˝ s˚paJpx, tqdxJ ^ dtq “ 0 because

s˚dt “ 0, so that

pid ´ π˚ ˝ s˚qpaJpx, tqdxJ ^ dtq “ aJpx, tqdxJ ^ dt.

On the other hand, for p´1qp´1pdK ´KdqpaJpx, tqdxJ ^ dtq we do two separate
computations

KdpaJpx, tqdxJ ^ dtq “ K

˜

BaJpx, tq

Bt
dt^ dxJ ^ dt`

n´1
ÿ

i“1

BaJpx, tq

Bxi
dxi ^ dxJ ^ dt

¸

“

n´1
ÿ

i“1
K

ˆ

BaJpx, tq

Bxi
dxi ^ dxJ ^ dt

˙

“

n´1
ÿ

i“1

ˆ
ż t

t0

BaJpx, sq

Bxi
ds

˙

dxi ^ dxI .

dKpaJpx, tqdxJ ^ dtq “ d

ˆˆ
ż t

t0

aJpx, qds

˙

dxJ

˙

“
B

şt
t0
aJps, xqds

Bt
dt^ dxJ `

n´1
ÿ

i“1

B
şt
t0
aJpx, sqds

Bxi
dxi ^ dxJ

“ aJpx, tqdt^ dxJ `

n´1
ÿ

i“1

ˆ
ż t

t0

BaJpx, sq

Bxi
ds

˙

dxi ^ dxJ

“ p´1qp´1aJpx, tqdxJ ^ dt`KdpaJpx, tqdxJ ^ dtq.

Hence p´1qp´1pdK ´ KdqpaJpx, tqdxJ ^ dtq “ aJpx, tqdxJ ^ dt, so (22.1) also
holds on forms of type (ii).

Remark 22.1.3. A map such as K is called a cochain homotopy, and (22.1) says
that id and π˚ ˝ s˚ are cochain homotopic.
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22.1.2 The Poincaré lemma on manifolds

The proof of Theorem 22.1.1 goes through without any modification when we
replace Rn´1 by any open subset U Ă Rn´1. We can do even better:

Corollary 22.1.4. For each t0 P R and smooth manifold M , the map s˚
t0 : H˚pMˆ

Rq Ñ H˚pMq is an isomorphism with inverse π˚.

Proof. We can describe the types (i) and (ii) in a coordinate-invariant manner:
(i) are those of the form fpx, tqπ˚ω, (ii) are those of the form fpx, tqπ˚pωq ^ dt.
Since the cotangent bundle of M ˆ R is isomorphic to π˚pT ˚Mq ‘ ϵ, every form
on M ˆ R can be written uniquely as a linear combination of forms of type (i)
and (ii). Now the proof given above goes through with the modification that
Rn´1 is replaced by M .

Example 22.1.5. The previous corollary proves that open annulus A has the same
cohomology as S1, as it is diffeomorphic to S1 ˆ R.

22.2 Homotopy invariance

22.2.1 Homotopy invariance for de Rham cohomology

Corollary 22.1.4 says that π˚ has as its inverse s˚
t0 for any t0. Since inverses

are unique, this means that the maps s˚
t0 : H˚pM ˆ Rq Ñ H˚pMq are all equal.

Recall that f0, f1 : M Ñ N are homotopic if there is a map H : M ˆR Ñ N such
that H|Mˆt0u “ f0 and H|Mˆt1u “ f1, then this has the following important
consequence.

Theorem 22.2.1 (Homotopy invariance). If f0, f1 : M Ñ N are homotopic
smooth maps, then f˚

0 “ f˚
1 : H˚pNq Ñ H˚pMq.

Proof. We can find a homotopy of the form H : M ˆR Ñ N . We can then factor
fi, i “ 0, 1 as

M M ˆ R N,

fi

si H

and obtain equations

f˚
0 “ s˚

0 ˝H˚ “ s˚
1 ˝H˚ “ f˚

1 .

Recall that we proved that every diffeomorphism induces an isomorphism on
cohomology, that is, every smooth map with an inverse does. It actually suffices
that f has an inverse up to homotopy.

Corollary 22.2.2. If f : M Ñ N is a homotopy equivalence, then f˚ : H˚pNq Ñ

H˚pMq is an isomorphism.

Example 22.2.3. If M is a Moebius strip, then the inclusion S1 ãÑ M is a
homotopy equivalence (the homotopy inverse is the bundle projection). Thus
H˚pMq – H˚pS1q.
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More generally, if E is the total space of a smooth vector bundle over M , then
H˚pEq – H˚pMq. This is a generalization of Corollary 22.1.4; that corollary can
be interpreted as saying that the total spaces of 1-dimensional trivial bundles
have the same cohomology as their 0-section.

Remark 22.2.4. At this point you can extend cohomology to a large class of spaces
in a rather artificial manner. For example, if K is built by gluing together finitely
many simplices (i.e. vertices, edges, triangles, tetrahedra, etc.), it has an embed-
ding into a sufficiently large Euclidean space with a small open neighbourhood
U that is unique up to homotopy equivalence. Thus setting H˚pKq :“ H˚pUq

gives a well-defined notion of cohomology for such spaces K. However, algebraic
topology provides an elegant definition of cohomology (with real coefficients) for
any topological space. It is then a theorem that this coincides with de Rham
cohomology when evaluated on a manifold; de Rham’s theorem.

22.2.2 Applications

Contractible manifolds

Recall that there exists contractible manifolds M which are not homeomorphic
to Euclidean space, such as the Whitehead manifold. Nonetheless, the homotopy
invariance of de Rham cohomology implies these have the same cohomology as
Euclidean spaces:

H˚pMq “

#

R if ˚ “ 0,
0 otherwise.

The interior of a manifold with boundary

If M is a manifold with boundary BM , then we saw that there is an interior
collar ρ : BM ˆ r0, 1q ãÑ M .

Lemma 22.2.5. The inclusion intpMq ãÑ M is a homotopy equivalence.

Proof. The homotopy inverse h is given in terms of the collar as

hppq “

#

p if p R impρq,
ρpx, ηptqq if p “ ρpx, tq,

where η : r0, 1s Ñ r0, 1s is an embedding that is the identity near 1 and has image
given by r1{2, 1s. Intuitively, we push the manifold into itself a bit using the
collar. We leave it to reader to convince themselves that i ˝ g and g ˝ i are
homotopic to the identity.

The homotopy invariance of cohomology then gives us:

Corollary 22.2.6. H˚pMq – H˚pintpMqq.
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Brouwer fixed point theorem

Observe that intpD2q is diffeomorphic to R2 by x ÞÑ x{p1`||x||2q. By the previous
corollary we obtain H1pD2q – H1pR2q “ 0. Let us use this to give another proof
of the Brouwer fixed point theorem for D2. Recall that this follows from the
following “no-retraction” theorem:

Corollary 22.2.7. There exists no smooth retraction r : BD2 Ñ D2.

Proof. If such an r did exist, we would have a commutative diagram

BD2 BD2

D2

id

inc r

and applying the contravariant functor H1p´q turns this into a commutative
diagram

H1pBD2q – R H1pBD2q – R

H1pD2q “ 0

id

r˚inc˚

which is obviously impossible: the identity on R does not factor over 0.

22.3 Two further tricks

For later use, I will give two further tricks to compute two particular de Rham
cohomology groups. For now, the reader should take this as an opportunity to
get familiar with de Rham cohomology.

22.3.1 Top degree

Suppose that M is a compact oriented k-dimensional manifold. That M is
oriented means that the top exterior power ΛkT ˚M has an everywhere non-
vanishing section ω. Thus writing ω as adx1 ^ ¨ ¨ ¨ ^ dxk in a chart the function
a is always non-vanishing. We intend to integrate this over M . To do so, we
must use charts compatible with the orientation; in that case a must be positive.
Hence, when computing

ş

M ω, we get a finite sum of non-negative numbers, at
least one of which is positive and hence

ş

M ω ą 0. Now recall that integration of
forms over M gives a linear functional HkpMq Ñ R, so that we have just shown
the following:

Proposition 22.3.1. Suppose that M is a compact oriented manifold of dimen-
sion k, then dimHkpMq ě 1.

We will later prove that its dimension is exactly 1 under the additional
hypothesis that M is connected.
Example 22.3.2. For any sphere Sn, we have that dimHnpSnq ě 1. Later we will
prove it is exactly 1-dimensional.
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22.3.2 Degree one

In the homework, you have proven that if γ : S1 Ñ M is a smooth map then
ş

S1 γ
˚α has the following properties: (i) if α is exact it is zero, (ii) if α is closed it

only depends on the homotopy class of γ. Furthermore, you have seen (iii) given
a closed α, if M connected and the integrals

ş

S1 γ
˚α vanish for all γ, then α is

exact.
If M is connected and we pick a base point p0 P M , we can define π1pM,p0q

to be the set of based homotopy classes of loops in M ; this is the fundamental
group of M at p0. Part (i) and (ii) say there is a map

h : π1pM,p0q ÝÑ pH1pMqq˚

γ ÞÝÑ

ż

S1
γ˚α

and part (iii) says that the span of the image of h is all of pH1pMqq˚ (at least
if it is finite-dimensional, otherwise it is dense). We did not discuss the group
structure of π1pM,p0q, but if you know this you will realize h is a homomorphism.
It is called the Hurewicz homomorphism.

Proposition 22.3.3. If M is simply-connected, then H1pMq “ 0.

Example 22.3.4. We used Sard’s lemma to prove that Sn is simply-connected if
n ě 2, and hence H1pSnq “ 0.
Remark 22.3.5. The Hurewicz homomorphism factors over π1pM,p0qabbR. When
M is compact and connected, the resulting homomorphism π1pM,p0qab b R Ñ

pH1pMqq˚ is in fact an isomorphism. Thus you can compute H1pMq knowing
the fundamental group.

22.4 Problems

Problem 53 (The Poincaré lemma for compactly-supported cohomology). Read
pages 37–39 of [BT82] about the Poincaré lemma for compactly-supported coho-
mology. This says in particular that

H˚
c pRnq “

#

R if ˚ “ n,
0 otherwise.

Explain why this shows that compactly-supported cohomology is not homotopy-
invariant.
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The Mayer–Vietoris theorem

Last lecture we proved the Poincaré lemma, which computes the cohomology
of Rn. To exploit that computation, we now prove a “patching theorem” for
de Rham cohomology. It is a generalization of the second proof we gave of
H1pS1q “ R. This is proven in Section 4.§6 of [GP10] and Section 2 of [BT82].

23.1 Some homological algebra

Recall that de Rham cohomology of M was constructed from the sequence of
R-vector spaces

¨ ¨ ¨ ÝÑ Ωp´1pMq
d

ÝÑ ΩppMq
d

ÝÑ Ωp`1pMq ÝÑ ¨ ¨ ¨ .

by taking the kernel of d modulo the image of d.
This is an example of the cohomology of a cochain complex of R-vector spaces.

I will drop the R from now on. Let me point out that the fact that we’re working
with vector spaces plays no role in the arguments that follow; we can replace
vector spaces by abelian groups, or modules over any ring.

Definition 23.1.1. A cochain complex C˚ is a collection of vector spaces with
linear maps between them

¨ ¨ ¨ ÝÑ Cp´1 d
ÝÑ Cp

d
ÝÑ Cp`1 ÝÑ ¨ ¨ ¨

satisfying d2 “ 0. This equation implies impd : Cp´1 Ñ Cpq is a subset of
kerpd : Cp Ñ Cp`1q, and hence it makes sense to define the cohomology groups
H˚pC˚q as

HppC˚q :“ kerpd : Cp Ñ Cp`1q

impd : Cp´1 Ñ Cpq
.

Definition 23.1.2. A homomorphism of cochain complexes f : B˚ Ñ C˚ is a
collection of linear maps fp : Bp Ñ Cp such that dfp “ fp`1d. This condition
implies that f induces a map on cohomology.

195



196 Chapter 23 The Mayer–Vietoris theorem

23.1.1 Short exact sequences of cochain complexes

A long exact sequence is a sequence of vector spaces

¨ ¨ ¨ ÝÑ A ÝÑ B ÝÑ C ÝÑ D ÝÑ ¨ ¨ ¨

such that the kernel of each map is the image of the previous one. In other words,
it is a cochain complex whose cohomology vanishes at each point.

A short exact sequence is a sequence of vector spaces

0 ÝÑ A
i

ÝÑ B
j

ÝÑ C ÝÑ 0

such that the kernel of each map is the image of the previous one. That is, it is
just a long exact sequence in which all but three groups vanish. Conretely having
a short exact sequence means the following:

¨ Since the kernel of i is the image of 0 Ñ A, i is injective.
¨ Since the image of j is the kernel of the C Ñ 0, j surjective.
¨ The kernel of j is the image of i.

Example 23.1.3. Having a short exact sequence is quite useful. For example,
suppose you want to compute what a particular vector spaces A is isomorphic to,
and you know it fits into a short exact sequence

0 i
ÝÑ R j

ÝÑ A
k

ÝÑ R l
ÝÑ 0.

Then R is the kernel of a surjective map A Ñ R, and thus A must be 2-
dimensional.

A short exact sequence of cochain complexes is a sequence of cochain complexes

0 ÝÑ A˚ ÝÑ B˚ ÝÑ C˚ ÝÑ 0

such that each sequence

0 ÝÑ Ap ÝÑ Bp ÝÑ Cp ÝÑ 0

is a short exact sequence. The following result relates the cohomology groups
H˚pA˚q, H˚pB˚q, and H˚pC˚q.

Theorem 23.1.4. If 0 Ñ A˚ Ñ B˚ Ñ C˚ Ñ 0 is a short exact sequence of
cochain complexes then there exist homomorphisms δ : HppC˚q Ñ Hp`1pA˚q such
that

Hp`1pA˚q Hp`1pB˚q ¨ ¨ ¨

¨ ¨ ¨ HppB˚q HppC˚q

is a long exact sequence.

The homomorphisms δ are called boundary maps, and will be constructed
explicitly.
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Proof. We start with construction of the homomorphism δ : HppC˚q Ñ Hp`1pA˚q.
To do so, consider the commutative diagram

0 Ap`2 Bp`2 Cp`2 0

0 Ap`1 Bp`1 Cp`1 0

0 Ap Bp Cp 0.

ip`2 jp`2

ip`1 jp`1

ip jp

Let rxs P HppC˚q be represented by x P Cp, then since jp : Bp Ñ Cp is surjective
there exists a lift y P Bp. This satisfies jp`1pdyq “ djppyq “ dx “ 0. Thus
dy P Bp`1 in the kernel of jp`1 and hence in the image of ip`1, so there exists a
lift z P Ap`1.

We want to set Brxs “ rzs. To show that this makes sense, we need to
first check that dz “ 0. Since ip`2 is injective, we might as well check that
ip`2pdzq “ 0. But ip`2pdzq “ dpip`1pzqq “ dpdyq “ 0.

Next we need to prove that rzs is independent of the three choices we made:
(a) the choice of representative x P Cp of rxs,
(b) the choice of lift y P Bp of x, and
(c) the choice of lift z P Ap`1 of dpyq.

The last of these, (c), in fact involved no choice at all. The element z is unique
because ip`1 is injective. For (b), any other choice of lift y differs by an element
ippwq, which changes dy to dpy ` ippwqq “ dy ` iwpdwq which has lift to Ap`1

given by z ` dw, and hence gives rise to the same cohomology class rzs. Finally,
for (a), any other representative of x differs by du for u P Cp´1. We may lift u
to v P Bp´1 and then choose to lift of x` du to y ` dv (we have already shown
that the end result is independent of the choice of lift). Then dpy ` dvq “ dy, so
the resulting class rzs is the same as before.

Let us only check exactness at the term HppC˚q, leaving the other cases for
the reader. We need to prove that if δprxsq “ 0 then rxs is in the image of HppB˚q.
Indeed, if δprxsq “ 0 then z “ da for some a P Ap. Then dippaq “ ip`1pzq “ dy,
so y´ ippaq P Bp is closed. Furthermore jppy´ ippaqq “ jppyq “ x since jp ˝ ip “ 0,
so rxs is the image of ry ´ ippaqs.

Remark 23.1.5. A proof as above is hard to read. You should draw the diagram
and pencil in were all of the elements discussed live and are mapped. This is
called diagram-chasing.

23.2 The Mayer–Vietoris theorem

Let M be a manifold, and U, V Ă M be open subsets covering M . Then the
maps induced by restriction give rise to a pair of maps

ΩppMq ÝÑ ΩppUq ‘ ΩppV q

ω ÞÝÑ pω|U , ω|V q,
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ΩppUq ‘ ΩppV q ÝÑ ΩppU X V q

pω, νq ÞÝÑ ω|UXV ´ ν|UXV .

The composition of these two maps is visibly 0, and in fact the following is
true:

Lemma 23.2.1. The following is a short exact sequence of cochain complexes

0 ÝÑ Ω˚pMq ÝÑ Ω˚pUq ‘ Ω˚pV q ÝÑ Ω˚pU X V q ÝÑ 0.

Proof. Exactness at ΩppMq amounts to the observation that a form on M is
uniquely determined by its restrictions to U and V . Exactness at ΩppUq ‘ ΩppV q

amounts to the observation that a pair of forms ω on U and ν on V can be glued
to a form on M if and only if ω|UXV “ ν|UXV .

It is exactness at ΩppU X V q that is the hardest; we must show that every
form on U X V is a difference of forms on U and V . The problem is that a
naive extension by 0 of ω P ΩppU X V q to U or V will not be smooth. To
get around this, we will “cut off” ω appropriately before extending by 0. Let
ρU , ρV : M Ñ r0, 1s be a partition of unity subordinate to the open cover U, V .
Then ρV ω can be extended by 0 to give a smooth p-form ρV ω on U , and similarly
ρUω can be extended by 0 to give a smooth p-form ρUω on V . Then we can
write ω as ρV ω ´ p´ρUωq, which exhibits ω as being in the image of the map
ΩppUq ‘ ΩppV q Ñ ΩppU X V q.

Corollary 23.2.2 (Mayer–Vietoris). There is a long exact sequence

Hp`1pMq Hp`1pUq ‘Hp`1pV q ¨ ¨ ¨

¨ ¨ ¨ HppUq ‘HppV q HppU X V q

In the Mayer–Vietoris long exact sequence, the left horizontal maps

HppMq ÝÑ HppUq ‘HppV q

are given by pullback along the inclusion U ãÑ M and V ãÑ M . Similarly, the
right horizontal maps

HppUq ‘HppV q ÝÑ HppU X V q

are the difference of the pullback along the inclusion UXV ãÑ U and the pullback
along the inclusion U X V ãÑ V . Finally, the boundary maps can be described
rather explicitly; given rωs P HppU XV q, one observes that dpρV ωq and dp´ρUωq

coincide on U X V and hence glue to a well-defined pp` 1q-form on M . It will in
fact be supported in U X V .
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23.3 Applications

As an application of Mayer–Vietoris, we will now compute the cohomology of
three basic examples of smooth manifolds. The guidelines for its use are as
follows: you need to know the cohomology of three out of the following four
manifolds: M , U , V , and U X V . Since we don’t know many examples yet, these
often tend to be contractible or are provided by an inductive hypothesis.

23.3.1 The cohomology groups of spheres

We start with spheres Sn.

Theorem 23.3.1. The cohomology of Sn, n ě 1, is given by

H˚pSnq “

#

R if ˚ “ 0, n,
0 otherwise.

Proof. The proof will be induction over n, the initial case n “ 1 having been
completed two lectures ago. We can cover Sn “ tpx0, . . . , xnq |

ř

x2
i “ 1u by two

slightly enlarged hemispheres:

U :“ Sn X tx P Rn`1 | xn ą ´ϵu,

V :“ Sn X tx P Rn`1 | xn ă ϵu.

Then U – Rn, V – Rn and U X V – Sn´1 ˆ R. Thus we get that both U and V
have non-zero cohomology groups only in degree 0, while homotopy invariance
says H˚pU X V q – H˚pSn´1q which we know by the inductive hypothesis.

There are several cases for Mayer–Vietoris when we want to compute HppSnq.
Let us start with assume that p ą 1. In this case we have

HppSnq HppUq ‘HppV q “ 0 ¨ ¨ ¨

¨ ¨ ¨ Hp´1pUq ‘Hp´1pV q “ 0 Hp´1pSn´1q

because p´ 1, p ‰ 0. By exactness, we conclude that the pictured boundary map
is an isomorphism, and thus

Hp´1pSn´1q ÝÑ HppSnq

is an isomorphism as long as p ą 1.
To deal with p “ 0, 1, we inspect the relevant part of the long exact sequence:

H1pSnq H1pUq ‘H1pV q “ 0 ¨ ¨ ¨

H0pSnq H0pUq ‘H0pV q – R2 H0pSn´1q “ Rp˚q

Recalling the construction of the Mayer–Vietoris sequence the map p˚q is given by
the difference of the restrictions, so by R2 Q px, yq ÞÑ x´ y P R. This is surjective
with kernel R. From this we see that H0pSnq “ R and H1pSnq “ 0.
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23.3.2 The cohomology groups of punctured Euclidean spaces

We have computed H˚pRnq already—it mostly vanishes—and H˚pRnzt0uq follows
from the previous computation since Rnzt0u – Sn´1 ˆ R—it has the same
cohomology as Sn´1. What happens if you remove more points? It is easy for
n “ 1, as then removing points just disconnects R into some disjoint union of
copies of R.

Theorem 23.3.2. Let X be a finite subset of Rn, n ě 2, then

H˚pRnzXq –

$

’

&

’

%

R if ˚ “ 0,
R|X| if ˚ “ n´ 1,
0 otherwise.

Proof. The proof is by induction over the cardinality r of X. The initial case
r “ 1 has been done above. For the induction step, we fix some x P X and cover
Rn by U “ Rnztxu and V “ RnzpXztxuq. Their intersection U X V is RnzX.

We will not give the full Mayer–Vietoris sequence, but skip to the interesting
part around degree p “ n´ 1:

HnpRnq “ 0 ¨ ¨ ¨

Hn´1pRnq “ 0 Hn´1pUq ‘Hn´1pV q “ R ‘ R|X|´1 Hn´1pU X V q – R

¨ ¨ ¨

where we applied the inductive hypothesis to U and V respectively. We conclude
that Hn´1pRzXq – R|X|.

23.3.3 The cohomology groups of CPn

Recall the complex projective plane CPn is given by the quotient of the scaling
action on non-zero vectors in Cn:

pCn`1zt0uq{Cˆ.

That is, an element rz0 : ¨ ¨ ¨ : zns P CPn is described by an pn ` 1q-tuple
pz0, . . . , znq of complex numbers, not all zero, up to scaling. Since CP 1 is
diffeomorphic to S2, we already know its cohomology from Theorem 23.3.1.
What happens for CPn, n ě 2?

Theorem 23.3.3. The cohomology of CPn, n ě 1, is given by

H˚pCPnq “

#

R if 0 ď ˚ ď 2n is even,
0 otherwise.

.
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Proof. The proof is by induction over n, the initial case n “ 1 having been done
before.

Let U Ă CPn be the open subset consisting of those rz0 : . . . : zns satisfying
|z0|2 ` . . .` |zn´1|2 ą |zn|2. By scaling the last coordinate by 1 ´ t with t P r0, 1s,
this deformation retracts onto CPn´1. Let V Ă CPn be the open subset consisting
of those rz0 : ¨ ¨ ¨ : zns with zn ‰ 0. By scaling the first n coordinates by p1 ´ tq
with t P r0, 1s, this is seen to be contractible. Then U X V is the open subset of
those rz0 : . . . : zns with zn ‰ 0 and |z0|2 ` . . . ` |zn|2 ą |zn`1|2. Such elements
are uniquely represented by elements of the form rw0 : . . . : wn´1 : 1s with
|w0|2 ` . . . ` |wn´1|2 ą 1. This deformation retracts onto the subspace with
|w0|2 ` . . .` |wn´1|2 “ 2, which gives a sphere S2n´1.

We will not give the full Mayer–Vietoris sequence, but skip to the interesting
part around degree p “ 2n´ 1:

H2npCPnq H2npUq ‘H2npV q “ 0 ¨ ¨ ¨

¨ ¨ ¨ H2n´1pUq ‘H2n´1pV q – 0 H2n´1pU X V q – R

In particular we get that H˚pCPnq “ H˚pCPn´1q for ˚ ă 2n and H2npCPnq “

R.

Multiplicative structures

Above we computed H˚pSnq, H˚pRnzXq, and H˚pCPnq as graded R-vector
spaces. However, we actually know that these cohomology groups are a graded-
commutative algebra. In the former two cases, this algebra structure is uniquely
determined by the fact that it is compatible with the grading and that H0 is
generated by a unit; in both cases all products not involving a multiple of the
unit vanish:

H˚pSnq “ Rrxns{px2
nq,

the free polynomial ring on a generator xn of degree n, modulo the ideal generated
by x2

n. Similarly,

H˚pRnzXq “ R
”

y
pxq

n´1

ˇ

ˇ

ˇ
x P X

ı

{py
pxq

n´1y
px1q

n´1 | x, x1 P Xq,

with a collection of generators ypxq

n´1 of degree n´ 1, one for each element of X.
However, the algebra structure on H˚pCPnq can not be determined this way.

Once we establish Poincaré duality, we can prove that as an algebra

H˚pCPnq “ Rrx2s{pxn`1
2 q,

with x2 a generator in H2pCPnq.
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23.3.4 More examples

If you want to practice your proficiency with the Mayer–Vietoris sequence you
can prove—at least additively— the following results (the convention is that a
subscript on a generator denotes its degree).

Example 23.3.4. Recall the quaternionic projective plane HPn. Its cohomology
is given by

H˚pHPnq “ Rry4s{pyn`1
4 q.

Here are some computations that require more advanced techniques than we
have discussed so far:

Example 23.3.5. Let Up2q be the Lie group of p2 ˆ 2q-matrices with complex
entries which are unitary, i.e. A: “ A. Its cohomology is given by

H˚pUp2qq “ Rrc1, c3s{pc2
1, c

2
3q.

Example 23.3.6. Recall the K3-manifold. Its cohomology is given by

H˚pK3q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

R if ˚ “ 0,
0 if ˚ “ 1,
R22 if ˚ “ 2,
0 if ˚ “ 3,
R if ˚ “ 4,
0 otherwise.

The multiplicative structure is determined by the bilinear map H2pK3q ˆ

H2pK3q Ñ H4pK3q – R. In a suitable basis, it is given by the symmetric
matrix

„

´id19 0
0 id3

ȷ

.

Remark 23.3.7. In fact, the Sullivan–Barge theorem tells you that the only
restrictions on realizing a given finitely-generated graded-commutative R-algebra
H˚ with H1 “ 0 as the cohomology of a manifold are (i) it satisfies Poincáre
duality, and (ii) if the dimension is 4n it admits Pontryagin classes satisfying the
congruences of the Hirzebruch signature theorem [FOT08, Theorem 3.2].

23.4 Problems

Problem 54 (Long exact sequence of a pair). Suppose that M Ă N is a smooth
submanifold.

(a) Show that the differential of Ω˚pNq restricts to one on kerrΩ˚pNq Ñ

Ω˚pMqs,
We define the relative cohomology H˚pN,Mq as that of the cochain complex
kerrΩ˚pNq Ñ Ω˚pMqs.
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(b) Prove that there is a long exact sequence

Hp`1pN,Mq Hp`1pNq ‘Hp`1pMq ¨ ¨ ¨

¨ ¨ ¨ HppN,Mq ‘HppNq HppMq

This is known as the long exact sequence of a pair.

Problem 55 (Relative and compact-supported cohomology). Suppose that M
is a compact manifold with boundary BM . Prove there is an isomorphism

H˚pM, BMq – H˚
c pMzBpMqq.

Problem 56 (The compactly-supported cohomology of the Moebius strip). Let
M be the open Moebius strip. Use the Poincaré lemma and Mayer–Vietoris for
compactly-supported cohomology to compute H˚

c pMq.

Problem 57 (Cohomology of compact oriented surfaces). Recall that Σg denote
a genus g surface. Use Mayer–Vietoris to compute H˚pΣgq.
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Qualitative applications of Mayer–Vietoris

So far we have only used Mayer–Vietoris to compute the cohomology of specific
manifolds. Today we will use it to prove finite-dimensionality of de Rham
cohomology and Poincaré duality. This is proven in of [BT82, Section 5].

24.1 De Rham cohomology is finite-dimensional

Suppose that M is a compact manifold, then we can find a finite cover by
contractible subsets: take some collection of charts ϕα : Rk Ą Uα Ñ Vα Ă M
which cover M , write each Uα as a union of open balls, and apply compactness.
Using a trick from Riemannian geometry you can in fact do better and find a
good cover in the following sense:

Definition 24.1.1. A finite open cover U1, ¨ ¨ ¨ , Ur of a topological space is good
if for each non-empty subset I Ă t1, . . . , ru, the open subset UI :“

Ş

iPI Ui is
either empty or diffeomorphic to Rn.

Definition 24.1.2. A smooth manifold M is said to be of finite type if it admits
a good open cover.

In particular, you can take I “ tiu to see that each Ui is contractible.
Example 24.1.3. A circle is of finite type; it has a good open cover by three
intervals. More generally, a k-sphere is a finite type; it has a good open cover by
k ` 2 open subsets, by taking neighborhoods of the k-simplices in the boundary
B∆k`1 of a standard pk ` 1q-simplex ∆k (the convex hull of the basis vectors
e0, . . . , ek`1 in Rk`2) For example, ∆3 is the tetrahedron and slightly expanding
the four faces of a tetrahedron gives a good open cover of S2.
Remark 24.1.4. Definition 24.1.1 is slightly non-standard, chosen to simplify the
proof of Poincaré duality. It is more common to define a good open cover to have
UI which are either empty or contractible. The minimal numbers of elements in
a such good open cover is called the covering type [KW16]. Karoubi and Weibel
used Mayer–Vietoris to prove that the k-sphere has no good open cover by ă k`2
open subsets. You can prove this yourself, see Problem 58. Covering type has
been largely unstudied and many open questions surrounding it; apparently the
covering type of the Klein bottle is not known!

204
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The following is proven in in [BT82, Theorem 5.1]:

Proposition 24.1.5. Every compact manifold M is of finite type, i.e. admits a
good open cover. Moreover, every open cover has a refinement to a good open
cover.

Theorem 24.1.6. If M is of finite type, H˚pMq is finite-dimensional.

Corollary 24.1.7. If M is compact, H˚pMq is finite-dimensional.

Proof of Theorem 24.1.6. First observe that since HppMq “ 0 for p ą k, the
dimension of M , it suffices to prove that each HppMq is finite-dimensional.

We prove the result by induction over the number r of open subsets in a
good open cover. In the initial case r “ 1, M “ U1 and U1 is contractible, so
by the homotopy invariance of de Rham cohomology H0pMq “ R and all other
cohomology groups vanish.

For the induction step, suppose that M has a good open cover with r open
subsets U1, . . . , Ur. Then M can be covered by two open subsets U :“ U1 and
V :“

Ťr
i“2 Ui. Then U is contractible, V has a good open cover by r ´ 1 open

subsets (namely U2, . . . , Ur), and U X V has a good open cover by r ´ 1 open
subsets (namely U1 X U2, . . . , U1 X Ur). Now consider the Mayer–Vietoris long
exact sequence

HppMq HppUq ‘HppV q ¨ ¨ ¨

¨ ¨ ¨ Hp´1pUq ‘Hp´1pV q Hp´1pU X V q – R

We deduce from it that for each p ě 0, HppMq has a surjection onto a subspace of
HppUq ‘HppV q with kernel a subspace of Hp´1pU X V q. Both HppUq ‘HppV q

and Hp´1pU X V q are finite-dimensional by the inductive hypothesis, and hence
so are these subspaces. This in turn implies HppMq is finite-dimensional.

Remark 24.1.8. In fact, you can bound the dimension of H˚pMq in terms of r as
dimH˚pMq ď 2r.

Some non-compact manifolds are of finite type, e.g. those which are the interior
of a compact manifold with boundary. However, H˚pMq is not finite-dimensional
for a general non-compact manifold M .

Remark 24.1.9. Here is an alternative method to constructing a counterexample;
suppose we have open subsets U1 Ă U2 Ă ¨ ¨ ¨ of M such that

Ť

i Ui “ M , then it
is a fact that H˚pMq always surjects onto limi H

˚pUiq. In fact, when all H˚pUiq
are finite-dimensional this is an isomorphism. This follows from the Milnor
sequence and the observation that inverse systems of finite-dimensional vector
spaces are Mittag-Leffler. It is easy to construct examples of Ui where all maps
H˚pUiq Ñ H˚pUi´1q surjective and the dimension increases, in which case the
limit will be infinite-dimensional.
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24.2 Poincaré duality

The following is a whirlwind tour of Poincaré duality, both its proof and applica-
tions.

24.2.1 Statement and proof

Recall that a bilinear form V ˆW Ñ R is non-degenerate if (i) xv, wy “ 0 for all
w P W if and only if v “ 0, and (ii) xv, wy “ 0 for all v P V if and only if w “ 0.
Note that (i) says V Ñ W ˚ is injective, and (ii) that W Ñ V ˚ is injective. By
counting dimensions, one proves the following lemma:

Lemma 24.2.1. Suppose that V is finite-dimensional, then the following are
equivalent:

1. the bilinear form V ˆW Ñ R is non-degenerate,
2. V Ñ W ˚ is an isomorphism,
3. W Ñ V ˚ is an isomorphism.

Under these conditions W is also finite-dimensional.

Recall that H˚
c pMq denotes the compactly-supported de Rham cohomology,

defined using compactly-supported forms instead of arbitrary forms.

Theorem 24.2.2 (Poincaré duality). If M is oriented of dimension k and of
finite type, then the bilinear map

x´,´y : HppMq ˆHk´p
c pMq ÝÑ R

prωs, rνsq ÞÝÑ

ż

M
ω ^ ν

is non-degenerate.

As the compactly-supported cohomology of a compact manifold coincides
with the ordinary cohomology, we get the following, making good on a promise
from a previous lecture:

Corollary 24.2.3. If M is compact oriented of dimension k with empty bound-
ary, then there is an isomorphism HppMq – Hk´ppMq. In particular, if M is
connected, HkpMq – R.

It is easy to deduce more consequences. Recalling that if M is simply-
connected then H1pMq “ 0, we conclude that:

Corollary 24.2.4. If M is a compact oriented manifold of dimension k and
simply-connected, then Hk´1pMq “ 0.

Using the isomorphism H˚pM, BMq – H˚
c pMzBMq, one may deduce from

Theorem 24.2.2 also a variant for manifolds with boundary.

Corollary 24.2.5 (Poincaré–Lefschetz duality). If M is compact oriented of
dimension k with boundary BM , then HppMq – Hk´ppM, BMq.
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24.2.2 The proof of Poincaré duality

Before we start the proof we give a fundamental example:
Example 24.2.6. We know that H˚pRkq is non-zero except for ˚ “ 0, in which
case it is R generated by the class r1s represented by the constant function with
value 1. Similarly, H˚

c pRkq is non-zero except for ˚ “ k by the Poincaré lemma
for compactly-supported cohomology, in which case it is R generated by the class
rλpxqdx1 ^ ¨ ¨ ¨ dxks represented by any compactly-supported k-form λpxq ¨ dx1 ^

¨ ¨ ¨ ^ dxk with λ : Rk Ñ R a compactly-supported smooth function satisfying
ş

Rk λpxqdx1 ¨ ¨ ¨ dxk “ 1. Then the computation xr1s, rλpxqdx1 ^ ¨ ¨ ¨ dxksy “
ş

Rk λpxqdx1 ¨ ¨ ¨ dxk “ 1 exhibits the bilinear form as being non-degenerate.

Proof of Theorem 24.2.2. Since the cohomology groups of a manifold of finite
type are finite-dimensional, it suffices to prove that the slightly-modified map
(we have added a sign)

ρM : HppMq ÝÑ pHk´p
c pMqq˚

ω ÞÝÑ

ˆ

ν ÞÑ ϵppq

ż

M
ω ^ ν

˙

,

is an isomorphism. Here, ϵppq “ 1 if p ” 0, 1 pmod 4q and ϵppq “ ´1 if p ” 2, 3
pmod 4q. The proof will be by induction over the number of elements r in the
finite good cover U1, . . . , Ur. The initial case r “ 1 has been done in Example
24.2.6.

For the induction step, we write M as the union of the two open subsets
U :“ U1 and V :“ U2 Y ¨ ¨ ¨ YUr. Each of U , V and U XV is oriented with a good
open cover with either 1 or r ´ 1 elements, and thus the inductive hypothesis
applies to them.

There are Mayer-Vietoris long exact sequences in cohomology and compactly-
supported cohomology, the latter being reversed in direction with the maps not
induced by pullback but by extension by 0:

¨ ¨ ¨ ÝÑ HppMq ÝÑ HppUq ‘HppV q ÝÑ HppU X V q ÝÑ Hp`1pMq ÝÑ ¨ ¨ ¨

and

¨ ¨ ¨ ÐÝ Hp
c pMq ÐÝ Hp

c pUq ‘Hp
c pV q ÐÝ Hp

c pU X V q ÐÝ Hp´1
c pMq ÐÝ ¨ ¨ ¨

The latter may be dualized to a long exact sequence

¨ ¨ ¨ ÝÑ Hp
c pMq˚ ÝÑ Hp

c pUq˚ ‘Hp
c pV q˚ ÝÑ Hp

c pU XV q˚ ÝÑ Hp´1
c pMq˚ ÝÑ ¨ ¨ ¨

We can now write down integration maps from the long exact sequence
for cohomology to this dual of the one for compactly-supported cohomology, a
representative part of which is given by

HppMq HppUq ‘HppV q HppU X V q Hp`1pMq

Hk´p
c pMq˚ Hk´p

c pUq˚ ‘Hk´p
c pV q˚ Hk´p

c pU X V q˚ Hk´p´1
c pMq˚

ρM ρU ‘ρV

B

ρUXV ρM

B
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We claim this diagram commutes. This is easy to see in the left two squares.
For example, for the leftmost one it amounts to verifying that for each pair
pνU , νV q of compactly-supported pk´ pq-forms and each p-form ω on M , we have
that

pρU ‘ ρV qpω|U , ω|V q

´

pνU , νV q

¯

“ ϵppq

ż

U
ω|U ^ νU ` ϵppq

ż

V
ω|V ^ νV

“ ϵppq

ż

M
ω ^ pνU ` νV q

“ pρM qpωq

´

pνU , νV q

¯

,

where in the last two lines we use the convention to denote the extension-by-zero
of νU and νV to M be the same symbols.

It is the right square that is harder, as it involves boundary maps. For a
pp` 1q-form ω on U X V , recall that Bω is given by picking a partition of unity
ηU , ηV : M Ñ r0, 1s subordinate to U, V and taking the pp ` 1q-form Bω given
by dpηUωq “ ´dpηV ωq. Similarly, the boundary map on compactly-supported
cohomology sends a pk ´ p´ 1q-form ν to dpηUνq “ ´dpηV νq. Then we compute

ρM pBωq

´

ν
¯

“ ϵpp` 1q

ż

M
Bω ^ ν

“ ϵpp` 1q

ż

U
dpηUω|U q ^ ν

“ ϵpp` 1q

ż

U
dpηU q ^ ω|U ^ ν,

where the second step uses that d is a derivation and ω is closed. We can in turn
write this as

“ p´1qpϵpp` 1q

ż

U
ω|U ^ dpηU q ^ ν

“ p´1qpϵpp` 1q

ż

M
ω ^ pdpηU q ^ ν

“ p´1qpϵpp` 1q

ż

M
ω ^ dpηUνq

“ p´1qpϵpp` 1q

ż

M
ω ^ Bν

“ p´1qpϵpp` 1qϵppqρM pωq

´

Bν
¯

.

Now we observe that there are two cases: if p is even then ϵpp` 1q “ ϵppq, and if
p is odd then ϵpp` 1q “ ´ϵppq, so this is exactly ρM pωqpBνq.

Thus we have a commutative diagram of long exact sequences with two-thirds
of the vertical maps isomorphisms

HppMq HppUq ‘HppV q HppU X V q Hp`1pMq

Hk´p
c pMq˚ Hk´p

c pUq˚ ‘Hk´p
c pV q˚ Hk´p

c pU X V q˚ Hk´p´1
c pMq˚

ρM ρU ‘ρV– ρUXV ρM–
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It follows from Lemma 24.2.7 that the ρM must also be an isomorphism.

The following is a standard result in homological algebra (there is a much
more general version):

Lemma 24.2.7 (5-lemma). If in a commutative diagrams of vector spaces

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5

all vertical maps except f3 are known to be isomorphisms, then f3 must also be
an isomorphism.

Proof. We shall prove that f3 is injective, leaving the proof that it is surjective to
the reader. Suppose that f3pxq “ 0, then in particular its image in B4 vanishes.
Since f4 is an isomorphism, the image of x in A4 must also vanish. By exactness,
this means that x is the image of some y P A2. We know that f2pyq is mapped
to 0 in B3, so by exactness f2pyq is the image of some z P B1. Since f1 and f2
are isomorphisms, this means that there is some w P A1 which maps to y P A2.
The element x must vanish, being in the image of a composition of two maps in
an exact sequence, which is the zero map by exactness.

24.2.3 Multiplicative structure of the cohomology of CPn

In the previous lecture we computed H˚pCPnq additively; it is R in degrees
˚ “ 2i for 0 ď i ď n and vanishes otherwise. We now explain how to obtain the
algebra structure.

Proposition 24.2.8. As a graded-commutative R-algebra, H˚pCPnq “ Rrx2s{pxn`1
2 q.

Proof. We prove this by induction over n, the case n “ 1 being obvious as
H˚pCP 1q “ Rrx2s{px2

2q for degree reasons. (Alternatively, you can use that CP 1

is diffeomorphic to S2.)
During the Mayer–Vietoris computation of the additive structure of H˚pCPnq

we learned that the inclusion CPn´1 ãÑ CPn induces an isomorphism on de Rham
cohomology in degrees ˚ ă 2n. Thus H2ipCPnq is generated by xi2 for i ă n,
and it remains to prove that xn2 is non-zero, as then it necessarily generates the
1-dimensional group H2npCPnq. But that xn2 is non-zero follows from Poincaré
duality: there must exist a class y in H2pCPnq such that y ¨ xn´1

2 P H2n´2pCPnq

is a non-zero element of H2npCPnq otherwise xn´1
2 would be the pairing as

being non-degenerate. But y must be a non-zero multiple of x2 and hence
x2 ¨ xn´1

2 ‰ 0.

The multiplicative structure of cohomology groups can be used to prove
results which can not be proven if you just know the additive structure. For
example, the additive structure of H˚pCPnq does not rule out that there may exist
smooth maps S2n Ñ CPn Ñ S2n whose composition is the identity. However,
the multiplicative structure does:
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Corollary 24.2.9. If n ě 2, there is no smooth map S2n Ñ CPn of non-zero
degree.

Proof. Such a map would need to be non-zero on H2n, but since the map
H˚pCPnq “ Rrx2s{pxn`1

2 q Ñ H˚pS2nq “ Rry2ns{py2
2nq is a homomorphism, the

value on the generator xn2 of H2npCPnq is the nth power of the value on the
generator of x2 of H2pCPnq. But this is necessarily 0.

24.3 Problems

Problem 58 (Bounds on non-zero cohomology groups). Suppose that M has
a good open cover by r subsets. Prove that the largest p such that rHppMq ‰ 0
must be ď r ´ 2. (Hint: induct over r).

Problem 59 (Strengthening the 5-lemma). How much can you weaken the
assumptions on f1, f2, f4, f5 in Lemma 24.2.7 such that the conclusion still holds?

Problem 60 (The Künneth theorem). In this problem you will use the techniques
of this chapter to prove the Künneth theorem. Let M,N be smooth manifolds.

(a) Prove that given two cochain complexes C˚ and D˚,

pC˚ bD˚qp “
à

k`l“p

Ck bDl dpxb yq “ dpxq b y ` p´1q|x|xb dpyq

is again a cochain complex. (The sign is another instance of the Koszul
sign rule.)

(b) Prove that the map

H˚pC˚q bH˚pD˚q ÝÑ H˚pC˚ bD˚q

rxs b rys ÞÝÑ rxb ys

is well-defined and an isomorphism.
(c) Let π1 : M ˆ N Ñ M and π2 : M ˆ N Ñ N be the projections. Show

that
Ω˚pMq b Ω˚pNq ÝÑ Ω˚pM ˆNq

ω b ν ÞÝÑ π˚
1 pωq ^ π˚

2 pνq
(24.1)

is a map of cochain complexes.
Now suppose that N is of finite type.

(d) Prove that by induction over the number of elements in a good open
cover that map (24.1) induces an isomorphism

H˚pMq bH˚pNq
–

ÝÑ H˚pM ˆNq.

(e) Compute H˚pTnq.
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The Thom isomorphism

We continue our discussion of Mayer–Vietoris and Poincaré duality with an
intermediate form: the Thom isomorphism for a vector bundle, where one takes
compact support only in the fibre direction.

25.1 Vertically compactly-supported cohomology

Let π : E Ñ M be a d-dimensional smooth vector bundle over a k-dimensional
smooth manifold M . Then it makes sense to consider those differential forms ω on
M so that supppωqXπ´1pKq is compact for all K Ă M compact. This is preserved
by the exterior derivative, so the subspaces of vertically compactly-supported
p-forms assemble to a cochain complex

Ω˚
vcpEq.

To study these, we need another operation: integration along the fibre. Suppose
that E “ RkˆRd then any p-form ω P H˚pRkˆRdq is a sum of terms of two types:
(I) fpx, tqdxI ^ dtJ for |J | “ d (so dtJ “ dt1 ^ ¨ ¨ ¨ ^ dtdq), (II) fpx, tqdxI ^ dtJ
for |J | ă d. If we assume that f has compact support in the Rd-direction for
each x P Rk, then we can define

π˚pfpx, tqdxI ^ dtJq “

#

p∫Rd fpx, tqdtq dxI if |J | “ d,

0 else.

This obviously generalises to the case where Rk is replaced by open subset U Ď Rk,
and then using local trivialisations to the case that E is the total space of an
oriented vector bundle; the orientations are necessary to define integration. We
will leave the details to you. The result is a linear map

π˚ : Ω˚
vcpEq ÝÑ Ω˚´dpMq

called integration along the fibre.

Lemma 25.1.1. We have that π˚d “ dπ˚.

211
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Proof. Since two forms on M are equal if they are equal locally, we may pick a
local trivialisation and assume E “ Rk ˆ Rd. The proof is now essentially that
of the Poincaré lemma. We first verify this on forms of type (I):

π˚d pfpx, tqdxI ^ dtJq “ π˚

˜

k
ÿ

i“1

Bfpx, tq

Bxi
dxi ^ dxI ^ dtJ

¸

“

ˆ
ż

Rd

Bfpx, tq

Bxi
dt

˙

dxi ^ dxI

“
B

`ş

Rd fpx, tqdt
˘

Bxi
dxi ^ dxI

“ dπ˚ pfpx, tqdxI ^ dtJq .

We next observe that it both sides clearly send a form of type (II) to zero unless
|J | “ d´ 1, i.e. dtJ “ dt1 ^ ¨ ¨ ¨ ^ pdti ^ ¨ ¨ ¨ ^ dtd. In this case we use in the first
equality that only the term that takes a partial derivative with respect to ti
survives π˚

π˚d pfpx, tqdxI ^ dtJq “ π˚

ˆ

Bfpx, tq

Bti
dti ^ dxI ^ dtJ

˙

“ 0

where the last equality is obtained by using Fubini’s theorem to first integrate the
ti-coordinate, and that the result is zero by the fundamental theorem of algebra
combined with the fpx, tq having compact support in the ti-direction when fixing
the remaining coordinates.

Thus there is an induced map on vertically compactly-supported cohomology:

π˚ : H˚
vcpEq ÝÑ H˚´dpMq.

It has the following property

Proposition 25.1.2 (Projection formula). Suppose that π : E Ñ M is an oriented
vector bundle of dimension d. Then for ω P ΩppMq and ν P ΩqpEq we have

π˚pπ˚ω ^ νq “ ω ^ π˚ν.

Proof. Since two forms on M are equal if they are equal locally, we may pick a
local trivialisation and assume E “ Rk ˆ Rd. If ν is of type (II) then the left
side vanishes by definition, and so does the right side since π˚ω ^ ν is also of
type (II). If ν “ fpx, tqdxI ^ dtJ is of type (I) and ω “ gpxqdxI 1 then π˚ω ^ ν is
gpxqfpx, tqdxI 1 ^ dxI ^ dtJ and we see that

π˚pπ˚ω ^ νq “

ˆ
ż

Rd

gpxqfpx, tqdtJ

˙

dxI 1 ^ dxI

“ gpxqxI 1 ^

ˆ
ż

Rd

fpx, tqdtJqdxI

˙

“ ω ^ π˚ν.
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25.2 The Thom isomorphism

The proof of the Poincaré lemma in compactly-supported cohomology gives that:

Theorem 25.2.1. The map

π˚ : H˚
vcpRk ˆ Rdq ÝÑ H˚´dpRkq

is an isomorphism.

For U Ă M write EU “ π´1pUq. It is easy to see that the sequence of chain
complexes

0 ÝÑ Ω˚
vcpEM q ÝÑ Ω˚

vcpEU q ‘ Ω˚
vcpEV q ÝÑ Ω˚

vcpEUXV q ÝÑ 0

is short exact, so we get a Mayer–Vietoris long exact sequence for vertically
compactly-supported cohomology. These are the necessary ingredients for:

Theorem 25.2.2 (Thom). If E Ñ M is an oriented vector bundle of dimension
d and M is of finite type, then the map

π˚ : H˚
vcpEq ÝÑ H˚´dpMq

is an isomorphism.

Proof. The proof is once more by induction over the number of elements in a
good open cover of M ; we may assume that the vector bundle trivialises over
the elements in the good open cover. This can be proven either by showing that
any open cover contains a good open cover, or by proving that vector bundles
over Rk are always trivialisable. The initial case is covered by the Poincaré
lemma above so it remains to do the induction step. As usual we set U “ U0 and
V “ U1 Y ¨ ¨ ¨ Y Ur and it suffices by the five-lemma to prove that there is a map
of long exact sequences

¨ ¨ ¨ H˚
vcpEM q H˚

vcpEU q ‘H˚
vcpEV q H˚

vcpEUXV q H˚`1
vc pEM q ¨ ¨ ¨

¨ ¨ ¨ H˚´dpMq H˚´dpUq ‘H˚´dpV q H˚´dpU X V q H˚´d`1pMq ¨ ¨ ¨

πM
˚ πU

˚ ‘πV
˚ πUXV

˚ πM
˚

and it is easy to see that the left and middle square commute, but for the right
square we need to verify that fibre integration commutes with the connecting
homomorphisms:

πM˚ Bω “ πUXV
˚ pπ˚dηU ^ ω|UXV q “ dηU ^ πUXV

˚ ω|UXV “ BπUXV
˚ pωq

where the middle equation uses the projection formula.

In particular, corresponding to 1 P H0pMq there is a vertically compactly-
supported cohomology class rThpπqs P Hd

vcpEq. A vertically compactly-supported
representative d-form Thpπq has the property that its integral over each fibre
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equals 1, and this property determines it uniquely up to exterior derivatives of
vertically compactly-supported pd´ 1q-forms. Note that there is a map

H˚´dpMq ÝÑ H˚
vcpEq

rωs ÞÝÑ rπ˚ω ^ Thpπqs

Corollary 25.2.3. This map is inverse to π˚.

Proof. We simply compute

π˚pπ˚ω ^ Thpπqq “ ω ^ π˚Thpπq “ ω,

using that π˚Thpπq “ 1.
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Čech cohomology

We will now generalise the Mayer–Vietoris principle to a combinatorial method
to compute de Rham cohomology: the Čech complex. This is also explained in
[BT82, Section 8].

26.1 Double cochain complexes

Recall a cochain complex is given by a collection of N-indexed R-vector spaces
C˚ with differentials d : C˚ Ñ C˚`1 satisfying d2 “ 0:

C0 d
ÝÑ C1 d

ÝÑ C2 d
ÝÑ ¨ ¨ ¨ .

A double complex is N2-indexed and consequently has differentials going in two
independent directions:

Definition 26.1.1. A double cochain complex is a collection of N2-indexed R-
vector spaces C˚,˚ with horizontal differential d : C˚,˚ Ñ C˚`1,˚ and vertical
differential δ : C˚,˚ Ñ C˚,˚`1 satisfying d2 “ 0, δ2 “ 0, and δd “ dδ. It looks
like:

...
...

... . . .

C0,2 C1,2 C2,2 ¨ ¨ ¨

C0,1 C1,1 C2,1 ¨ ¨ ¨

C0,0 C1,0 C2,0 ¨ ¨ ¨

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

The hypothesis that d and δ commute allows us to extract three functor
cochain complex from a double cochain complex. The first is given by by
summing along diagonals:

Definition 26.1.2. The total cochain complex Tot˚pC˚,˚q of a double cochain
complex C˚,˚ has entries given by

TotppC˚,˚q :“
à

i`j“p

Ci,j for p P N,

215



216 Chapter 26 Čech cohomology

and differential D : TotppC˚,˚q Ñ Totp`1pC˚,˚q given on the term Ci,j by d `

p´1qiδ.

The sign in the definition of D is necessary: on Ci,j we have

D2 “ d2 ` p´1qidδ ` p´1qi`1δd´ δ2 “ 0,

and without the sign the middle terms would not have cancelled and the result
would be dδ ` δd “ 2dδ instead.
Example 26.1.3. An element in Tot˚pC˚,˚q is given by a collection a “ pai,jqi`j“p

of elements ai,j P Ci,j and this is in the kernel of D if and only if
¨ δa0,p “ 0,
¨ dai´1,j “ p´1qiδai,j´1 for all i` j “ p` 1 with i, j ą 0,
¨ dap,0 “ 0.
The second is the vertical edge. As for a double cochain complex d and δ

commute, the latter restricts for each row C˚,p to a map

δ : C´1,p :“ kerpd : C0,p Ñ C1,pq ÝÑ C´1,p`1 :“ kerpd : C0,p`1 Ñ C1,p`1q

which still satisfies δ2 “ 0: the result is another cochain complex C´1,˚.
The third is the horizontal edge. As for the vertical edge, we can use the

columns to extract a cochain complex C˚,´1 with entries Cp,´1 :“ kerpδ : Cp,0 Ñ

Cp,1q and differential the restriction of d.
By construction, the inclusions induce a map of cochain complexes

C´1,˚ ÝÑ Tot˚pC˚,˚q.

The following is once more a diagram chase and best followed on paper.

Theorem 26.1.4. Suppose that the extended cochain complex of the columns

¨ ¨ ¨ ÝÑ 0 ÝÑ C´1,p inc
ÝÑ C0,p δ

ÝÑ C1,p δ
ÝÑ ¨ ¨ ¨

is exact for all p ě 0. Then the inclusion C´1,˚ Ñ Tot˚pC˚,˚q induces an
isomorphism on cohomology.

Proof. We first prove that it is surjective. Suppose that a “ pai,jqi`j“p P

TotppC˚,˚q is in the kernel of D. We claim up to the image of D, we can replace
a by a1 satisfying a1

i,j “ 0 for i ą 0: then da1
p,0 “ 0 and δa1

p,0 “ 0, so it is the
image of a cohomology class in HppC´1,˚q we are done. This is done inductively:
suppose that ai,j “ 0 for i ą r with r ą 0 then we have that dar,p´r “ 0, so
by the hypothesis there exists an br´1,p´r P Cr´1,p´r so that dbr´1,p´r “ ar,p´r.
Considering br´1,p´r as an element of Totp´1pC˚,˚q we consider

a1 “ a´Dbr´1,p´r.

It has the analogous property with r replaced r´1 as we have killed the pr, p´rq-
term at the cost of replacing the pr ´ 1, p ` r ´ 1q-term with ar´1,p`r´1 ´

p´1qr´1δbr´1,p`r´1.
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We next prove that it is injective. Suppose that x P C´1,p is in the kernel of δ
and that there exists a b P Totp´1pC˚,˚q so that x “ Db. We claim that up to the
image of D, we can replace b by b1 satisfying b1

i,j “ 0 for j ą 0: then δb1
0,p´1 “ x

and db1
0,p´1 “ 0, so x represents the zero cohomology class in HppC´1,˚q. This

is similarly done inductively in a similar manner and we leave the proof to the
reader.

There is similarly an inclusion of cochain complexes

C˚,´1 ÝÑ Tot˚pC˚,˚q

and if the extended cochain complex of the rows

¨ ¨ ¨ ÝÑ 0 ÝÑ Cp,´1 inc
ÝÑ Cp,0

d
ÝÑ C ,p1 d

ÝÑ ¨ ¨ ¨

is exact for all p ě 0, then the inclusion C˚,´1 Ñ Tot˚pC˚,˚q induces an isomor-
phism on cohomology. Let us combine these two facts:

Corollary 26.1.5. Suppose that the extended cochain complexes of the columns
and rows

¨ ¨ ¨ ÝÑ 0 ÝÑ C´1,p inc
ÝÑ C0,p δ

ÝÑ C1,p δ
ÝÑ ¨ ¨ ¨

¨ ¨ ¨ ÝÑ 0 ÝÑ Cp,´1 inc
ÝÑ Cp,0

d
ÝÑ C ,p1 d

ÝÑ ¨ ¨ ¨

are exact for all p ě 0. Then H˚pC´1,˚q – H˚pC˚,´1q.

26.2 The Čech-to-de Rham complex

We will now apply these ideas to give a variant of the Mayer–Vietoris principle
for an arbitrary open cover rather than an open cover by two open subsets.
We say “principle” here because we stay shy of extracting the analogue of the
Mayer–Vietoris long exact sequence, which would require a digression into spectral
sequences.

26.2.1 The Čech-to-de Rham complex

Let U be an open cover a smooth manifold M . For each finite collection α “

tα0, . . . , αpu of indices we can form the intersection

Uα0,...,αp
:“ Uα0 X ¨ ¨ ¨ X Uαp Ď M.

Note that there is an inclusion Uα0,...,αp ãÑ Uβ0,...,βp when tβ0, . . . , βpu Ď tα0, . . . , αpu.

Definition 26.2.1. The Čech-to-de Rham complex C˚pU,Ω˚q is the double
cochain complex with entries given by

CqpU,Ωpq :“

$

&

%

pωqα0,...,αq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pωqα0,...,αq “

p´1qσpωqασp0q,...,ασpqq

for all σ P Sq`1

,

.

-

Ă
ź

|α|“q`1
ΩppUαq,
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with horizontal differential d given by

pdωqα0,...,αq “ dpωα0,...,αq q

and the vertical differential δ given by

pδωqα0,...,αq “

q
ÿ

i“0
p´1qipωqα0,...,pαi,...,αq

|Uα0,...,αq
.

Notation 26.2.2. From now on, we will often drop the restrictions p´q|Uα0,...,αq

to simplify the notation.

Remark 26.2.3. There are two variations of the Čech-to-de Rham double cochain
complex which give isomorphic cohomology groups: (i) you can remove the
anti-symmetry condition, (ii) you can order the indexing set of the open cover U

and only take the terms pωqα0ă¨¨¨ăαq .
This is well-defined: d clearly preserves the anti-symmetry condition in the

definition of C˚pU,Ω˚q and δ does by a straightforward computation.
Example 26.2.4. If U has two elements U and V , then C˚pU,Ω˚q is given by

...
...

...

0 0 0 ¨ ¨ ¨

Ω0pU X V q Ω1pU X V q Ω2pU X V q ¨ ¨ ¨

Ω0pUq ˆ Ω0pV q Ω1pUq ˆ Ω1pV q Ω2pUq ˆ Ω2pV q ¨ ¨ ¨

d

δ

d

δ

d

δ

d

δ

d

δ

d

δ

with vertical maps given by pω, νq ÞÑ ω|UXV ´ ν|UXV . Here we implicitly identify
the subgroup of the form pω,´ωq P ΩipU X V q ˆ ΩipV X Uq with ΩipU X V q.

Let us verify the claim made in the definition:

Lemma 26.2.5. C˚pU,Ω˚q is a double cochain complex.

Proof. It is clear that d2 “ 0 (since the exterior derivative is a differential)
and that dδ “ δd (since the exterior derivative commutes with pullback, here
appearing in the guise of restriction). It remains to see that δ2 “ 0, which follows
form

pδ2ωqα0,...,αq “

q
ÿ

i“0
p´1qipδωqα0,...,pαi,¨¨¨ ,αq

“
ÿ

0ďiăjďq

p´1qip´1qj´1pδωα0,...,pαi,...,pαj ,...,αq
q

`
ÿ

0ďjăiďq

p´1qip´1qjpδωα0,...,pαj ,...,pαi,...,αq
q

and noting that a given pair of omissions appears twice with opposite sign.
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26.2.2 A generalised Mayer–Vietoris principle

On the one hand, to give a p-form on M is the same as giving p-forms on each of
the Uα that agree on the overlaps Uαăβ. Thus we have that restriction induces
an isomorphism

ΩppMq
–

ÝÑ C´1pU,Ωpq :“ kerpδ : C0pU,Ωpq Ñ C1pU,Ωqqq,

and the restriction of the horizontal differential d of C˚pU,Ω˚q to these kernels
corresponds under this isomorphism to the exterior derivative of p-forms on M .
To make use of this, we need to the following:

Lemma 26.2.6. The extended cochain complex of the columns

¨ ¨ ¨ ÝÑ 0 ÝÑ C´1pU,Ωpq ÝÑ C0pU,Ωpq ÝÑ C2pU,Ωpq ÝÑ ¨ ¨ ¨

is exact for all p ě 0.

Proof. To prove that any pωq P CqpU,Ωpq that lies in kernel of δ also lies in the
image of δ, we pick a partition of unity ηα subordinate to the open cover U and
consider ν P Cq´1pU,Ωpq given by

pνqα0,...,αq´1 :“
ÿ

α

ηαpωqα,α0,...,αq´1

which is well-defined as a locally finite sum of p-forms. The hypothesis that
pδωq “ 0 implies that

pδωqα,α0,...,αq “ pωqα0,...,αq `

q
ÿ

i“0
p´1qi`1pωqα,α0,...,pαi,...,αq

“ 0.

Using this we check that

pδνqα0,...,αq “

q
ÿ

i“0
pνqα0,...,pαi,...αq

“

q
ÿ

i“0
p´1qi

ÿ

α

ηαpωqα,α0,...,pαi,...αq

“
ÿ

α

ηαpωqα0,...,αq “ pωqα0,...,αq .

This proves that pωq is in the image of δ.

Theorem 26.2.7 (Generalised Mayer–Vietoris principle). For any open cover U

of a smooth manifold M , the restriction map

Ω˚pMq ÝÑ C˚pU,Ω˚q

induces an isomorphism on cohomology.

To obtain the Mayer–Vietoris theorem from this we need to perform some
further manipulations: filter the double cochain complex to extract a Mayer–
Vietoris spectral sequence that for an open cover by two open subsets degenerates
to the Mayer–Vietoris long exact sequence. We will not do this here, but it may
serve as motivation to learn about spectral sequences, e.g. from [BT82, Chapter
III].
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26.2.3 The Čech complex

On the other hand, the smooth functions in Ω0pKq that lie in the kernel of the
exterior derivative are exactly those that are locally constant. Denote locally
constant R-valued functions on U by RpUq, so that assigning to each component
the value of a locally function on it, we get an isomorphism

RpUq
–

ÝÑ Rπ0 U .

The inclusion of locally constant functions induces an isomorphism

ś

|α|“q`1 RpUα0,...,αq q Ą

$

&

%

pfqα0,...,αq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pfqα0,...,αq “

p´1qσpfqασp0q,...,ασpqq

for all σ P Sq`1

,

.

-

CqpU,Ω´1q :“ kerpd : CqpU,Ω0q Ñ CqpU,Ω1qq

–

and the vertical differential δ restricts to it. The resulting cochain complex is
quite combinatorial, as it only depends on the sets of path components of the
intersections of elements of the open cover. We will give it a name:

Definition 26.2.8. The Čech complex Č˚
UpM ;Rq of an open cover U of a smooth

manifold M has entries given by

ČpUpM ;Rq :“

$

&

%

pfqα0,...,αq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pfqα0,...,αq “

p´1qσpfqασp0q,...,ασpqq

for all σ P Sq`1

,

.

-

Ď
ź

|α|“p`1
RpUα0,...,αpq

with differential given by pδfqα0,...,αq “
řq
i“0p´1qipfqα0,...,pαi,...,αq

|Uα0,...,αq
. We

will write
Ȟ˚

UpM ;Rq :“ H˚pČ˚
UpM ;Rqq.

It is not true in general that the extended rows are exact, but this is the
case if each Uα0ă¨¨¨ăαp is a disjoint union of contractible components, by our
computation of the de Rham cohomology of contractible manifolds:

Lemma 26.2.9. Suppose each Uα0,...,αp is a disjoint union of contractible com-
ponents. Then the extended cochain complexes of the columns

¨ ¨ ¨ ÝÑ 0 ÝÑ CqpU,Ω´1q ÝÑ CqpU,Ω0q ÝÑ CqpU,Ω1q ÝÑ ¨ ¨ ¨

are exact for all q ě 0.

Corollary 26.2.10. For an open cover U of a smooth manifold M as in
Lemma 26.2.9, the inclusion map

Č˚
UpM ;Rq ÝÑ C˚pU,Ω˚q

induces an isomorphism on cohomology.
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Combining this with Theorem 26.2.7 we get:

Theorem 26.2.11. For an open cover U of a smooth manifold M as in Lemma 26.2.9,
there is an isomorphism Ȟ˚

UpM ;Rq – H˚
dRpMq.

By the existence of good open covers, for compact M there always exist
open covers U so that the intersections Uα0,...,αp are not merely disjoint union of
contractible components but in fact either empty or diffeomorphic to Rd. By the
above theorem, the cohomology of M is determined only by the combinatorics of
the inclusions between components of these intersections.

26.3 Čech cohomology of (pre)sheaves

We end with a discussion of a general setting for the construction of Čech
cohomology. The construction of the Čech complex only requires that (i) we can
assign to each open subset U of M a R-vector space F pUq, (ii) for an inclusions
U Ď V we have a restriction map

resVU : F pV q ÝÑ F pUq

so that for an pair of inclusion U Ď V Ď W we have

resWV ˝ resVU “ resWU .

This is conveniently encoded in terms of category theory. Let OpenpMq be the
category whose objects are open subsets U Ď M and a unique morphism U Ñ V
when U Ď V , then the objects F we just described are the same as:

Definition 26.3.1. A presheaf on M is a functor

F : OpenpMqop ÝÑ VectR.

Example 26.3.2. There is a presheaf R : OpenpMq Ñ VectR which assigns to U
the R-vector space of locally constant R-valued functions.
Example 26.3.3. For each p ě 0 there is a presheaf Ωq : OpenpMq Ñ VectR which
assigns to U the R-vector space of q-forms on U .

This is all the data we need to define the Čech cochain complex:

Definition 26.3.4. Let F : OpenpMq Ñ VectR be a presheaf and U be an open
cover. Then the Čech cochain complex

ČpUpM ;F q :“

$

&

%

psqα0,...,αq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

psqα0,...,αq “

p´1qσpsqασp0q,...,ασpqq

for all σ P Sq`1

,

.

-

Ď
ź

|α|“p`1
F pUα0,...,αpq

with differential given by pδsqα0,...,αq “
řq
i“0p´1qipsqα0,...,pαi,...,αq

|Uα0,...,αq
. We will

write
Ȟ˚

UpM ;F q :“ H˚pČ˚
UpM ;F qq.
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Remark 26.3.5. There are two variations of the Čech cochain complex which give
isomorphic cohomology groups: (i) you can remove the anti-symmetry condition,
(ii) you can order the indexing set of the open cover U and only take the terms
psqα0ă¨¨¨ăαq .

Both the aforementioned examples of presheaves have the property that given
elements fα P F pUαq whose restrictions to F pUα X Uα1q agree, we can uniquely
glue these to an f P F pUq where U “ YαUα. A presheaf with such a gluing
property is called a sheaf :

Definition 26.3.6. A presheaf F : OpenpMqop Ñ VectR is a sheaf if for each
open cover U of U the following is exact

0 ÝÑ F pUq ÝÑ
ź

αPA

F pUαq ÝÑ
ź

pα,α1qPA2

F pUα X Uα1q.

Here the first map takes f to the collection with α-term given by resUUα
pfq and

the second map takes a collection pfαqαPA to the collection with pα, α1q-term
given by resUα

UαXUα1
pfαq ´ resUα1

UαXUα1
pfα1q

Proposition 26.3.7. If F is a sheaf then restrictions induces an isomorphism

F pMq
–

ÝÑ Ȟ0
UpM ;F q.

However, as we have seen in the example of the sheaf of locally constructions
functions R, in general the higher Čech cohomology groups need not vanish and
contain interesting information about F , M , and the open cover U.
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Secondary applications of de Rham
cohomology

Today we give two applications of de Rham cohomology, which establish non-
triviality of geometric constructions by arguments of a “secondary” nature. That
is, they exploit that when the cohomology class of a differential form vanishes it
does so for a reason, namely that it is the exterior derivative of some other form.

27.1 Poincaré duals of submanifolds and intersection theory

Every closed oriented submanifold X Ă M of dimension p gives rise to a linear
functional

ρX : Hp
c pMq ÝÑ R

rωs ÞÝÑ

ż

X
ω.

By the Poincaré duality isomorphism pHp
c pMqq˚ – Hk´ppMq there is a closed

pk ´ pq-form ηXĂM such that
ş

M ηXĂM ^ ω “ iXpωq. Its cohomology class
rηXĂM s P Hk´ppMq is the Poincaré dual to X.

Similarly, if X is compact, we can integrate any p-form over it and use
the Poincaré duality isomorphism pHppMqq˚ – Hk´p

c pMq to get a compactly-
supported supported cohomology class rηcXĂM s P Hk´p

c pMq: the compactly sup-
ported Poincaré dual to X.

Our philosophy requires that there be preferred representatives of these
Poincaré dual cohomology classes, and there are. Note that if we have oriented
vector bundle π : E Ñ B over an oriented manifold, the total space E admits
a natural orientation using the decomposition TE – kerpdπq ‘ π˚TB and with
this choice the Fubini theorem implies

ş

B π˚p´q “
ş

E .

Lemma 27.1.1. For a d-dimensional oriented vector bundle π : E Ñ X over a
compact oriented manifold X, we have that rηcXĂEs “ rThpπqs.

223
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Proof. Since the inclusion i : X Ñ X is a homotopy equivalence with homotopy
inverse π, we have that ω ´ π˚ι˚ω “ dτ . Let us now compute

ż

E
ω ^ Thpπq “

ż

E
pπ˚ι˚ω ` dτq ^ Thpπq

“

ż

E
π˚ι˚ω ^ Thpπq

“

ż

X
π˚pπ˚ι˚ω ^ Thpπqq

“

ż

X
ι˚ω ^ π˚Thpπq

“

ż

X
ι˚ω

where the second equation uses Stokes’ theorem as dτ ^ Thpπq “ dpτ ^ Thpπqq

and the fourth equation the projection formula.

This tells us that preferred representatives ηcXĂM of the compactly-supported
Poincaré dual of X is given by extension-by-zero of a representative of the Thom
class Thpπq for π : NX Ñ X the normal bundle using a tubular neighbourhood
NX Ñ M .

We will now give a result summarising how two important constructions
cohomology classes can be interpreted geometrically for Poincaré duals. This
can be proven by appropriate choices of representatives, and for a proof and
details about orientations see [BT82, p. 69]. As we make compactness hypotheses
throughout, we can drop the sub- and superscripts c.

Proposition 27.1.2. Let M be a compact smooth manifold.
(i) If X,Y Ă M are compact oriented submanifolds that intersect transversally,

then we can find representatives ηXĂM , ηY ĂM , and ηXXY ĂM so that ηXĂM^

ηY ĂM “ ηXXY ĂM .

(ii) If X Ă M is a compact oriented submanifold and f : N Ñ M is a smooth
map transverse to X then we can find representatives ηXĂM and ηf´1pXqĂN

so that f˚ηXĂM “ ηf´1pXqĂN .

If a compact submanifold X Ă M is the boundary of a compact submanifold
with boundary W Ă M then we have that

ρXprωsq “

ż

X
ω “

ż

BW
ω “

ż

W
dω “ 0

where the last equation uses that ω is closed. The philosophy of this lecture that
is we can take advantage of reasons a cohomology class of a form is zero. For
ηXĂM this is the existence of W . If one tries to construct a Thom class for the
normal bundle of W Ă M we can do so at the interior of W but needs to make
modification near the boundary, and the result is a ηWĂM with the property that
dηWĂM “ ηXĂM . This certifies that rηXĂM s “ 0 but contains more information:
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Proposition 27.1.3. Let M be a compact smooth manifold, W Ă M be a
compact submanifold with boundary BW “ X, and Y Ă M a smooth submanifold
disjoint from X and transverse to W . Then there exists choices of forms ηXĂM ,
ηWĂM , ηY ĂM , and ηWXY ĂM so that

(i) ηXĂM “ dηXĂW ,
(ii) ηWĂM ^ ηY ĂM “ ηWXY .

27.2 The Hopf invariant

Recall that CP 1 is diffeomorphic to S2 and was defined as the quotient pC2´0q{C˚.
Instead, we use only elements of norm 1 and give an equivalent definition as the
quotient

CP 1 –
tz P C2 | |z| “ 1q

Up1q
,

or in other words, as a quotient of S3 by a free action of S1. The quotient map
is a smooth map

h : S3 ÝÑ S2

that we call the Hopf fibration. Since all fibres are circles, this gives a way of
writing S3 as a union of S1’s. We claim that this map is not null-homotopic,
which we will prove by constructing an invariant of smooth maps f : S2n´1 Ñ Sn

and evaluating it for the Hopf fibration. Not only will its definition use a choice
of reason that a form represents the zero cohomology class, but its evaluation
will use the Poincaré dual forms of the previous section.

Figure 27.1 Some fibers of the Hopf fibration pictured in R3 Ă S3 (from [Fra07]).

Pick an n-form ω P ΩnpSnq so that
ş

Sn ω “ 1. Since HnpS2n´1q “ 0, there
exists an pn´ 1q-form ν so that dν “ f˚ω.



226 Chapter 27 Secondary applications of de Rham cohomology

Definition 27.2.1. The Hopf-invariant of f is

Hpfq :“
ż

S2n´1
ν ^ dν P R.

Lemma 27.2.2.
(i) Hpfq vanishes when n is odd.

(ii) Hpfq is independent of the choice of ω and ν.
(iii) Hpfq only depends on the homotopy class of f .

Proof. For the computations below it is helpful to observe that if a, b are p-forms
then a^ db “ db^ a since at least one of a and db is in even degree.

For (i), note that for odd n we have

dpν ^ νq “ dν ^ ν ` p´1qn´1ν ^ dν “ dν ^ ν ` ν ^ dν “ 2ν ^ dν

which integrates to zero by Stokes’ theorem.
For (ii) we first prove independence of choice of ω. If we replace ω by

ω1 “ ω ` dµ the pn´ 1q-form ν 1 “ ν ` f˚µ satisfies dν 1 “ dν ` df˚µ “ f˚ω1 and
we compute

ν 1 ^ dν 1 ´ ν ^ dν “ pν ` f˚µq ^ dpν ` f˚µq ´ ν ^ dν

“ f˚µ^ dpν ` f˚µq ` pν ` f˚µq ^ df˚µ

“ dpf˚µ^ νq ` f˚pµ^ dµq

“ dpf˚µ^ νq

where the last equation uses that µ^ dµ is a p2n´ 1q-form on an n-sphere and
hence vanishes. By Stokes’ theorem this integrates to zero. To prove independence
of ν, if dpν ` ρq “ ω then dρ “ 0 and we compute that

pν ` ρq ^ dpν ` ρq ´ ν ^ dν “ ρ^ dν “ dpρ^ νq

which integrates to zero by Stokes’ theorem.
For (iii) if H : Sn ˆ R Ñ Sn´1 is the homotopy then by homotopy invariance

of de Rham cohomology we can find rν P ΩnpS2n´1 ˆ Rq so that drν “ H˚ω. By
Stokes theorem we have

Hpf1q ´Hpf0q “

ż

S2n´1ˆr0,1s

dprν ^ drνq “ 0,

since dprν ^ drνq “ drν ^ drν “ F ˚pω ^ ωq “ 0 since ω ^ ω is a 2n-form on an
n-sphere.

Example 27.2.3. If f : S3 Ñ S2 is null-homotopic then Hpfq “ 0. To see this,
note that by (iii) we may as well assume that f is constant and then f˚ω “ 0 so
we can take ν “ 0.

There is also the following useful variant of (ii), breaking the symmetry in
the definition of the Hopf invariant.
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Lemma 27.2.4. If we choose ν and ν 1 so that f˚ω “ dν and f˚ω1 “ dν 1 with
ω1 ´ ω “ dµ, then

Hpfq “

ż

S2n´1
ν ^ dν 1.

Proof. Consider

ν ^ dν 1 ´ ν ^ dν “ ν ^ f˚dµ

“ p´1qn´1dpν ^ f˚µq ´ p´1qn´1dν ^ f˚µ

“ p´1qn´1dpν ^ f˚µq ´ p´1qn´1f˚pω ^ µq

“ p´1qn´1dpν ^ f˚µq

where the last equality uses that ω ^ µ is a p2n´ 1q-form on an n-spheres and
hence vanishes, and the last term integrates to zero by Stokes.

It is possible to prove the following by a direct computation of integrals [BT82,
p. 235–238] but it is more easily done using Poincaré duals:

Theorem 27.2.5. If f : S3 Ñ S2 is the Hopf fibration, then Hpfq “ 1.

Proof. Note since rωs “ rηpĂS2s we may assume f˚ω “ ηf´1ppqĂS3 for a fibre
f´1ppq – S1 of the Hopf fibration. This fibre bounds a 2-disc D in S3 so we
may assume ηf´1ppqĂS3 “ dηDĂS3 and can take ν “ ηDĂS3 . Doing the same for
a nearby point p1 we can take dν 1 “ ηf´1ppqĂS3 and noting that this is transverse
to D intersecting it in a single point ˚ P S3, with positive orientation had we
kept track of orientations, we have

Hpfq “

ż

S3
ηDĂS3 ^ ηf´1pp1qĂS3 “

ż

S3
η˚ĂS3 “ 1.

By precomposing or postcomposing with self-maps of S3 or S2 of arbitrary
degree, we see that the Hopf invariant takes all integer values and we get:

Corollary 27.2.6. There are infinitely many homotopy classes of maps S3 Ñ S2.

27.3 Massey products

A second example of secondary invariants are Massey products. Suppose that we
have closed forms ω, ν, µ on M so that rω ^ νs “ 0 “ rν ^ µs. That is, we have
ω ^ ν “ dα and ν ^ µ “ dβ. If we take the element

x “ ω ^ β ` p´1q|ω|α ^ µ

then it satisfies

dx “ p´1q|ω|ω ^ ν ^ µ` p´1q|ω|ω ^ ν ^ µ “ 0

and hence represents a cohomology class. It is independent of choices once we
pass to a certain quotient:
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Lemma 27.3.1. The class

rxs P
H |ω|`|ν|`|µ|´1pMq

rωs ^H |ν|`|µ|´1pMq `H |ω|`|ν|´1pMq ^ rµs

is independent of choice of α and β, as well as of representatives ω, ν, µ of the
cohomology class rωs, rνs, rµs.

Proof. We first show that it is independent of the choice of β, and the proof
that is independent of the choice of α is analogous. If dβ1 “ ν ^ ν “ dβ then
dpβ1 ´ βq “ 0 and we see that

ω ^ β1 ` p´1q|ω|α ^ µ´ ω ^ β ´ p´1q|ω|α ^ µ “ ω ^ pβ1 ´ βq

is a representative of rωs ^ rβ1 ´ βs and goes to zero in the quotient.
We next prove that it is independent of the representative ω of rωs, and the

proof that is independent of the choices of ν and µ is analogous. If ω and ω1 both
represent rωs then ω1 ´ ω “ dρ and we may take α1 “ α ` ρ^ ν and we have

ω1 ^ β ` p´1q|ω|α ^ µ´ ω ^ β ´ p´1q|ω|α1 ^ µ “ pω ´ ω1q ^ β ` p´1q|ω|pα ´ α1q ^ µ

“ dρ^ β ` p´1q|ω|pα ´ α1q ^ µ

“ dρ^ β ´ p´1q|ω|ρ^ ν ^ µ

“ dpρ^ βq.

Definition 27.3.2. We call rxs the Massey product of rωs, rνs, rµs and denote it
by

xrωs, rνs, rµsy P
H |ω|`|ν|`|µ|´1pMq

rωs ^H |ν|`|µ|´1pMq `H |ω|`|ν|´1pMq ^ rµs
.

The following example is due to Morita [?, Example 3.24], of a non-trivial
Massey product in a so-called nilmanifold:
Example 27.3.3. We consider the Lie group

N “

$

&

%

¨

˝

1 x y
0 1 z
0 0 1

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x, y, z P R

,

.

-

Ă GL3pRq.

This is easily seen to be a smooth manifold of dimension 3, and it has a subgroup
Γ Ă N of those matrices where x, y, z are integers. This acts freely and properly
on N , so the quotient M “ N{Γ is also a smooth manifold of dimension 3. The
forms dx, dy and dy ` xdz on N are Γ-invariant so descend to unique 1-forms α,
β, and γ on M . It turns out that H1pMq is 2-dimensional generated by rαs and
rβs and H2pMq is also 2-dimensional generated by rα ^ γs and rα ^ γs.

It is of course true that α ^ α “ 0 and we have that α ^ β “ dγ. Thus we
can form the Massey product

xrαs, rαs, rβsy P
H2pMq

rαs ^H1pMq `H1pMq ^ rβs
“ H2pMq

and it is represented by α ^ γ so non-zero.
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Flows along vector fields

Even though we are now familiar with de Rham cohomology, a question remains:
what is its geometric significance? For the remainder of these notes, our goal is
to connect Morse theory to de Rham cohomology. Today we start the technical
preparations. This material can be found in Section 1.4 of [Wal16].

28.1 Flows along vector fields

When we do Morse theory on a smooth manifold M in the next lectures, we will
deform subsets of M by flowing them along the gradient vector field of a Morse
function f : M Ñ R (to define the gradient we will need to pick a Riemannian
metric). Thus, we have to define flows along vector fields on manifolds: as usual,
we take a known result on open subsets of Rk and extend it to k-dimensional
manifolds using charts.

28.1.1 Flows on Rk

The result we use is the existence and uniqueness theorem for solutions to ordinary
differential equations, cf. [Wal16, Theorem 1.4.1]:

Theorem 28.1.1. Let U Ă Rk be open, K Ă U be compact, and X a smooth
vector field on U . Then there exists an ϵ ą 0, an open neighbourhood U 1 Ă U of
K, and a unique smooth map Ψ: U 1 ˆ p´ϵ, ϵq Ñ U such that

d

dt
Ψpx, tq “ XpΨpx, tqq and Ψpx, 0q “ x.

Let us restate this using the following notion:

Definition 28.1.2. An integral curve for X through x, is a smooth map
γ : p´ϵ, ϵq Ñ U such that γp0q “ x and d

dtγptq “ Xpγptqq.

Theorem 28.1.1 says that integral curves exist, are unique, and depend
smoothly on the initial condition. For t P p´ϵ, ϵq, let us denote by ψt the map
x ÞÑ Ψpx, tq. We call Ψ the flow and ψt the flow for time t, and it has the
following properties:

229
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Proposition 28.1.3. ψ0 “ id and ψtpψspxqq “ ψs`tpxq whenever both are
defined.

Proof. The first property is clear. The second property uses that Ψ is unique. The
map t ÞÑ Ψpx, s` tq at t “ 0 is equal to gpx, sq and has derivative d

dtΨpx, s` tq “

XpΨpx, s ` tqq. That is, it has the properties uniquely defining Ψpx1, tq with
x1 “ Ψpx, sq. Thus we see that

ψs`tpxq “ Ψpx, s` tq “ ΨpΨpx, sq, tq “ ψtpψspxqq.

You can recover the vector field X from the flow Ψ as the derivative of Ψp´, tq
with respect to t at t “ 0.

28.1.2 Flows on manifolds

To extend these results to smooth manifolds, we study the behaviour of solutions
to ordinary differential equations under diffeomorphisms. Given a diffeomorphism
ϕ : Rk Ą U Ñ V Ă Rk, we can push forward X along ϕ to get a vector field ϕ˚X

on V . In fact, the pushforward of vector fields is defined on arbitrary manifolds,
and is given by using the applying derivative of the diffeomorphism to the vector
field:

Definition 28.1.4. If φ : M Ñ N is a diffeomorphism and X is a vector field on
M , then the pushforward of X along φ is given by

φ˚Xppq :“ dφ´1ppqφ
“

Xpφ´1ppqq
‰

.

For open subsets of Euclidean space the derivative is given by total derivative
and we have

ϕ˚X “ Dϕ´1pxqϕ
“

Xpϕ´1pxqq
‰

.

On the one hand we can apply Theorem 28.1.1 to ϕ˚X on V using the compact
K 1 :“ ϕpKq. The result is a solution Ψ1 : V 1 ˆ p´ϵ1, ϵ1q Ñ V to the differential
equation

d

dt
Ψ1px1, tq “ ϕ˚XpΨ1px1, tqq and Ψ1px1, 0q “ x1. (28.1)

On the other hand we can transport the solution Ψ to X using ϕ:

Ψ2 : ϕpU 1q ˆ p´ϵ, ϵq ÝÑ V

px1, tq ÞÝÑ ϕpΨpϕ´1px1q, tqq.

I claim that this is a solution to (28.1). To prove this, observe it satisfies

Ψ2px1, 0q “ ϕpΨpϕ´1px1q, 0qq “ ϕpϕ´1px1qq “ x1,

and that we can use the chain rule to deduce that
d

dt
Ψ2px1, tq “ DΨpϕ´1px1q,tqϕ

„

d

dt
Ψpϕ´1px1q, tq

ȷ

“ Dϕ´1pΨ2px1,tqqϕ
“

XpΨpϕ´1px1q, tqq
‰

“ pϕ˚XqpΨ2px1, tqq.
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By uniqueness, any other solution of (28.1) has to coincide on Ψ2px, tq on the
intersection of their domain of definition: hence Ψ2 “ Ψ1 on pϕpU 1q X V 1q ˆ

p´ minpϵ, ϵ1q,minpϵ, ϵ1qq.
We will use this result to extend the technique of flowing along vector fields

to manifolds.

Theorem 28.1.5. Let M be a smooth manifold and X be a vector field on
M . Then there exists a smooth map η : M Ñ Rą0 and a unique smooth map
Ψ: tpp, tq P M ˆ R | |t| ă ηppqu Ñ M such that

d

dt
Ψpp, tq “ XpΨpp, tqq and Ψpp, 0q “ p. (28.2)

Proof. We can find a collection of charts ϕα : Rk Ą Uα Ñ Vα Ă M and compact
subsets Kα Ă Vα such that the Kα cover M .

Every point p P M lies in some compact subset Kα of M . We can push forward
the restriction X|Vα to Uα along ϕ´1

α and apply Theorem 28.1.1 to the resulting
vector field pϕ´1

α q˚X. This gives us a smooth map Ψ̃α : U 1
α ˆ p´ϵα, ϵαq Ñ Uα

with U 1
α an open neighbourhood of ϕ´1

α pKαq. As above, we get a solution Ψα

to (28.2) on an open neighbourhood of Kα ˆ p´ϵα, ϵαq, by setting its value on
pp, tq P Kα ˆ p´ϵα, ϵαq to be

Ψαpp, tq :“ ϕαpΨ̃αpϕ´1
α ppq, tq.

We must check that combining these local solutions to (28.2) give rise to a
well-defined smooth map Ψ. That is, if p P Kα XKβ, then we should have

ϕαpΨ̃αpϕ´1
α ppq, tq “ ϕ1

βpΨ̃βppϕ1
βq´1ppq, tq

as long as t is small enough so that both are defined. This is guaranteed by
the previous discussion applied to the diffeomorphism pϕβq´1 ˝ ϕα : ϕ´1

α pVα X

Vβq Ñ pϕβq´1pVα X Vβq; pushing forward the vector field pϕ´1
α q˚X along this

diffeomorphism gives pϕ´1
β q˚X.

The result is a solution to (28.2) defined on an open neighbourhood V of
Mˆt0u in MˆR. Such an open subset always contains one of the type mentioned
in the theorem.

Remark 28.1.6. This proof is one the places where it is important that manifolds
are Hausdorff: on the line with doubled origin the flow along B

Bx exists but is not
unique (you have to decide which of the origins to go into). This Hausdorffness
assumption is hidden in the proof: it is used to see that Kα XKβ is compact.

As in the local case, we can define ψtppq “ Ψpp, tq for pp, tq P V . This satisfies
ϕ0ppq “ p and ψtpψsppqq “ ψs`tppq as long as both are defined, and one can
recover X from the flow by taking the derivative of Ψp´, tq with respect to t at
t “ 0.

What can we say about the domain of definition? By uniqueness any two
solutions to (28.2) agree on the overlap of their domain of definitions, so by
combining these we can extend the domain. In particular, there is a solution
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with maximal domain of definition. However, even for a solution with maximal
domain, t ÞÑ Ψpp, tq might still only be defined on some proper open interval
pap, bpq Ă R with ap ă 0 and bp ą 0:
Example 28.1.7. Let M “ Rzt0u and X “ B

Bx . Then the maximal domain of
definition of Ψ is given by those px, tq P R ˆ R such that t ą x if x ă 0, t ă x if
t ă x if x ą 0.

However, this can only occur if the integral curve through p leaves all compact
subsets of M eventually. Lemma 1.4.3 of [Wal16] says:

Lemma 28.1.8. Suppose Ψ has maximal domain and fix p P M . Either bp “ 8

or the map Ψpp,´q : r0, bpq Ñ M is proper. Similarly, either ap “ ´8 or the
map Ψpp,´q : pap, 0s Ñ M is proper.

Corollary 28.1.9. Suppose M is compact. If a solution to (28.2) has maximal
domain then its domain is M ˆ R.

Proof. As M is compact, no map r0, bpq Ñ M or pap, 0s Ñ M is proper.

Remark 28.1.10. When M is compact, this corollary implies there is a one-to-one
correspondence between 1-parameter groups of diffeomorphisms and smooth
vector fields.

There are other conditions under which the maximal domain is all of M ˆ R,
e.g. if X is compactly-supported or more generally, if X coincides outside of a
compact subset with a vector field Y whose maximal domain is M ˆ R.

28.2 Isotopy extension

We will now give the first of several important applications of flows along vector
fields, a very important geometric tool called isotopy extension.

28.2.1 The isotopy extension theorem

It is based on the following idea: if you imagine your smooth manifold M as
being made from a stretchy fabric, then you can use your finger to move one
point p P M to some other point p1 P M and deform the rest of the manifold
along to produce a diffeomorphism M Ñ M which moves p to p1.

In other words, imagining M as being made out of a stretchy fabric suggests
than any isotopy of embeddings ˚ Ñ M (starting at the map with value p and
ending at the map with value p1) can be extended to an isotopy of diffeomorphisms
M Ñ M . An isotopy of diffeomorphisms is also called an ambient isotopy,
suggesting the following interpretation: you do not just move the objects in
question but also their surrounding environment.

The isotopy extension theorem says that an isotopy extends to an ambient
isotopy under mild assumptions.

Theorem 28.2.1 (Isotopy extension). Suppose that M and X smooth manifolds
without boundary, and that X is compact. Then for any isotopy of embeddings



28.2 Isotopy extension 233

R2

•

Figure 28.1 The end result of pushing the origin to the red point, depicted by its effect on
vertical lines in R2. The dashed line gives the boundary of the support.

et : X ˆ r0, 1s Ñ M can be extended to an isotopy of diffeomorphisms, in the
following sense: there exists a family of diffeomorphisms ϕt : M ˆ r0, 1s Ñ M
satisfying ϕ0 “ id and ϕt ˝ e0 “ et. Furthermore, each ϕt will be compactly-
supported (that is, equal to the identity outside a compact subset).

Proof. Let us define e : Xˆ r0, 1s Ñ M ˆR by epp, tq “ etppq. The smooth vector
field on X ˆ r0, 1s given by B

Bt can be pushed forward along the embedding e to
obtain a vector field X on epX ˆ r0, 1sq Ă M ˆ r0, 1s. Suppose we could extend
this to a vector field X1 on all of M ˆ R. Then I claim that if we flow along X1

for time t with initial condition pe0ppq, 0q, we end up at petppq, tq. To see this, we
must prove that

t ÞÝÑ petppq, tq

is an integral curve for X1. To see this, takes its derivative with respect to t and
apply the chain rule

d

dt
petppq, tq “ dpp,tqe

„

d

dt
pt ÞÑ pp, tqq

ȷ

“ e˚

„

B

Bt
pp, tq

ȷ

“ X1pepp, tqq.

In other words, flowing e0 with image in M ˆ t0u along X1 for time t produces
et with image in M ˆ ttu. We can try to produce ϕt by flowing the identity map
of M ˆ t0u along X for time t. There are two problems:

(i) the flow may not exist,
(ii) it is not necessarily the case that the flow sends M ˆ t0u to M ˆ ttu.

Problem (ii) is solved by extending X not just to any smooth vector field X1

on M ˆ R, but one that projects to B
Bt under dπ for π : M ˆ R Ñ R. If so, we
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get the differential equation

d

dt
pπ ˝ ψtpp, sqq “ dπ ˝ X1pψtpp, sqq “

B

Bt
,

and the initial condition π ˝ ψ0pp, sq “ s guarantees that π ˝ ψtpp, sq “ s` t.
If we make sure that X1 is equal to B

Bt outside of a compact set, this will solve
problem (i). It guarantees that the flow exists, because X1 coincides outside of
a compact set with a vector field whose maximal domain of solution is all of
M ˆ R ˆ R. Having imposed theses conditions, we can thus prove the theorem
by taking

ϕ : M ˆ r0, 1s ÝÑ M ˆ r0, 1s

pp, tq ÞÝÑ Ψppp, 0q, tq,

or in other words, ϕtppq “ ψtpp, 0q.
So it remains to construct an extension X1 with the desired properties. Firstly,

it suffices to construct a smooth vector field X1 which
(a) coincides with X on epX ˆ r0, 1sq,
(b) coincides with B

Bt outside a compact subset of M ˆ R,
(c) satisfies the property dπ ˝ X1 is a positive multiple of B

Bt everywhere.
We may then afterwards modify X1 by scaling it with smooth function that is 1
on X ˆ R, to get that dπ ˝ X1 “ B

Bt on all of M ˆ R.
Since X is compact, we may find a finite collection of charts ϕi : Rk Ą Ui Ñ

Vi Ă M ˆ R covering the image of e and satisfy ϕ´1
i pVi X epX ˆ r0, 1sqq “

Ui X pRm´1 ˆ r0,8q ˆ t0uq. Let X1
i be the vector field on Vi given as follows:

Step (i): first extend pϕiq˚p B
Btq on UiXpRm´1 ˆr0,8qˆt0uq to UiXpRmˆt0uq,

Step (ii): then extend it in constant manner to the remaining pk´mq coordinate
directions of Ui,

Step (iii): apply pϕ´1
i q˚.

This extends X|Vi , so in particular has the property that dπ ˝ X1
i “ B

Bt on
ViXepXˆ r0, 1sq. Hence by possibly shrinking Vi to a smaller open neighborhood
of Vi X epX ˆ r0, 1sq, we may assume that π˚pX1

iq is a positive multiple of B
Bt .

Let V0 be an open subset of M ˆ r0, 1s satisfying V0 X epX ˆ r0, 1sq “ ∅ and
V0 Y

Ťk
i“1 Vi “ M ˆ r0, 1s, and let ηi be smooth partition of unity subordinate

to this open cover. The desired vector field is

X1 :“ η0 ¨
B

Bt
`

k
ÿ

i“1
ηi ¨ X1

i.

By construction this extends X and the condition that dπ ˝ X1 is a multiple of B
Bt

by a positive smooth function is preserved by taking convex linear combinations
such as those that appear when using partitions of unity.
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An embedding of R into R3

given by knot X centered at
the origin for t “ 0 moving
rightwards to 8 as t increases.

Figure 28.2 A family of embeddings to which isotopy extension does not apply. It does not
satisfy the assumption that X is compact.

28.2.2 Transitivity of diffeomorphisms

We have previously asserted that there exists a diffeomorphism of Rn mapping
the origin to any specified point x P Rn. Let us use isotopy extension to generalize
this to all connected manifolds:

Corollary 28.2.2. Suppose that M is a connected manifold and p, p1 P M ,
then there exists a compactly-supported diffeomorphism φ : M Ñ M such that
φppq “ φpp1q.

In fact, the proof will give a stronger result: we can find such a φ which is
isotopic to the identity.

Proof. Since M is connected, there exists a path γ from p to p1. Defining

e : ˚ ˆr0, 1s ÝÑ M

p˚, tq ÞÝÑ γptq,

this can be interpreted as an isotopy of embeddings from the embedding

e0 : ˚ ÝÑ M

˚ ÞÝÑ p

to the embedding

e1 : ˚ ÝÑ M

˚ ÞÝÑ p1.

Applying the isotopy extension theorem to e, we find an isotopy ϕt : M ˆ r0, 1s Ñ

M such that ϕ0 “ id and ϕt ˝e0 “ et. Then ϕ1 is the desired diffeomorphism.

28.2.3 Knot complements

It follows from Corollary 28.2.2 that Mzp and Mzp1 are diffeomorphic; the
restriction of φ gives this diffeomorphism. This can be generalized as follows.

Recall that a knot is an embedding e : S1 Ñ R3 up to isotopy. One might
think of trying to distinguish a knot by its complement R3zepS1q. However, it
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is not obviously clear this is well-defined, because its diffeomorphism type may
depend on the choice of e within the isotopy class. However, the isotopy extension
theorem tells us that for any two representatives e, e1 : S1 Ñ R3 of a knot, there
exists a diffeomorphism φ : R3 Ñ R3 such that φ ˝ e “ e1. This restrict to a
diffeomorphism

φ|R3zepS1q : R3zepS1q ÝÑ R3ze1pS1q.

28.3 Manifold bundles and the Ehresmann fibration theorem

28.3.1 Manifold bundles

The data of a smooth vector bundle in particular is a smooth map p : E Ñ X
whose fibers are diffeomorphic to Rk. It must be locally trivial, in the sense that
each point x P X admits an open neighbourhood V and a commutative diagram

π´1pV q V ˆ Rk

V V

–

π π2

the horizontal maps are diffeomorphisms. There is nothing special about Rk here,
and we can replace it with any other smooth manifold M :

Definition 28.3.1. Suppose that either BM “ ∅ or BX “ ∅. A smooth manifold
bundle with fiber M is a smooth map π : E Ñ X such that for each point x P X
there is an open neighbourhood V and a commutative diagram

π´1pV q V ˆM

V V

–

π π1

with horizontal maps diffeomorphisms.

Usually both BM and BX will be empty. We will denote the fiber p´1pxq by
Ex; by definition it is diffeomorphic to M .
Example 28.3.2. There is always a trivial manifold bundle π1 : X ˆM Ñ X.
Example 28.3.3. Suppose that BM ‰ ∅ (hence we assume BX “ ∅), then
p|BE : BE Ñ X is a smooth manifold bundle with fiber BM . Indeed, the local
trivializations in Definition 28.3.1 restrict to local trivializations

Bπ´1pV q V ˆ BM

V V.

–

π π2

Example 28.3.4. If a compact Lie group G acts freely and smoothly on M , then
M Ñ M{G is a smooth manifold bundle with fiber G.
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28.3.2 The Ehresmann fibration theorem

Theorem 28.3.5 (Ehresmann fibration theorem). A proper submersion π : E Ñ

X is a manifold bundle.

Proof. It remains to check that p : E Ñ X is locally trivial. That is, we need to
find for each point x P X a local trivialization: an open neighbourhood U of x
and a commutative diagram

p´1pUq U ˆM

U U

–

π π1

with horizontal maps diffeomorphisms. By restricting to a chart in X, we thus
may assume without loss of generality that X “ Rk and x is the origin.

By induction over k, it suffices to prove that a proper submersion p : E Ñ Rk
whose restriction to Rk´1 ˆ t0u has a trivialization, has a local trivialization near
the origin. To do so, it suffices to find a commutative diagram

π´1pRk´1 ˆ t0uq ˆ R π´1pRk´1 ˆ Rq “ E

Rk´1 ˆ R Rk´1 ˆ R

–

G

πˆid π

with horizontal maps diffeomorphisms.
To do so, we use a vector field X on E such that dp ˝ X “ B

Bxk
. Such a vector

field can clearly be constructed locally using charts provided by the submersion
theorem, and these can be combined using a partition of unity as in the proof of
Theorem 28.2.1. Now we apply Theorem 28.1.5 to X and consider the maximal
domain of each integral curve. For p P E the maximal domain of the integral
curve through p either (i) is R, (ii) the maximal integral curve gives a proper
map γp : pap, 0s or γp : r0, bpq Ñ M with ap ‰ ´8 or bp ‰ 8. We rule out case
(ii): the composition π ˝ γp is proper since π and γp are and by uniqueness of
solutions to ordinary differential equations given by t ÞÑ πppq ` t ¨ ek. But this
map is not proper unless both ap “ ´8 or bp “ 8. Thus the flow is defined on
all of M ˆ R.

In terms of this, the map G is given by

π´1pRk´1 ˆ t0uq ˆ R ÝÑ π´1pRk´1 ˆ Rq

pp, tq ÞÝÑ gpp, tq

with inverse given by mapping p1 P E to pgpp1,´prk ˝ πpp1qq,prk ˝ πpp1qq: the fact
that dπ ˝ X “ B

Bxk
guarantees this is well-defined and that the composition of G

with π is equal to π ˆ id.

Using the result that quotients of free smooth actions of compact Lie groups
are submersions, this implies the following:
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Corollary 28.3.6. If a compact Lie group G acts freely and smoothly on M ,
then the quotient map M Ñ M{G is a manifold bundle with fibers diffeomorphic
to G.

28.4 Problems

Problem 61. Let G be a compact connected Lie group.
(a) Show that there is an isomorphism between the tangent space TeG and

the vector space left-invariant vector fields on G.
(b) For X P TeG, let φXt be the flow generated by the left-invariant vector

field corresponding to X. Prove that its maximal domain is R.
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First fundamental theorem of Morse theory

In this lecture, we discuss that part of Morse theory which does not involve
critical points. We define Morse functions, prove they exist, and show that if
ra, bs Ă R contains no critical points of f , then f´1pra, bsq is diffeomorphic to
f´1paqˆra, bs. This can be found in Section 1.7 of [GP10], Section 5.1 of [Wal16],
and Section 3 of [Mil63].

29.1 Morse functions

Recall that for a smooth function f : M Ñ R, a point p P M so that dpf is not
surjective is called a critical point. Given a critical point and local coordinates
px1, . . . , xkq, one can define the Hessian. For simplicity, suppose that p is the
origin in these local coordinates, then we have a pkˆkq-matrix with pi, jqth entry
given by

Hess0pfqij :“ B2f

BxiBxj
p0q.

Remark 29.1.1. By Taylor’s theorem, in these local coordinates f is near the
origin given by

fpxq “ fp0q `
1
2

k
ÿ

i,j“1

B2f

BxiBxj
p0qxixj `Opx3q.

We say that p is a non-degenerate critical point if the Hessian matrix as
described above is invertible. Though the Hessian itself depends on a choice of
coordinates, it being invertible is well-defined, by the following lemma which is
an easy consequence of the chain rule:

Lemma 29.1.2. If ϕ : Rk Ą U Ñ U 1 Ă Rk is a diffeomorphism such that
ϕp0q “ 0. Then the origin is a non-degenerate critical point f : U 1 Ñ R if and
only if it is a non-degenerate critical point of f ˝ ϕ.

Definition 29.1.3. A smooth function f : M Ñ R is a Morse function if all its
critical points are non-degenerate.

239
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Example 29.1.4. It follows from the expression in Remark 29.1.1 that non-
degenerate critical points are isolated. In particular, a Morse function on a
compact manifold only has finitely many critical points.

29.1.1 Existence of Morse functions

Morse functions are generic among smooth maps f : M Ñ R. This follows from
the following theorem, which depends on a choice of embedding e : M ãÑ RN
(this exists by Whitney embedding theorem). Let e1, . . . , eN : M Ñ R denote the
coordinates of e.

Theorem 29.1.5. For a dense set of pa1, . . . , aN q P RN , the smooth map

fa : M ÝÑ R
p ÞÝÑ fppq ` a1e1ppq ` ¨ ¨ ¨ ` aNeN ppq

is a Morse function.

Proof. We shall denote the map in the statement of the theorem as fa.
We first consider the local situation; suppose U Ă Rk is an open subset and

g : U Ñ R is a smooth function. Then we claim that for outside of a set of b P Rk
of measure zero, the map

gb : U ÝÑ R
px1, . . . , xkq ÞÝÑ gpx1, . . . , xkq ` b1x1 ` ¨ ¨ ¨ ` bkxk

is a Morse function. To do so, we observe that p is a critical point of gb if and
only if Dpg “ ´b.

Since we working on Rk, the Hessian is well-defined even at points which
are not critical point. Thus it makes sense to say that g and gb have the same
Hessians; this is true because ga is obtained by adding a linear perturbation to g.
We next consider the function

G : U ÝÑ Rk

px1, . . . , xkq ÞÝÑ

ˆ

Bg

Bx1
px1, . . . , xkq, . . . ,

Bg

Bxk
px1, . . . , xkq

˙

because b is a critical point of G if and only if the Hessian of g (or equivalently
gb) at p is non-degenerate. Thus gb is Morse if and only if b is not a critical value
of G. By Sard’s theorem these critical values have measure zero.

Having established this local statement, we use a prove the global one. To do
so, we find a countably open cover tUαu of M such that for each Uα there exist k
integers i1, . . . , ik in t1, . . . , Nu such that coordinate functions ei1 , . . . , eik : Uα Ñ

R give local coordinates on Uα. Without loss of generality we have ij “ j for
j P t1, . . . , ku and we can use e1, . . . , ek as local coordinates x1, . . . , xk on Uα.
Then for each ck`1, . . . , cN P R we consider the smooth function

f c : Uα ÝÑ R
px1, . . . , xkq ÞÝÑ fpx1, . . . , xkq ` ck`1 ek`1px1, . . . , xkq ` ¨ ¨ ¨ ` cN eN px1, . . . , xkq.
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By the above local argument, the set of b P Rk such that pf cqa is not Morse, has
measure zero. As a union of countably many such sets, the set of pb1, . . . , bk, ck`1, . . . , cN q P

RN such that pf cqb is not Morse, also has measure zero.
Thus, for each each α there is a measure zero set of a P RN so that fa is not

Morse on Uα. Since a countable union of measure zero subset still has measure
zero, there is a dense set of a P RN so that fa is Morse on all of M .

29.2 The first fundamental theorem of Morse theory

Let M be a manifold without boundary and f : M Ñ R be a Morse function. We
shall study M by studying the (sub)level sets

Mďa :“ f´1pp´8, asq and Ma :“ f´1ptauq.

By the submersion theorem, if a is a regular value, Mďa Ă M is a codimension
zero submanifold with boundary BMďa “ Ma given by a level set.

29.2.1 Gradients

Given a smooth function f : Rk Ñ R, its gradient is the vector field

∇f “

»

—

–

Bf
Bx1...
Bf

Bxk

fi

ffi

fl

.

That is, the component in the direction of the standard basis vector ei is given by
Bf
Bxi

. Using the standard Riemannian metric, we can identify each basis vector of
Rk with a basis vector of its dual pRkq˚: ei corresponds to the linear functional
xei,´y. In other words, the Riemannian metric provides an isomorphism of the
tangent spaces to points in Rk with the corresponding cotangent spaces. From a
vector field, a section of the tangent bundle, we thus get a 1-form, a section of
the cotangent bundle. In this particular case, the Riemannian metric sends ei to
dxi, and we see that ∇f gets sent to

df “

k
ÿ

i“1

Bf

Bxi
dxi.

This discussion extends to manifolds with a Riemannian metric g. This
Riemannian metric is given by a smoothly varying non-degenerate bilinear form
on the tangent space TppMq,

TppMq ˆ TppMq Q pv, wq ÞÝÑ gpv, wq P R

and thus provides an isomorphism of vector bundles TM Ñ T ˚M

TppMq P v ÞÝÑ gpv,´q P T ˚
p pMq.

In particular, it sends sections of TM to sections of T ˚M and vice versa: every
vector field corresponds to a unique 1-form.
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Now suppose we have a smooth function f : M Ñ R, then there is a 1-form
df P Ω1pMq. The Riemannian metric sends this to a vector field ∇f , which we
call the gradient of f (this notation and terminology is not ideal, as the gradient
depends on the choice of Riemannian metric).

29.2.2 Gradient flow without critical points

Suppose that M is compact, then using the techniques of the previous lecture, we
can flow along ∇f . The result is a smooth family of diffeomorphisms ϕt : M Ñ M
for t P R, satisfying ϕ0 “ id, ϕs ˝ ϕt “ ϕs`t and d

dtϕt “ ∇f .
To understand this flow, let us see how f varies over an integral curve ϕtppq.

Let || ´ ||2 denote the norm on T ˚M coming from the Riemannian metric, then
we compute that

d

dt
fpϕtppqq|t“0 “ dpfp

Bϕtppq

Bt
|t“0q

“ dpfp∇fppqq

“ ||dpf ||2.

Since ϕt is a flow, this implies that d
dtfpϕtppqq|t“s “ ||dϕsppqf ||2. We conclude

that:

Lemma 29.2.1. The function t ÞÑ fpϕtppqq is non-decreasing and strictly in-
creasing when ϕtppq is not a critical point.

We shall use this to study the subset

Mra,bs :“ f´1pra, bsq,

for a ă b regular values. This is a codimension zero submanifold of M with
boundary Ma \Mb. Let us take p P Mra,bs and consider the integral curve ϕtppq.
When does this leave Mra,bs?

Lemma 29.2.2. Fix p P Ma. Let p0, cq for c ą 0 be the maximal interval such
that ϕtppq P intpMra,bsq for t P p0, cq. Then if c is finite, ϕcppq P Mb, and if c “ 8

then there are ti Ñ 8 such that ϕtippq converges to a critical point.

Proof. Suppose that c is finite. Then we know that ϕcppq is defined but not in
intpMra,bsq (or we could extend the interval p0, cq). Thus it is either in Ma or Mb,
and since a is not a critical value, fpϕtppqq is strictly increasing with t at t “ 0.
It is non-decreasing afterwards, so we must have that ϕcppq P Mb.

If c “ 8, then since fpϕtppqq increases at t Ñ 8 but remains strictly smaller
than b,

ż N

0
||dϕtppqf ||2dt “

ż N

0

d

dt
fpϕtppqqdt “ fpϕN ppqq ´ fpϕ0ppqq

converges as N Ñ 8. Thus ||dϕtppqf || must decrease to 0 as t increases. This
means that it eventually be contained in any open neighbourhood of the critical
points in Mra,bs. Since the Mra,bs is compact, this means that we can find a
subsequence which converges to a critical point.
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We are interested in the case that there is no critical point in Mra,bs, and thus
the second case in the above lemma can not occur. The same argument then
tells us that when we start any p P Mra,bs, there is some maximal finite interval
pc1, cq with c1 ă c such that ϕtppq P intpMra,bsq for t P pc1, cq and ϕc1ppq P Ma and
ϕcppq P Mb.

Ma
Mb

M

f

R
‚
a

‚
b

Mra,bs

Figure 29.1 An example of a proper map f : M Ñ R such that Mra,bs contains no critical point.
note that Mp´8,as contains 7 critical points.

Theorem 29.2.3 (First fundamental theorem of Morse theory). If the interval
ra, bs contains no critical point, then there is a diffeomorphism Mra,bs Ñ Maˆr0, 1s

which restricts to the map Ma Ñ Ma ˆ t0u given by p ÞÑ pp, 0q.

Proof. By the previous lemma, for each p P Ma there is a cppq ą 0 such that
ϕcppqppq P Mb. This is unique because fpϕtppqq is non-decreasing and strictly
increases at t “ cppq. By smooth dependence of solutions of ordinary differential
equations on initial conditions, c : Ma Ñ p0,8q is smooth. Now consider the map

Ψ: Ma ˆ r0, 1s ÝÑ Mra,bs

pp, tq ÞÝÑ ϕtcppqppq.

In other words, it is the composition of the diffeomorphism pp, tq ÞÑ pp, tcppqq

between Ma ˆ r0, 1s and N :“ tpp, tq P Ma ˆ R | 0 ď t ď cppqu and the smooth
map ϕ : Ma ˆ R Ñ M .

It has an inverse given as follows: given by p P Mra,bs take pc1, cq as above
and define Φppq :“ pϕc1ppq,´c1q. This is smooth using the smooth dependence of
solutions of ordinary differential equations on initial conditions and smoothness of
ϕ. It is an inverse by uniqueness of solutions to ordinary differential equations.

Corollary 29.2.4. If the interval ra, bs contains no critical points, then Mďa is
diffeomorphic to Mďb.
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Proof. Mďb is obtained from Mďa by gluing on Mra,bs. Recall that the existence of
collars tells us that Mďa contains a neighborhood C of Ma with a diffeomorphism
Ma ˆ r´1, 0s Ñ C. Since Mra,bs – Ma ˆ r0, 1s by the previous theorem, we see
that Mďb is diffeomorphic to Mďa via

Mďb ÝÑ Mďa

p ÞÝÑ

$

’

&

’

%

cpq, ηptqq if p “ cpq, tq P C,
cpq, ηptqq if p “ Ψpq, tq P Mra,bs,
p if p P MďazC.

with η : r´1, 1s Ñ r´1, 0s a diffeomorphism which is the identity near ´1.
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Second fundamental theorem of Morse theory

In this lecture we discuss the part of Morse theory which does involves critical
points and show if ra, bs Ă R contains a single critical points of f of index p, then
f´1pp´8, bsq is obtained by attaching an i-handle to f´1pp´8, asq. This can be
found in Section 5.1 of [Wal16] and Chapter I.§3 of [Mil63].
Remark 30.0.1. Throughout this chapter we shall ignore the issue of “smoothing
corners.” If you want to understand these technical details, see Section 2.6 of
[Wal16].

30.1 The second fundamental theorem of Morse theory

Let M be a compact manifold and f : M Ñ R be a Morse theory. We recall some
notation from the previous lecture

Ma :“ f´1ptauq, Mďa :“ f´1pp´8, asq and Mra,bs :“ f´1pra, bsq.

In the previous chapter we saw that if there is no critical value in ra, bs—or
equivalently no critical point in Mra,bs—then there is a diffeomorphism Mra,bs Ñ

Ma ˆ ra, bs that is the identity on Ma.

30.1.1 The Morse lemma

What happens when there is a unique non-degenerate critical point p in Mra,bs?
Pick a chart ϕ : Rk Ą U Ñ V Ă M such that ϕp0q “ p, and in terms of coordinates
px1, . . . , xkq P U , f is given by

fpx1, . . . , xkq “ c´

λ
ÿ

i“1
x2
i `

k
ÿ

i“λ`1
x2
i .

This is possible by the Morse lemma, and we provide a proof below from [DK04a,
Theorem 4.8.1] that is different from the one in [GP10]:

Lemma 30.1.1. If a critical point p P M of f : M Ñ R is non-degenerate then
there exists a chart as above.

245
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Proof. Without loss of generality we may assume that fppq “ 0, and fix a chart
ϕ : Rk Ą U Ñ V Ă M such that ϕp0q “ p. Let x “ px1, . . . , xkq denote the
coordinates near p coming from this chart, defined on U Ă Rk.

Let SympRkq denote the space of symmetric pk ˆ kq-matrices over R; we
give this a smooth structure by using the entries to identify with a Euclidean
space. The multi-variable version of Taylor approximation says that there is a
smooth map Q : W Ñ SympRkq such that fpxq “ xQpxqx, xy and which satisfies
Qp0q “ Hess0pfq [DK04a, Theorem 2.8.3]. We first want to change coordinates
from x to y so that Q is independent of y. To do this, make the ansatz that
y “ Apxqx for a smooth map A : U Ñ GLkpRq. In that case we need to solve the
equation

xQp0qApxqx,Apxqxy “ xQpxqx, xy,

or equivalently AtpxqQp0qApxq “ Qpxq. We then consider the smooth map
G : SympRkq ˆ U Ñ SympRkq given by

pB, xq ÞÑ

ˆ

id `
1
2Qp0q´1B

˙t

Qp0q

ˆ

id `
1
2Qp0q´1B

˙

´Qpxq.

This is equal to 0 at pB, xq “ p0, 0q and its derivative with respect to B at
pB, xq “ p0, 0q is the identity:

B

BB
GpB, 0q “

ˆ

1
2Qp0q´1

˙t

Qp0q `Qp0q

ˆ

1
2Qp0q´1

˙

“
1
2id `

1
2id “ id.

By the implicit function theorem, there exists a neighbourhood U 1 of 0 in U
and a smooth map β : U Ñ SympRkq such that Gpβpxq, xq “ 0. Taking

Apxq :“ id `
1
2Qp0q´1βpxq

we obtain that xQp0qApxqx,Apxqxy “ xQpxqx, xy. So we shall use coordinates
y “ Apxqx. Since x ÞÑ Apxqx has derivative id at 0, by the inverse function
theorem there exists some smaller neighbourhood U2 on which this map is a
diffeomorphism.

Now that in y-coordinates we have that fpyq “ xQp0qy, yy, it is a matter
finding a matrix A such that AtQp0qA diagonal with entries ˘1 and using the
coordinates z “ Ay instead. This is possible by Gram-Schmidt.

Remark 30.1.2. The proof in fact tells us we can take Apxq to be an invertible
symmetric matrix.

30.1.2 The second fundamental theorem

Let ϵ ą 0 be small enough such that U contains the ball B?
2ϵp0q and a ă c´2ϵ ă

c ` 2ϵ ă b. Then we shall describe the difference between f´1pra, c ´ ϵsq and
f´1pra, c` ϵsq, at first up to homotopy and then as a manifold. To do so, define
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the subset C Ă B?
2ϵp0q by tpx1, . . . , xλ, 0, . . . , 0q |

řλ
i“1 x

2
i ď ϵu, where C stands

for core. This is of course a λ-dimensional disk, whose boundary pλ´1q-sphere lies
in f´1pc´ϵq. The description of Mra,c`ϵs up to homotopy equivalence is as follows,
and along the way we will in fact obtain a description up to diffeomorphism. This
amounts to two applications of the first fundamental theorem of Morse theory,
combined with a difficult computation in the local model provided by the Morse
lemma.

Proposition 30.1.3. Mra,c`ϵs is homotopy equivalent, as a topological space, to
the union Mra,c´ϵs Y C.

We shall use the notion of a deformation retraction: for A Ă X closed, a
deformation retraction of X onto A is a homotopy H : X ˆ r0, 1s Ñ X such that
Hpx, 1q P A for all x P X and Hpa, tq “ a for all a P A and t P r0, 1s. If there is a
deformation retraction of X onto A, then i : A ãÑ X is a homotopy equivalence;
its homotopy inverse is Hp´, 1q.

To prove the proposition, we shall find a neighbourhood U of Mra,c´ϵs Y C
which is a deformation retract Mra,c`ϵs and itself deformation retracts onto
Mra,c´ϵs Y C:

Mra,c´ϵs Y C
»

ãÑ U
»

ãÑ Mra,c`ϵs.

To do so, we modify f to another function F with some special properties. We
will only change f on the subset Mrc´ϵ,c`ϵs, using a smooth function ϕ : r0,8q Ñ

r0,8q satisfying
(i) ϕp0q P pϵ, 2ϵq,

(ii) ϕptq “ ϕp0q for t near 0,

(iii) ϕptq “ 0 for t P r2ϵ,8q, and

(iv) ϕ1ptq P p´1, 0s for all t P r0,8q.

x

y

2ϵ

ϵ

2ϵ

Figure 30.1 The function ϕ.
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Then the function F shall be given by

F : M Ñ R

x ÞÑ

#

fpxq ´ ϕ
´

řλ
i“1 x

2
i ` 2

řk
i“λ`1 x

2
i

¯

if x P V ,
fpxq otherwise.

This is a smooth function because ϕ
´

řλ
i“1 x

2
i ` 2

řk
i“λ`1 x

2
i

¯

has compact sup-
port in V . It is essentially f with a strip near the critical point pushed downwards:

Lemma 30.1.4. F has the following properties:
(1) Mra,c`ϵs “ F´1pra, c` ϵsq.

(2) F has the same critical points as f .

(3) In B?
2ϵp0q Ă U , F´1pra, c ´ ϵsq is described by Figure 30.2. More

precisely, U is diffeomorphic to Mra,c´ϵs Y pDλˆDk´λq attached along an
embedding BDλ ˆDk´λ (up to smoothing corners), with C corresponding
to Dλ ˆ t0u.

U

Mra,c`ϵs

Mra,c´ϵs

C Rλ

Rk´λ

Figure 30.2 The set U is the union of the red and purple parts. The set is f´1pra, c` ϵsq is the
union of the red, purple and dashed parts.

Proof. Let us write x “ py, zq when x P U , with y “ py1, . . . , yλq denoting the
first λ coordinates and z “ pz1, . . . , zk´λq denoting the remaining k ´ λ.

Part (1) follows by noting that since F ď f (since ϕ is non-negative), we have
that f´1pra, c` ϵsq Ă F´1pra, c` ϵsq. For the converse, if x P F´1pra, c` ϵsq and
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ϕp||y||2 ` 2||z||2q ą 0, then ||y||2 ` 2||z||2 ă 2ϵ (since ϕptq “ 0 when t ě 2ϵ), so
that

fpxq ´ fpcq “ ´||y||2 ` ||z||2 ď
1
2 ||y||2 ` ||z||2 ă ϵ

and thus x P f´1pra, c` ϵsq as well.

For part (2) there is only something to check when p P V . Working in local
coordinates, we have that 1

2∇F pxq “ p´y ´ ϕ1pxqy, z ´ ϕ1pxq2zq. This certainly
vanishes at 0, so p is a critical point. To see this is the only critical point, note
that since ϕ1pxq ą ´1, we must have y “ 0 and since ϕ1pxq ď 0, we must have
z “ 0.

Mra,c`ϵ

Mra,c´ϵs

?
T0y‚

Dy Rλ

Rk´λ

Figure 30.3 The gray part consists of those disks Dy in the proof of Lemma 30.1.4 that do not
coincide with those for the original function f .

The precise proof of part (3) is a rather long computation, as we need to
produce an explicit diffeomorphism; details can be found in Chapter 3 of [Mil63]
or Section VII.2.2 of [Kos93]. The main observation is that upon fixing the first
λ-coordinates to be equal to y “ py1, . . . , yλq with ||y||2 ď ϵ, the intersection
of F´1pra, c ´ ϵsq with the pk ´ λq-dimensional plane tyu ˆ Rk´λ is given by a
disk whose radius depends smoothly on y. Of course, as soon as ||y||2 ` 2||z||2

reaches T0 :“ inftt | ϕptq “ 0u, then this disk coincides with the intersection of
the original set f´1pra, c´ ϵsq with the pk ´ λq-dimensional plane tyu ˆ Rk´λ.

To check this, note that this intersection is given by the set py, zq P RλˆRk´λ

with z satisfying

c´ ||y||2 ` ||z||2 ´ ϕp||y||2 ` 2||z||2q ď c´ ϵ.
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The condition may be rewritten in terms of αpy, zq :“ ||y||2 ` 2||z||2 as

ϕpαpy, zqq ´ αpy, zq{2 ě ϵ´
3
2 ||y||2. (30.1)

Since ϕptq ´ t{2 is decreasing on the interval r0, 2ϵs from ϕp0q ą ϵ to ´ϵ, there is
a unique t0 ą 0 such that ϕpt0q ´ t0{2 “ ϵ´ 3

2 ||y||2. In terms of t0, the inequality
(30.1) is equivalent to

||z||2 ď
1
2pt0 ´ ||y||2q. (30.2)

Since ϕp0q ą ϵ and ϕ1ptq ą ´1, we have that ϕpt0q ą ϵ´ t0, so that we have
ϕpt0q ´ t0{2 ą ϵ´ 3

2 t0 and thus that t0 ą ||y||2, so the right hand side of (30.2)
is strictly positive. The set Dy :“ tpy, zq | ||z||2 ď 1

2pt0 ´ ||y||2qu is the desired
disk.

We shall then define U “ F´1pra, c´ ϵsq, which is diffeomorphic to Mra,c`ϵs.
To see this, apply the first fundamental theorem of Morse theorem using the
observation that there is no critical point in Mra,c`ϵszU . From this observation
and part (3) of the Lemma, we not only obtain the homotopy-theoretic description
also the stronger statement that Mra,c`ϵs is diffeomorphic to pMa ˆ ra, c´ ϵsq Y

pDλ ˆDk´λq. Thus we have proven:

Theorem 30.1.5 (Second fundamental theorem of Morse theory). If Mra,bs

contains a unique non-degenerate critical point in its interior, which has index λ,
then there is a diffeomorphism (up to smoothing corners)

Mp´8,bs
–

ÝÑ Mp´8,as YBDλˆDk´λ pDλ ˆDk´λq.

30.1.3 Handle decompositions

The construction which takes a manifold W with boundary BW and an embedding
e : BDλ ˆDk´λ ãÑ BW to the manifold obtained by smoothing the corners in

W YBDλˆDk´λ Dλ ˆDk´λ,

is called a handle attachment of index λ.
The second fundamental theorem of Morse theory says that each critical point

of index λ corresponds to a handle attachment of index λ, as long as all critical
points have distinct critical values. This is a minor restriction, as by a small
perturbation we may assume this is the case, cf. Exercise 1.§7.19 of [GP10].

Since every manifold admits a Morse function and Morse singularities are
isolated, we conclude that every compact manifold M can be obtained by a finite
number of handle attachments. We say it admits a handle decomposition.
Example 30.1.6. The height function

Sk ÝÑ R
px0, . . . , xkq ÞÝÑ x0



30.2 Morse functions and de Rham cohomology 251

is a Morse function with a minimum at p´1, 0, . . . , 0q (so index 0) and a maximum
at p1, 0, . . . , 0q (so index k). Thus we see that Sk has a handle decomposition
with a single 0- and k-handle. This is just the decomposition

Sk “ pD0 ˆDkq YBDkˆD0 pDk ˆD0q

into two hemispheres.

Figure 30.4 A 3-dimensional 1-handle D1 ˆD2 attached to R2 “ BpR2 ˆ p´8, 0sq. The red line
is D1 ˆ t0u, the orange disk is t0u ˆD2.

30.2 Morse functions and de Rham cohomology

The relationship between de Rham cohomology and Morse functions will be the
following:

Proposition 30.2.1. Let f : M Ñ R be a Morse function on a k-dimensional
compact manifold M , then for each 0 ď λ ď k there is an inequality

#tcritical points of f of index λu ě dimHλpMq.

Proof. We may assume without loss of generality that f has critical points with
distinct critical values, and shall ignore the smoothing of corners in this proof.
Pick a0 ă ¨ ¨ ¨ ă an such that fpMq Ă ra0, ans and each interval rai´1, ais contains
a unique critical value.

We shall prove by induction over i that there is an inequality

#tcritical points of f |Mp´8,ais
of index λu ě dimHλpMp´8,aisq.

The initial case is i “ 0, and then Mp´8,a0s “ ∅ and the statement is clearly
true. For the induction step, we use the second fundamental theorem of Morse
theory:

Mp´8,ais – Mp´8,ai´1s YBDλˆDk´λ Dλ ˆDk´λ.

Let us apply Mayer–Vietoris to the open cover

U “ intpDλq ˆDk´λ,
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V “ Mp´8,ai´1s YBDλˆDk´λ pDλzDλ
1{2q ˆDk´λ.

Then U is contractible, V is homotopy equivalent to Mp´8,ai´1s and U X V is
homotopy equivalent to Sλ´1.

From the Mayer–Vietoris long exact sequence we conclude that

H ipMp´8,aisq ÝÑ H ipMp´8,ai´1sq

is an isomorphism unless i “ λ, λ´ 1. In those cases, we get an exact sequence
(for convenience we assume λ ě 3, dealing with H0’s requires a bit of additional
care)

HλpMp´8,aisq HλpMp´8,ai´1sq 0

Hλ´1pMp´8,aisq Hλ´1pMp´8,ai´1sq R

0

Two things can happen to the R in Hλ´1pU X V q: either it adds to Hλ

dimHλpMp´8,aisq “ dimHλpMp´8,ai´1sq ` 1,
and dimHλ´1pMp´8,aisq “ dimHλ´1pMp´8,ai´1sq,

or it subtracts from Hλ´1,

dimHλpMp´8,aisq “ dimHλpMp´8,ai´1sq,

and dimHλ´1pMp´8,aisq “ dimHλ´1pMp´8,ai´1sq ´ 1.

In both cases the inequalities to be proven are satisfied. (Indeed, it may be
helpful to observe that equality occurs only if all critical points add cohomology
and never subtract cohomology).

Example 30.2.2. We know the cohomology of the 2-torus: H0pT2q “ R, H1pT2q “

R2, H2pT2q “ R. Thus every Morse function on T2 has at least one minimum,
one maximum, and two saddle points. We leave it to you to find an example of
such a Morse function.
Example 30.2.3. It is not true that you can always find a Morse function with
exactly dimHλ critical points of index λ. For example, only H0pRP 2q “ R is
non-zero, but since RP 2 is compact every Morse function on it has a maximum.
Remark 30.2.4. Given a Morse function f : M Ñ R, there is a chain complex Cf˚
with Cfp given by the free R-vector space on the critical points of f of index p,
and differential given by counting flowlines. Its homology is the Morse homology
H˚pM ; fq. It turns out to be independent of f and for compact M there is an
isomorphism HppM ; fq˚ – HppMq.
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Classification of smooth surfaces

In this lecture we use the theory of handle decompositions to classify smooth
compact surfaces.

31.1 Manipulating handle decompositions

31.1.1 Handle decompositions

We recall from the previous lecture the notion of a handle attachment. The input
is a smooth manifold W with boundary BW and an embedding ϕ : BDλˆDk´λ ãÑ

BW that we call the attaching map, and the output is the smooth manifold

W ` pϕq :“ W YBDλˆDk´λ Dλ ˆDk´λ,

where the identification is made along ϕ and implicitly smooth the corners. We
name some subspaces of W ` pϕq:

¨ Dλ ˆDk´λ is the handle,
¨ Dλ ˆ t0u is the core,
¨ BDλ ˆ t0u is the attaching sphere,
¨ t0u ˆDk´λ is the cocore,
¨ t0u ˆ BDk´λ is the transverse sphere.

To give a handle decomposition of a manifold is write it as diffeomorphic to
one obtained by iterating handle attachments. The existence of Morse functions
implies that every compact manifold admits a finite handle decomposition, so we
can always write

M – pϕ0q ` ¨ ¨ ¨ ` pϕrq

for some r. Note that this notation is a bit deceptive, since handle attachments
do not commute.
Remark 31.1.1. It is convenient to observe that handle decompositions can be
read backwards: we think of a λ-handle Dλ ˆDk´λ rather as a pk ´ λq-handle
and reverse the order of handle attachments. This amounts to replacing a Morse
function f : M Ñ R with its negative ´f : M Ñ R.

253
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31.1.2 Handle manipulations

There are four moves to modify handle decompositions:
(1) Handle isotopy.
(2) Handle rearrangement.
(3) Handle cancellation and addition.
(4) Handle exchange.
We will need only the first three of these.

Handle isotopy

The first concerns modify the attaching map:

Lemma 31.1.2. If ϕ is isotopic to ϕ1 then there is a diffeomorphism

W ` pϕq – W ` pϕ1q.

Proof. Let ϕt : Dλ ˆ Dk´λ ãÑ BW be an isotopy of embeddings from ϕ0 “

ϕ to ϕ1 “ ϕ1, and use the isotopy extension theorem to find an isotopy of
diffeomorphisms ft : BW Ñ BW so that (i) f0 “ idBW and (ii) ftϕ0 “ ϕt. Picking
a closed collar χ : BW ˆ r0, 1s ãÑ W we then define a diffeomorphism

F : W ` pϕq ÝÑ W ` pϕ1q

p ÞÝÑ

#

pf1´tpqq, tq if p “ χpq, tq

p else

which is well-defined since it sends a point in the image of ϕ to the corresponding
point in the image of ϕ1.

Handle rearrangement

The second concerns the ordering the handles. We start with the following
obvious observation:

Lemma 31.1.3. If ϕ0 and ϕ1 have disjoint image in BW , then there is a
diffeomorphism

W ` pϕ0q ` pϕ1q – W ` pϕ1q ` pϕ0q.

It is sometimes possible to arrange the hypothesis:

Lemma 31.1.4. If indexpϕ0q ě indexpϕ1q then we can isotope ϕ1 to ϕ1
1 which

takes image in BW zimpϕ0q and thus

W ` pϕ0q ` pϕ1q – W ` pϕ1
1q ` pϕ0q.

Proof. Write λ0 :“ indexpϕ0q and λ1 :“ indexpϕ1q. There are three steps:
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1. We first isotope the attaching sphere of ϕ1 to be disjoint from the transverse
sphere of ϕ0. To do so, we make the former transverse to the latter by an
isotopy. Since the first is a pλ1 ´1q-sphere, the latter is a pk´λ0 ´1q-sphere,
and we are in the pk ´ 1q-dimensional manifold BpW ` pϕ0qq, they are in
fact disjoint.

2. We next isotope the attaching sphere of ϕ1 to be disjoint from ϕ0. To
do so, we choose a vector field on BpW ` pϕ0qqzpt0u ˆ Dk´λ0q that on
pDλ0 ˆ BDk´λ0qzpt0u ˆ BDk´λ0q is given by B{Br in the first coordinate.
Flowing along at least one unit of time will move the compact submanifold
ϕ1pBDλ1 ˆ t0uq out of Dλ0 ˆ BDk´λ0 Ă BpW ` pϕ0qq.

3. We finally shrink the Dk´λ1-direction so that ϕ1 is disjoint from ϕ0.

Applying this inductively, we can find for every compact manifold M a handle
decomposition

M – pϕ0q ` ¨ ¨ ¨ ` pϕrq

where indexpϕi´1q ď indexpϕiq and we can assume all handles of the same index
are attached simultaneously.

Handle cancellation

The third concerns the removal of a pair of handles. We will not give a proof
since we will only need it in a special case:

Proposition 31.1.5. If the attaching sphere of ϕ1 intersects the transverse
sphere of ϕ0 transversally in a single point, then there is a diffeomorphism

W ` pϕ0q ` pϕ1q – W.

The special case we need is that of 2-dimensional manifolds. First consider
the case that ϕ0 is a 0-handle, i.e. a disc D2, and ϕ1 is a 1-handle. The transverse
sphere of ϕ0 – D2 is all of BD2 and the attaching sphere of ϕ1 – D1 ˆ D1 is
BD1 consisting of two points. So the hypothesis is simply that the strip D1 ˆD1

is attached along a single line segment to D2, and the other line segment is
attached to W . We are thus just gluing a D2 to W along half of its boundary
and smoothing corners, and this is diffeomorphic to W again. For the last step
we use the following lemma to reduce it to writing down a diffeomorphism in a
local model, by choosing e to be the unit disc in a chart:

Lemma 31.1.6. Let M be a connected d-dimensional manifold with an embedding
e : Dd Ñ M . Let ϕ : Dd Ñ M ben another embedding and suppose that either
(i) M is oriented and both e and ϕ are orientation-preserving, (ii) M is non-
orientable.

Proof. We prove the first case, as the second is similar. Applying isotopy extension
to a path connecting ϕp0q to ep0q to isotope ϕ and shrinking its domain, we can
isotope ϕ to a ϕ1 with image in impeq. Thus we may assume that M “ Dd and
we have proved before that every orientation-preserving embedding ϕ : Dd Ñ Dd

is isotopic to the identity.

The second case that ϕ1 is a 1-handle and 2-handle is similar.
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31.2 The classification of surfaces

We will use the existence of handle decompositions and the above three moves to
classify compact surfaces.

31.2.1 The orientable case

You should be familiar with the 2-sphere and the 2-torus, which are the case g “ 0
and g “ 1 of the surface Σg of genus g. The latter admits a handle decomposition

Σg “ pϕ0q `

2g
ÿ

i“1
pϕiq ` pϕ2g`1q

where pϕ0q has index 0, pϕiq has index 1, and ϕ2g`1 has index 2, and the attaching
maps for the 1-handles alternate in the following pattern:

Figure 31.1 An attachment pattern for a genus 4-surface (from [FM97]).

It is in fact unnecessary to describe the attaching map of the 2-handle, using
the following lemma and the fact that there is a diffeomorphism of D2 that
restricts to an orientation-reversing diffeomorphism of its boundary (namely,
reflection):

Lemma 31.2.1. Every orientation-preserving diffeomorphism of S1 is isotopic
to the identity.

Proof. Let f : S1 Ñ S1 be an orientation-preserving diffeomorphism and note
that by Lemma 31.1.6 the restriction f |D1

´
: D1 Ñ S1 to the bottom half of the

circle is isotopic to the identity. By the isotopy extension theorem, we may thus
assume that f |D1

´
“ id and hence it is uniquely determined by the differential

f |D1
`

: D1 Ñ D1. This is the identity on the boundary and is isotopic to the
identity by linear interpolation.

Theorem 31.2.2. Every connected compact orientable surface (without boundary)
is diffeomorphic to Σg for some g ě 0.

Proof. Any such surface Σ admits a handle decomposition. By handle rearrange-
ment we may assume that it is given by taking k 0-handles, attaching m 1-handles,
and then attaching n 2-handles to the remaining boundary circles.
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Since attaching an n-handles cannot two components, it must be the case
that the union of the 0- and 1-handles is connected. If k ě 2 there must hence
be a 1-handle connecting two different 0-handles, and we can remove a pair of a
0- and 1-handle using handle cancellation. Thus we may assume that k “ 1, and
by applying the same argument to reversed handle decomposition we may also
assume that n “ 1.

Each 1-handle is attached to the 0-handle pϕ0q along an embedding BD1 ˆ

t0u Ñ BD2, and these must be orientation-preserving or orientation-reversing
(with our outward-pointing convention for boundary orientations) or the surface
would not be orientable. Pick a first 1-handle pϕ1q and note that there must
be a second 1-handle pϕ2q which connects the two regions between its attaching
strips, as otherwise a single 2-handle could not close the surface. This implies the
boundary of pϕ0q ` pϕ1q ` pϕ2q is connected and hence we can slide the attached
strips for the remaining 1-handles to clear the indicated regions;

Figure 31.2 The emptied attaching regions (from [FM97]).

Repeating this argument we get g pairs of alternating 1-handles, and thus a
diffeomorphism to Σg.

31.2.2 The non-orientable case

If we have two k-dimensional manifolds M and N with embeddings Dk ãÑ M
and Dk ãÑ N , we can construct a new k-dimensional manifold

M#N :“ pMzintpDkqq YBDk pNzintpDkqq

called the connected sum. Using Lemma 31.1.6 and the isotopy extension theorem,
M#N is in fact independent of the choice of embeddings as long as M and N are
connected and either (i) oriented and we use orientation-preserving embeddings,
(ii) non-orientable. For example, we have

Σg – #gΣ1,

and it is possible to similarly define a non-orientable surface

#hRP 2.

For example, the Klein bottle is diffeomorphic to #2RP 2.



258 Chapter 31 Classification of smooth surfaces

Theorem 31.2.3. Every connected compact non-orientable surface (without
boundary) is diffeomorphic to #hRP 2 for some h ě 1.

Proof sketch. We argue as in the orientable case to see that Σ has a handle
decomposition with a single 0-handle, h 1-handles, and a single 2-handle. For
it be non-orientable, it must be the case that at least 1-handle is twisted—the
attaching map is orientation-preserving on one strip and orientation-reversing on
the other—and given one such twisted strip we can clear an indicated region: and

Figure 31.3 An emptied attaching region (from [FM97]).

continuing with the remaining 1-handles we can by induction either make them
a collection of twisted strips or a collection of alternating untwisted 1-handles.
The latter can be transformed into a collection of twisted strips:

Figure 31.4 Making alternating untwisted strips into twisted strips (from [FM97]).
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Exotic 7-spheres I

Our final goal is to construct of a smooth manifold which is homeomorphic to S7

but not diffeomorphic to it, an exotic sphere. Today prove the first statement,
and the latter we will outline in the next lecture.

32.1 Reeb’s theorem

If M is compact, then any smooth f : M Ñ R has to have a minimum and a
maximum. Thus any Morse function on M has at least two critical points. What
happens if it has exactly two critical points?

Theorem 32.1.1 (Reeb). If a compact k-dimensional manifold M admits a
Morse function with exactly two critical points, then M is homeomorphic to Sk.

Proof. Let p be such that fppq “ a is the minimum and q be such that fpqq “ b
is the maximum. By the Morse lemma, we can find an ϵ ą 0 small enough so that
the following is true: Mďa`ϵ is diffeomorphic (using the coordinates x1, . . . , xk)
to a little disk Dk

ϵ paq “ tpx1, . . . , xkq |
řk
i“1 x

2
i ď ϵu, and similarly Měb´ϵ is

diffeomorphic to a little disk Dk
ϵ . Hence their boundaries Ma`ϵ and Mb`ϵ are

diffeomorphic to pk´1q-spheres. The region Mra`ϵ,b´ϵs contains no critical points,
so is diffeomorphic to Ma`ϵ ˆ r0, 1s.

Thus M is obtained by gluing a cylinder Mra`ϵ,b´ϵs “ Sk´1 ˆ r0, 1s to two
disks Dk given by Mďa`ϵ and Měb´ϵ. The diffeomorphism is such that

Sk´1 ˆ t0u “ Ma`ϵ ˆ t0u ÝÑ Ma`ϵ “ BMďa`ϵ “ Sk´1

is the identity, so doing this first gluing we see that there are diffeomorphisms

σ : Mďb´ϵ – Dk Y pSk´1 ˆ r0, 1sq – Dk.

However, we have no control over the diffeomorphism

g : Sk´1 ˆ t1u “ Ma`ϵ ˆ t1u ÝÑ Mb´ϵ “ BMěb´ϵ “ Sk´1.

The best we can do is the following: by Proposition 32.1.2 there exists a homeo-
morphism G : Dk Ñ Dk extending this diffeomorphism. That is, we can find a
homeomorphism

ρ : Měb´ϵ ÝÑ Dk,

259
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which is compatible with σ. Then we can write a homeomorphism M Ñ Sk as
follows:

M “ Mďb´ϵ YMěb´ϵ ÝÑ Sk “ Dk YDk

p ÞÝÑ

#

σppq if p P Mďb´ϵ,
ρppq if p P Měb´ϵ.

(32.1)

Proposition 32.1.2 (Alexander trick). Every homeomorphism (so in particular
diffeomorphism) g : Sk´1 Ñ Sk´1 extends to a homeomorphism G : Dk Ñ Dk.

Proof. In radial coordinates, it is given by Gpr, θq :“ pr, gpθqq.

Remark 32.1.3. For later use, we point out that if g : Sk´1 Ñ Sk´1 extended to
Dk as a diffeomorphism, then the formula (32.1) shows that M is diffeomorphic
to Sk.

32.2 Exotic 7-spheres

We will now describe some 7-dimensional manifolds and prove that they are
homeomorphic to S7. We will in the next lecture give a brief explanation why
these are not diffeomorphic to S7, a result due to Milnor [Mil56a].

32.2.1 Milnor’s construction

The unit norm quaternions SpHq on SpHq by multiplication on the left and the
right. Thus we can write down for each pair of integers pi, jq a diffeomorphism

SpHq ˆ SpHq ÝÑ SpHq ˆ SpHq

px, yq ÞÝÑ px, xiyxjq.

We can use this to construct 7-dimensional manifolds Xi,j as follows: we start
with two copies D4 ˆ SpHq. Now we recall that SpHq – S3, so each of these
has boundary S3 ˆ SpHq – SpHq ˆ SpHq. We identify these using the above
diffeomorphism. Each of these is a 3-sphere bundle over S4.

To endow this topological space with a smooth structure, we use the existence
of collars. We can avoid the use of these technical tools by gluing along open
subsets in the base instead, thinking of the base as a one-point compactified H.
To do so, take two copies of HˆSpHq and identify the open subsets pHz0q ˆSpHq

using the diffeomorphism

pHz0q ˆ SpHq ÝÑ pHz0q ˆ SpHq

px, yq ÞÝÑ

ˆ

x

||x||2
,
xiyxj

||x||i`j

˙

.

Here ||x||2 “ ||a` bi` cj ` dk||2 “ a2 ` b2 ` c2 ` d2 is the (squared) quaternion
norm.
Example 32.2.1. X0,0 – S4 ˆ S3 and X1,0 – S7.
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Proposition 32.2.2. If i` j “ 1, Xi,j admits a Morse function with two critical
points.

Proof. We start in the first chart H ˆ SpHq, extending to the remaining 3-sphere
t8uˆSpHq later. The idea is to take the real part ℜpxq “ ℜpa`bi`cj`dkq “ a
on the fibers, scaled by a suitable function of norm of the base H Y 8 to localize
all critical points over 0:

fpx, yq “
ℜpyq

a

1 ` ||x||2
.

For its derivative to vanish, certainly the partial derivatives of ℜpyq with respect
to the coordinates of y have to vanish. The function ℜ on SpHq is just the height
function on S3, so this occurs only if y “ ˘1. A further condition is then that
the partial derivatives of 1{

a

1 ` ||x||2 with respect to the coordinates of x has
to vanish, and this only happens when x “ 0. We leave to the reader to check
that the maximum at px, yq “ p0, 1q and the minimum at px, yq “ p0,´1q are
non-degenerate.

We claim that in the other chart, the Morse function is given by

fpx1, y1q :“ ℜpx1py1q´1q
a

1 ` ||x1||2
.

Indeed, when substituting the coordinate change

px1, y1q “

ˆ

x

||x||2
,
xiyxj

||x||

˙

,

we get, using cyclic invariance of ℜ and the fact that ℜpy´1q “ ℜpyq,

fpx1, y1q “
ℜpx1py1q´1q
a

1 ` ||x1||2

“
||x||

||x||2
ℜpxx´jy´1x´iq

a

1 ` ||x||2{||x||4

“
1

||x||

ℜpy´1q
a

1 ` 1{||x||2

“
ℜpyq

a

1 ` ||x||2
.

We know already know that fpx1, y1q has no critical points unless possibly when
x1 “ 0. But fixing y1 “ 1 and restricting to real x1 “ a, we get f 1pa, 0q “ a?

1`a2

which has no critical point at a “ 0. Hence fpx1, y1q has no critical points.

Thus Theorem 32.1.1 gives:

Corollary 32.2.3. If i` j “ 1, Xi,j is homeomorphic to S7.

We will combine this with the following fact:
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Theorem 32.2.4 (Milnor). Xi,j can not be diffeomorphic to S7 unless pi´jq2 ” 1
pmod 7q.

Taking i “ 2 and j “ ´1, we get pi ´ jq2 “ 32 ” 2 pmod 7q and we have
found an exotic sphere! In fact, Kervaire and Milnor proved that there 28 oriented
exotic 7-spheres up to orientation-preserving diffeomorphism [KM63].

32.2.2 Exotic diffeomorphisms

Let us now return our attention to Reeb’s theorem. Observe that the diffeomor-
phism g we obtained in its proof is orientation preserving, as it is the restriction
of an obviously orientation-preserving diffeomorphism Ma ˆ r0, 1s Ñ Mra,bs.

Corollary 32.2.5. There exist orientation-preserving diffeomorphisms of S6

which are not isotopic to the identity.

Proof. Suppose that in the case of X2,´1, the orientation-preserving diffeomor-
phism g of S6 obtained in Theorem 32.1.1 is isotopic to the identity, say by a
family of diffeomorphisms gt starting at the identity and ending at g. Think of
S6 as sitting inside of R7 via the standard embedding ι and apply the isotopy
extension theorem to the family of embeddings

ι ˝ gt : S6 ÝÑ R7.

We then obtain a family of compactly-supported diffeomorphisms φt of R7 such
that gt “ φt ˝ ι. Since gt maps S6 to S6, φt maps D7 to D7. Then ρ :“ φ1|D7 is a
diffeomorphism of D7 extending g. As suggested in Remark 32.1.3, using it in the
last part of the proof of Theorem 32.1.1 would prove that X2,´1 is diffeomorphic
to S7, and we get a contradiction. Thus g was not isotopic to the identity.

Remark 32.2.6 (The Gromoll–Meyer sphere). One of Milnor’s exotic spheres—in
fact, X2,´1—can be obtained explicitly up to diffeomorphism as a quotient of a Lie
group [GM74]. Let Sppnq denote the group of pnˆ nq-matrices with quaternion
entries satisying Q:Q “ id “ QQ: where Q: denotes the transpose conjugate of
Q. There is an action of Spp1q on Spp2q, where q P Spp1q acts on Q P Spp2q by

„

q 0
0 q

ȷ

Q

„

q 0
0 1

ȷ

.

Then there is a diffeomorphism X2,´1 – Spp2q{Spp1q. You can use this to give
an explicit formula for exotic diffeomorphism of S6 [Dur01].
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Exotic 7-spheres II

We will now explain why some of Milnor’s homotopy 7-spheres are not diffeomor-
phic to S7. This is based on the signature theorem, which in turn relies on a
computation of the rational oriented cobordism ring.

33.1 The signature theorem

33.1.1 Unoriented cobordism

Instead of trying to classify smooth manifolds up to diffeomorphism, one may
first try to classify them up to the following weaker equivalence relation:

Definition 33.1.1. Two compact k-dimensional smooth manifolds M0 and M1
with empty boundary are said to be cobordant if there is a compact pk ` 1q-
dimensional smooth manifold W such that BW “ M1 \M0.

We call W a cobordism from M0 to M1. Here the “equation” BW “ M1 \M0
means that the boundary of W comes with a diffeomorphism to the disjoint of
M0 and M1. In particular, if M1 is diffeomorphic to M0 we can interpret the
cylinder M0 ˆ r0, 1s as a cobordism from M0 to M1.

Example 33.1.2. If W Ñ R is a proper smooth map without critical values then
the Ehresmann fibration theorem says W |ra,bs is a cylinder between the fibres
W |a and W |b. The pre-image theorem says W Ñ R is just a proper smooth map
with regular values a, b P R, then W |ra,bs is a cobordism between W |a and W |b.

Lemma 33.1.3. Cobordism is an equivalence relation.

Proof. To see it is reflexive, note that the cylinder M0 ˆ r0, 1s exhibits M0 as
cobordant to M0. For symmetry, note that W as a cobordism from M0 to M1
can also be interpreted as a cobordism from M1 to M0. Finally, for associativity,
note that if W0 is a cobordism from M0 to M1 and W1 is a cobordism from M1
to M2, then W0 YM1 W1 is a cobordism from M0 to M2.

Definition 33.1.4. We let ΩO
k denote the set of k-dimensional compact manifolds

up to cobordism. We denote the cobordism class of M by rM s.

263
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Lemma 33.1.5. Disjoint union makes ΩO
k into an abelian group:

rM s ` rN s :“ rM \N s.

Proof. It is straightforward to show that \ is compatible with the equivalence
relation of cobordism, and gives an associative and commutative binary operation
on ΩO

k with identity given by ∅. It remains to see why there are inverses. To do
so, we interpret M ˆ r0, 1s not as a cobordism from M to M but as a cobordism
from M \M to ∅, so rM s ` rM s “ 0 and thus rM s is its own inverse.

It is a consequence of the proof of this lemma that ΩO
k is a 2-torsion abelian

group.
Example 33.1.6 (ΩO

0 ). A compact d-dimensional manifold M represents the
identity in ΩO

k if and only if it bounds a compact manifold. By the classification
of 0-dimensional compact manifolds, these are given by a finite disjoint union of
points. By the classification of 1-dimensional compact manifolds, a finite disjoint
union of points is a boundary if and only if it consists of an even number of
points. We conclude that the homomorphism

ΩO
0 ÝÑ Z{2

tr pointsu ÞÝÑ r pmod 2q

is an isomorphism.
Example 33.1.7 (ΩO

1 ). Similarly, the classification of 1-dimensional compact
manifolds says that every such manifold without boundary is a finite disjoint
union of circles. This is the boundary of a finite disjoint union of 2-dimensional
disks, so ΩO

1 “ 0.
Let us assemble all ΩO

k into a single graded abelian group ΩO
˚ . In addition to

disjoint unions, we can take cartesian products. We will leave the proof of the
following lemma to the reader:

Lemma 33.1.8. Cartesian product makes ΩO
˚ into a graded-commutative algebra:

rM s ¨ rN s :“ rM ˆN s.

The following is a deep result of Thom [Tho54], with addendum by Dold
[Dol56]; its proof uses a lot of algebraic topology.

Theorem 33.1.9 (Thom, Dold). There is an isomorphism of graded-commutative
algebras

ΩO
˚ – F2rxi | i ą 0 and i ‰ 2k ´ 1s,

where xi in degree i is represented by the Dold manifold of dimension i.

This should be surprising, as it is a complete classification of smooth manifolds
up to an equivalence relation that does not seem very weak. It is also quite useful,
as invariants obtained by taking inverse images of regular values are often only
well-defined up to cobordism and hence take values in ΩO

˚ .
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33.1.2 Oriented cobordism

As the terminology suggests, we want to modify unoriented cobordism to take
into account orientations.

Definition 33.1.10. Two compact oriented k-dimensional smooth manifolds
M0,M1 with empty boundary are said to be oriented cobordant if there is a
compact oriented pk ` 1q-dimensional smooth manifold W such that BW “

M1 \ ´M0 (recall that ´M0 denotes M0 with opposite orientation).

The following is proven for oriented cobordism by taking into account orien-
tations in the proofs for unoriented cobordism:

Lemma 33.1.11. Oriented cobordism is an equivalence relation.

Definition 33.1.12. We let ΩSO
k denote the set of k-dimensional compact oriented

manifolds up to oriented cobordism. We denote the cobordism class of M by
rM s.

Lemma 33.1.13. Disjoint union makes ΩO
k into an abelian group, and cartesian

product makes the graded abelian group ΩSO
˚ into a graded-commutative algebra.

If you go through the proof of this lemma, you will learn that the inverse of
rM s is r´M s, i.e. M with the opposite orientation. In particular, it is not the
case that ΩSO

˚ consists of 2-torsion groups. The graded-commutativity comes
from the fact that M ˆN is orientation by appending to the orientation of TmM
that of TnN , so if one reverses the order the orientation changes if and only if
both M and N are odd-dimensional.
Example 33.1.14 (ΩSO

0 and ΩSO
1 ). The classification of compact oriented 0- and

1-dimensional manifolds saying that these are a finite disjoint union of oriented
points or a finite disjoint union of circles. This can be used to prove that

ΩSO
0 ÝÑ Z

$

&

%

r positively oriented points
and s negatively oriented

points

,

.

-

ÞÝÑ r ´ s

is an isomorphism, and that ΩSO
1 “ 0.

Example 33.1.15 (ΩSO
2 ). The classification of compact oriented surfaces says that

each of these is a disjoint union of Σg for some g ě 0. Each of these bounds a
solid handlebody, so ΩSO

2 “ 0.
The oriented cobordism ring is harder to describe, so we settle for its ratio-

nalization ΩSO
˚ b Q. The following is again a deep result of Thom [Tho54]:

Theorem 33.1.16 (Thom). There is an isomorphism of graded-commutative
algebras

ΩSO
˚ b Q – Qrz4i | i ą 0s

where z4i in degree 4i is represented by CP 2i.
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Example 33.1.17. That this is not the full story can be seen by the computation
that ΩSO

5 “ Z{2, generated by rSUp3q{SOp3qs. It is known that all torsion
is 2-torsion, and ΩSO

˚ {tors is a free polynomial ring generated by the Milnor
manifolds.

It is outside the scope of this course, but for each oriented manifold there are
invariants

pipTMq P H4ipMq for i ě 0,

called Pontryagin classes. As the notation suggests, these makes sense for any
oriented vector bundle and here we are just applying them to TM . They record
to what extent the tangent bundle is a non-trivial vector bundle. For example, if
the tangent bundle M is trivial, e.g. because it is a Lie group, they all vanish.

For a compact oriented 4k-dimensional manifold with empty boundary, one can
extract from these cohomology classes a number as follows: if i1 ď i2 ď ¨ ¨ ¨ ď is is
a consequence of positive integers (possibly repeated) such that i1 ` ¨ ¨ ¨ ` is “ k,
we take

ż

M
pi1pTMq ¨ ¨ ¨ pispTMq P R.

It is a non-trivial fact that these numbers are in fact integers, and give homomor-
phisms

ż

M
pI : ΩSO

4k ÝÑ Z for I “ pi1, . . . , isq with sum k

called Pontryagin numbers.
Tensoring with the rationals, we get linear maps ΩSO

4k bQ Ñ Q. Thom proved
that these are linearly independent. As the number of sequences I is the same as
dimension of Qrz4i | i ą 0s in degree 4k, equal to the number of partitions pprq

of r, we get:

Proposition 33.1.18 (Thom). The linear map
À

I

ş

M pI : ΩSO
4k b Q Ñ Qpprq is

an isomorphism.

Example 33.1.19. If
ş

M pIpMq “ 0 for all sequences I, then there exists some
N ě 1 such that

Ů

N M bounds a compact oriented manifold.

33.1.3 The signature

Suppose that M is a compact oriented even-dimensional manifold, say of dimen-
sion k “ 2r. Then there is a bilinear form

x´,´y : HrpMq bHrpMq ÝÑ R

rωs b rνs ÞÝÑ

ż

M
ω ^ ν.

By graded-commutativity of the wedge product, this is anti-symmetric if r is odd
and symmetric if r is even. By Poincaré duality it is non-degenerate.
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For r odd, by Problem 63 there exists a sympletic basis e1, . . . , es, f1, . . . , fs
of HrpMq. This means that it satisfies

xei, ejy “ 0 “ xfi, fjy, and xei, fjy “

#

1 if i “ j,
0 otherwise.

That is, in this basis it is given by the skew-symmetric matrix
„

0 ids
´ids 0

ȷ

.

In particular, we can not obtain any information from it that the Betti number
βipMq :“ dimHrpMq does not already tell us.

For r even, we can use Sylvester’s theorem—a direct consequence of the
spectral theorem for symmetric matrices—which says that there exists a basis
e1, . . . , es, f1, . . . , ft of HrpMq such that

xei, fjy “ 0, xei, ejy “

#

1 if i “ j,
0 otherwise,

xfi, fjy “

#

´1 if i “ j,
0 otherwise.

That is, in this basis it is given by the symmetric matrix
„

ids 0
0 ´idt

ȷ

.

The numbers s and t are unique, and from them we extract the following invariant:

Definition 33.1.20. If M is a compact oriented 4r-dimensional manifold, then
its signature σpMq is given by s´ t.

By construction, the signature is additive in disjoint unions and reserving the
orientation multiplies it by ´1. Using the following example, any integer can be
realized as the signature of a 4r-dimensional manifold.
Example 33.1.21. The signature of CP 2i is 1.
Example 33.1.22. The signature of the K3-manifold is ´16.

The signature is a cobordism-invariant

We will now prove that the signature only depends on the oriented cobordism
class of M . To do so, it suffices to prove that if a 4r-dimensional compact
oriented manifold M bounds a p4r ` 1q-dimensional compact oriented manifold
W then σpMq “ 0. Indeed, if M0 is oriented cobordant to M1, then this implies
σpM0 \ ´M1q “ 0 or equivalently σpM0q ´ σpM1q “ 0.

Lemma 33.1.23. Let i : M ãÑ W denote the inclusion and take rωs P H4rpW q.
Then

ş

M i˚ω “ 0.

Proof. By Stokes’ theorem we have
ş

M i˚ω “
ş

N dω “ 0 because ω is closed.
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We will use the following algebraic observation.

Lemma 33.1.24. Suppose we have a R-vector space V of dimension 2n with
non-degenerate symmetric bilinear form x´,´y : V b V Ñ R which has an n-
dimensional subspace W Ă V such that the restriction x´,´y|W : W bW Ñ R is
identically zero. Then we have σpV q “ 0.

Proof. The proof is by induction over n. Fix e P W , then by non-degeneracy
there is an f P V such that xe, fy “ 1. By replacing f by f ´ 1

2xf, fye we may
assume xf, fy “ 0. Then on the linear subspace U “ spanpe, fq, the bilinear
form x´,´y has signature 0, and V “ U ‘ UK. As UK is 2pn´ 1q-dimensional,
W X UK is pn ´ 1q-dimensional, and x´,´y vanishes identically on it, we may
invoke the induction hypothesis.

Proposition 33.1.25. If a 4r-dimensional compact oriented manifold M bounds
a p4r ` 1q-dimensional compact oriented manifold W then σpMq “ 0.

Proof. It suffices to prove that H2kpMq is of dimension 2n and contains an
n-dimensional subspace on which x´,´y vanishes identically. We claim that the
image of i˚ : H2kpW q Ñ H2kpMq has the desired property. By Lemma 33.1.23
the bilinear form x´,´y vanishes on it, so it suffices to prove that its dimension
is half of that H2kpMq.

The long exact sequence of a pair and Poincaré–Lefschetz duality assemble to
a commutative diagram

H2kpNq H2kpMq H2k`1pN,Mq

H2k`1pN,Mq˚ H2kpMq˚ H2kpNq˚

i˚

– – –

pi˚q˚

Our starting point is the tautological equation:

dimH2kpMq “ dim impi˚q ` dim impi˚qK.

On the one hand, the isomorphism of the top row to the bottom row and exactness
gives

dim impi˚q “ dim kerppi˚q˚q.

On the other hand, we have

dim impi˚qK “ dim kerppi˚q˚q.

because λ : H2kpMq Ñ R is in the kernel of pi˚q˚ if and only if it annihilates the
image of i˚. We thus get dimH2kpMq “ 2 dim impi˚q and the result follows.

The signature theorem

What we have just proved implies that the signature gives a surjective homomor-
phism

σ : ΩSO
4k ÝÑ Z,
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which upon rationalization gives a linear functional σ : ΩSO
4k b Q Ñ Q.

By Proposition 33.1.18 this is a linear combination with rational coefficients
of Pontryagin numbers. Hirzebruch determined what these coefficients are in
terms of the coefficients of the Taylor series expansion of

?
z

tanhp
?
zq

around z. We
shall not describe this procedure, but will remark that is easily implemented on
a computer.

Theorem 33.1.26 (Hirzebruch). The signature of a 4k-dimensional compact
oriented manifold is given by

σpMq “

ż

M
Lkpp1pTMq, . . . , pkpTMqq

where

L0 “ 1
L1 “ 1

3p1

L2 “ 1
45p7p2 ´ p2

1q

L3 “ 1
945p62p3 ´ 13p1p2 ` 2p3

1q

L4 “ 1
14175p381p4 ´ 71p1p3 ´ 19p2

2 ` 22p2
1p2 ´ 3p4

1q

etc.

This is a quite remarkable theorem. A priori, all we know about the Pontryagin
numbers is that they are integers. However, as the signature is by definition an
integer, the signature theorem imposes intricate arithmetic conditions on these
numbers.

33.2 Application to exotic 7-spheres

We will known explain why some of Milnor’s manifolds Xi,j are not diffeomorphic
to S7, though do not have the tools to fill in the details proof, which would require
at least a course in algebraic topology. The idea is straightforward, however: Xi,j

bounds a 4-disk bundle Wi,j over S4 and if it were diffeomorphic to S7 then we
can glue a D8 along it to get a compact oriented manifold which contradicts the
signature theorem, unless the condition in the theorem is satisfied.

Theorem 33.2.1 (Milnor). Xi,j can not be diffeomorphic to S7 unless pi´jq2 ” 1
pmod 7q.

Proof sketch. The Xi,j , given by 3-sphere bundles over S4, naturally bound an
8-dimensional manifold Wi,j ; the corresponding 4-disk bundle over S4.

Associated to any oriented compact 7-dimensional M which bounds a com-
pact oriented 8-dimensional manifold W , there are three invariants σpW, BW q,
ş

W,BW p2
1, and

ş

W,BW p2. We will not define these, but they are relative versions
of the signature and Pontryagin numbers which we discussed before, and in
particular are all integers.
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If we have two such W ’s, say W1 and W2, we can form the closed oriented
manifold V :“ W1 YM W2. Its invariants are related to the relative ones by the
equations

σpV q “ σpW1, BW1q ´ σpW2, BW2q,
ż

V
p2

1pTV q “

ż

W1,BW1

p2
1pTW1q ´

ż

W2,BW2

p2
1pTW2q,

ż

V
p2pTV q “

ż

W1,BW1

p2pTW1q ´

ż

W1,BW1

p2pTW2q.

The Hirzebruch signature theorem tells for closed V

45σpV q “ 7
ż

V
p2pTV q ´

ż

V
p2

1pTV q.

Thus we see that

λpMq :“ 45σpW, BW q ´

ż

W,BW
p2

1pTW q pmod 7q P Z{7

is independent of W . It is an invariant of M .
Let us return to the task at hand. On the one hand, one may use the

construction of Wi,j to compute

σpWi,j , BWi,jq “ 1 and
ż

Wi,j ,BWi,j

p2
1pTWi,jq “ 4pi´ jq2.

Since 45 ” 3 pmod 7q and 4´1 “ 2 pmod 7q, we get λpWi,jq “ pi´ jq2 ´ 1.
On the other hand, if Wi,j is diffeomorphic to S7 it bounds D8 and one may

use this to compute

σpD8, BD8q “ 0 and
ż

D8,BD8
p2

1pTD8q “ 0.

Since λpXi,jq is independent of the bounding manifold, this implies that
λpWi,jq “ 0. Comparing these values we see that a necessary condition for Wi,j

to be diffeomorphic to S7 is that pi´ jq2 ” 1 pmod 7q.

33.3 Problems

Problem 62 (Cobordism is an algebra). Prove Lemma 33.1.8.

Problem 63 (Symplectic bases). Prove that V is a finite-dimensional R-vector
space with non-degenerate anti-symmetric bilinear form x´,´y : V b V Ñ R,
then it admits a symplectic basis.

Problem 64 (Signature is multiplicative). Use the Künneth theorem of Problem
60 to prove that

σpM ˆNq “ σpMqσpNq.
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Comment. Math. Helv. 28 (1954), 17–86. 264, 265

[Tu11] L. W. Tu, An introduction to manifolds, second ed., Universitext,
Springer, New York, 2011. 9, 29, 36, 48

[Wal16] C. T. C. Wall, Differential topology, Cambridge Studies in Advanced
Mathematics, vol. 156, Cambridge University Press, Cambridge, 2016.
vii, 9, 229, 232, 239, 245

[Wat18] T. Watanabe, Some exotic nontrivial elements of the rational homo-
topy groups of DiffpS4q, 2018. 33

[Whi44] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space,
Ann. of Math. (2) 45 (1944), 220–246. 105


	Introduction
	Spheres in Euclidean space
	Circle eversion
	Knots
	Sphere eversion
	Problems

	Smooth manifolds
	Topological manifolds
	Smooth manifolds
	Examples of manifolds
	Problems

	Submanifolds
	Submanifolds
	Examples of submanifolds using calculus
	Five constructions of the 2-torus

	Smooth maps
	Smooth maps and diffeomorphisms
	Constructing smooth maps
	Problems

	Derivatives
	Derivatives and tangent spaces
	Alternative definitions of tangent spaces and derivatives
	Problems

	Tangent bundles
	Vector bundles
	The tangent bundle and the derivative
	Linear algebra of vector bundles
	Problems

	Immersions and submersions
	Globalizing the inverse function theorem
	Globalizing the immersion theorem
	Globalizing the submersion theorem
	Problems

	Quotients and coverings
	Covering spaces
	Quotients by discrete groups
	Quotients by Lie groups
	Problems

	Three further examples of manifolds
	The Poincaré homology sphere
	The K3-manifold
	The Whitehead manifold
	Problems

	Partitions of unity and the weak Whitney embedding theorem
	The weak Whitney embedding theorem
	Existence of partitions of unity
	Problems

	Transversality and the improved preimage theorem
	The preimage theorem restated
	Transversality
	Another construction of the Poincaré homology sphere
	Problems

	Stable and generic classes of smooth maps
	Homotopies of smooth maps
	Stable classes of maps
	Generic classes of smooth maps
	The proof of Sard's theorem
	Problems

	Two applications of Sard's theorem
	The strong Whitney embedding theorem
	Manifolds with boundary
	The Brouwer fixed point theorem
	Problems

	Transverse maps are generic
	Transverse maps are generic
	The regular neighbourhood theorem
	Problems

	Mod 2 intersection theory
	A strongly relative transversality theorem
	Mod 2 intersection theory
	First applications of mod 2 intersection theory
	Problems

	Two applications of mod 2 intersection theory
	The Borsuk–Ulam theorem
	The Jordan–Brouwer separation theorem
	Problems

	Orientations and integral intersection theory
	What is an orientation on a manifold?
	A recollection of multilinear algebra
	Orientations
	Integral intersection theory
	Problems

	Orientations and integral intersection theory
	What is an orientation on a manifold?
	A recollection of multilinear algebra
	Orientations
	Integral intersection theory
	Problems

	Differential forms and integration
	Differential forms
	Integration of differential forms

	The exterior derivative and Stokes' theorem
	The exterior derivative
	Stokes' theorem
	Classical integral theorems

	De Rham cohomology
	De Rham cohomology
	First examples
	Problems

	The Poincaré lemma
	The Poincaré lemma
	Homotopy invariance
	Two further tricks
	Problems

	The Mayer–Vietoris theorem
	Some homological algebra
	The Mayer–Vietoris theorem
	Applications
	Problems

	Qualitative applications of Mayer–Vietoris
	De Rham cohomology is finite-dimensional
	Poincaré duality
	Problems

	The Thom isomorphism
	Vertically compactly-supported cohomology
	The Thom isomorphism

	Čech cohomology
	Double cochain complexes
	The Čech-to-de Rham complex
	Čech cohomology of (pre)sheaves

	Secondary applications of de Rham cohomology
	Poincaré duals of submanifolds and intersection theory
	The Hopf invariant
	Massey products

	Flows along vector fields
	Flows along vector fields
	Isotopy extension
	Manifold bundles and the Ehresmann fibration theorem
	Problems

	First fundamental theorem of Morse theory
	Morse functions
	The first fundamental theorem of Morse theory

	Second fundamental theorem of Morse theory
	The second fundamental theorem of Morse theory
	Morse functions and de Rham cohomology

	Classification of smooth surfaces
	Manipulating handle decompositions
	The classification of surfaces

	Exotic 7-spheres I
	Reeb's theorem
	Exotic 7-spheres

	Exotic 7-spheres II
	The signature theorem
	Application to exotic 7-spheres
	Problems

	Bibliography

